Download PDFOpen PDF in browser

Serial Application of SWAT and CE-QUAL-W2 to Predict Water Quality Dynamics in the Basin and Lake of the Yongdam Dam, Korea to Analyze Climate Change Effects

9 pagesPublished: September 20, 2018

Abstract

Long term changes in pollutant loadings and water quality of the Yongdam Lake due to climate changes were estimated by using a basin model and a surface water quality model in series. Two Representative Concentration Pathways scenarios, RCP4.5 and RCP8.5, that stabilize radiative force at 4.5 W/m2 (significant reduction) and 8.5 W/m2 (current trend), respectively, were applied and their impacts were predicted. The SWAT model was selected in the basin to predict flow rates and loadings of major pollutants to the lake. Then, the CE-QUAL-W2 model was used to estimate water levels and water concentrations in the study lake. Both models were applied for 6 years from 2010 to 2015 and the latter three years were used for calibrations discarding the first three year warming up periods’ results. Using the both models, future flow rate and water concentration were estimated for 80 years from 2016 to 2095. The RCP8.5 scenario application results shows future flow rate and water quality concentrations will be increased in flood seasons and decreased in dry seasons. This result indicates that drought and flood will become more serious and also their effects on water quality will become more serious in the future. The RCP4.5 scenario showed greater increase in flow rates and TSS and TP concentrations than RCP8.5 scenarios despite the significant reduction in green house gas. This may be caused by increased air temperature followed by increased evapotranspiration that led surface runoff reduction in the basin area of the RCP8.5. This study suggests that dependent on characteristics of local climate change effect, impacts on the environmental may be different. Also, temporal distributions of precipitation pattern during simulation period and also in a year must be investigated thoroughly as simple arithmetic averages may not reflect detailed phenomena appropriately.

Keyphrases: CE-QUAL-W2, climate change, SWAT, The Yongdam Lake, Water quality modeling

In: Goffredo La Loggia, Gabriele Freni, Valeria Puleo and Mauro De Marchis (editors). HIC 2018. 13th International Conference on Hydroinformatics, vol 3, pages 1902--1910

Links:
BibTeX entry
@inproceedings{HIC2018:Serial_Application_of_SWAT,
  author    = {Dongil Seo and Jongtae Park and Youngmin Koo},
  title     = {Serial Application of SWAT and CE-QUAL-W2 to Predict Water Quality Dynamics in the Basin and Lake of the Yongdam Dam, Korea to Analyze Climate Change Effects},
  booktitle = {HIC 2018. 13th International Conference on Hydroinformatics},
  editor    = {Goffredo La Loggia and Gabriele Freni and Valeria Puleo and Mauro De Marchis},
  series    = {EPiC Series in Engineering},
  volume    = {3},
  pages     = {1902--1910},
  year      = {2018},
  publisher = {EasyChair},
  bibsource = {EasyChair, https://easychair.org},
  issn      = {2516-2330},
  url       = {https://easychair.org/publications/paper/C4vj},
  doi       = {10.29007/1l72}}
Download PDFOpen PDF in browser