
EasyChair Preprint
№ 12439

A Unifying Theory for the Reliability of Stochastic
Programming Solutions Using Compromise
Decisions

Shuotao Diao and Suvrajeet Sen

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

March 10, 2024



A Unifying Theory for the Reliability of
Stochastic Programming Solutions using

Compromise Decisions

Shuotao Diao1 and Suvrajeet Sen2

1 Department of Industrial Engineering and Management Sciences, Northwestern
University, 2145 Sheridan Road, Evanston, IL 60208, USA

2 Daniel J. Epstein Department of Industrial & Systems Engineering, University of
Southern California, 3715 McClintock Ave, Los Angeles, CA 90089, USA

shuotao.diao@northwestern.edu
s.sen@usc.edu
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1 Introduction

Monte Carlo sampling is known to support applications in which uncertainty
may be simulated (e.g., simulated annealing [4], simulation-optimization [6]) with
relative ease. However, the introduction of sampling introduces estimation errors,
and in the case of optimization, additional errors in decision-optimization can be
introduced due to unreliable objective function (especially gradient/subgradient)
estimates.

Importance sampling is one popular approach to reduce the variance of es-
timate by Monte Carlo sampling. It has been widely used to reduce stochastic
gradient [13, 31] and portfolio credit risk [9]. Kozimík and Morton [16] also pro-
pose an importance sampling methodology to reduce the variance of the upper
bound estimate of optimal cost from the Stochastic Dual Dynamic Programming
(SDDP) algorithms in the risk-averse setting. Carson and Maria summarized
that the key success of importance sampling lies in the appropriate change of
probability measure for rare event simulation.

Additionally, other popular variance reduction methods include linear con-
trol random variables method ([25]), in which a correlated random variable with
mean zero is added to the objective function, and common random numbers
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variance reduction approach ([15]). For a review of modern variance reduction
technique in stochastic optimization, we refer the readers to the overview by
Homem-de-Mello and Bayraksan [17].

When memory is no longer a bottleneck of the computation ([30]), perform-
ing several replications of sampling procedures (possibly in parallel) becomes
an alternative to improve objective function estimate and/or optimal solution
estimate. Sen and Liu [24] propose a closed-loop methodology, which they refer
to as Compromise Decision approach, to aggregate the information of replica-
tion of both objective function estimates and decision estimates together. Their
computational results of a two-stage SONET Switched Network problem show
that compromise decision has a relatively lower validated objective in the mini-
mization problem. Xu and Sen later extends the Compromise Decision approach
to solve two-stage stochastic linear programs [24] and multi-stage stochastic lin-
ear programs [29]. While the computations reported in these papers have been
extremely encouraging, a common theoretical understanding of these procedures
have not yet emerged. This paper is intended to present such a theory which is
based on a small set of principles which can be used to explain the computational
success reported in the above papers.

Indeed, we aim to study the finite-sample complexity of the Compromise
Decision approach to solve the following generic stochastic program. Formal def-
initions will be introduced in the later sections.

min
x∈X

f(x) ≜ Eξ̃[F (x, ξ̃)], (1)

where ξ̃ : Ω 7→ Ξ ⊂ Rd is a random variable defined on a probability space
(Ω,ΣΩ ,P), X ⊂ Rp is the feasible region of x, and F : X × Ξ 7→ R is a
Carathéodorian function (i.e., continuous in X and measurable for almost every
ξ ∈ Ξ).

Given m (m ≥ 2) replications, we let ξni , f̂n(x; ξ
n
i ) and x̂(ξni ) denote the

sample set with size n, objective function estimate, and decision estimate in
the ith replication of using Monte Carlo sampling to solve the problem in (1),
respectively. The Compromise Decision problem is formulated as follows:

min
x∈X

1

m

m∑
i=1

f̂n(x; ξ
n
i ) +

ρ

2
∥x− 1

m

m∑
i=1

x̂n(ξ
n
i )∥2 (2)

The addition of the quadratic regularizer to the objective function has been
widely used in Stochastic Programming algorithms such as the proximal point
method [22], mirror descent method [19], regularized SD [11], and regularized
SDDP [1, 10]. The Compromise Decision problem consists of value function ap-
proximation aggregation and penalty to the distance to the average decision
estimates. Let x̄N (ξN ) = 1

m

∑m
i=1 x̂(ξ

n
i ) and let xc

N (ξN ) denote the optimal so-
lution of (2). It is obvious that if x̄N (ξN ) and xc

N (ξN ) agree, then both are
optimal to (2). Such observation has been transformed into a stopping rule for
compromise SD ([24]).
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Motivated by the numerical evidence of successful use of the Compromise
Decision problem, this paper aims to provide a common mathematical basis for
those successes. In particular, we shall address the following concerns for the
Compromise Decision problem:

1. What is the sample complexity of the margin of error on the objective func-
tion involving replications?

2. How the penalty coefficient ρ interacts with the function estimate and deci-
sion estimate?

3. What is the sample complexity of ϵ-optimal solution of (2)? In particular,
what is the large deviation bound of the distance between the compromise
decision and optimal solution set of (1)?

This paper is organized as follows. In section 2, we review Rademacher com-
plexity and its use in bounding the sample complexity of the objective function
estimate and its variance. In section 3, we present the Compromise Decision
problem and derive its sample complexity. In section 4, we present the sample
complexity analysis of the compromise decision when a Benders’ type decompo-
sition algorithm is used to solve each replication of the approximation problem.

1.1 Notations

Let ξ̃ : Ω 7→ Ξ ⊂ Rd denote a random vector defined on the probability space
(Ω,ΣΩ ,P). We let ξ denote one realization of ξ̃. Let ξ̃1, ξ̃2, . . . , ξ̃n denote inde-
pendent and identically distributed (i.i.d.) copies of ξ̃. For i = 1, 2, . . . , n, we
let ξi denote the realization of ξ̃i and let ξn ≜ {ξ1, ξ2, . . . , ξn} denote the set of
realizations of n i.i.d. copies of ξ̃. Let X ⊂ Rp be a compact set of decisions,
and let F : X × Ξ 7→ R be a Carathéodorain function. We let Pr(·) denote the
probability of an event, and let ∥ · ∥ denote the Euclidean norm.

Without further specification, we let n denote the sample size of each repli-
cation and let m denote the number of replications. We let ξni denote the sample
set with size n in the ith replication. We let N = mn denote the total sample size
and let ξN = ∪m

i=1ξ
n
i denote the mega sample set. Without loss of generality, we

consider the case in which the sample size for each replication is the same, but it
is straightforward to extend the analysis to the heterogeneous sample sizes case.

As for the Rademacher average, we Let σ̃1, σ̃2, . . . , σ̃n be i.i.d. random vari-
ables with σ̃i for i = 1, 2, . . . , n being equally likely to be 1 or −1. That is,
Pr(σ̃ = 1) = 1

2 and Pr(σ̃ = −1) = 1
2 . Furthermore, we require that σ̃i are inde-

pendent of ξ̃.
To study ϵ-optimality of a solution, we shall define the following metric to

measure the distance between two sets (see [7, 8] for more details)

∆(A,B) ≜ sup
a∈A

inf
b∈B

∥a− b∥. (3)

In other words, ∆(A,B) is the largest distance from a point of set A to set B.
The following theorem sets up the Lipschitzian behavior of the ϵ-solution set in
terms of the metric defined in (3).
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Theorem 1. [7] Assume that X is a nonempty compact convex set and f : X 7→
R is a lower semicontinuous convex function. Let the following definitions hold:
DX = maxx,x′∈X ∥x−x′∥; θ∗ = minx∈X f(x); ϵ′ > ϵ > 0, Xϵ = {x ∈ X : f(x) ≤
θ∗ + ϵ}, and Xϵ′ = {x ∈ X : f(x) ≤ θ∗ + ϵ′}. Then the following holds:

∆(Xϵ′ , Xϵ) ≤
ϵ′ − ϵ

ϵ
DX .

Proof. See [7, Theorem 3.11].

The results of Theorem 1 relate the perturbation of the objective function
(e.g., estimation error from sampling) to the ϵ-optimal solution set.

2 Background on Sample Complexity of Objective
Function Point Estimate and Rademacher Average.

As mentioned by [3], “Rademacher complexity is commonly used to describe the
data-dependent complexity of a function class". One key advantage of (empirical)
Rademacher average (or complexity) is that it can be measured from a finite
sample set (see [3] for i.i.d. cases, and see [18] for non-i.i.d. cases). As a result, it
can be used to estimate the finite-sample error of a function class. Radecamher
average has been widely used in neural networks ([2]), support vector machine
([27]), and decision trees ([12]).

We begin this section by reviewing the notion of Rademacher average and its
use in bounding a sample average approximation of the objective function and
a sample variance of the random cost function.

The common finite-sample approximation of (1) is known as the sample
average approximation (SAA), and is written as follows.

min
x∈X

fn(x; ξ
n) ≜

1

n

n∑
i=1

F (x, ξi). (4)

Since we will deal with multiple replications of sampling, we write the sample
set explicitly in the argument of the fn(x; ·) to distinguish different sample sets.
A similar writing style will apply sample variance, estimated solutions and com-
promise decisions.

The variance of the random cost function, F (x, ξ̃), parameterized by the
decision x, is defined as

Var[F (x, ξ̃)] ≜ Eξ̃

[(
F (x, ξ̃)− f(x)

)2
]
.

The unbiased estimate of the variance of F (x, ξ̃) is formulated as

s2n(x; ξ
n) ≜

1

n− 1

n∑
i=1

[F (x, ξi)− f̂n(x)]
2. (5)
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Define a compound function H : X×Y ×Ξ 7→ R with H(x, y, ξ) = (F (x, ξ)−y)2.
As suggested in [8], the variance of F (x, ξ̃) can be written as a compound function
as follows:

Var[F (x, ξ̃)] = Eξ̃[H(x,Eξ̃[F (x, ξ̃)], ξ̃)] = Eξ̃[(F (x, ξ̃)− Eξ̃[F (x, ξ̃)])2].

Furthermore, the sample variance, s2n(x), can be rewritten as a compound func-
tion as follows.

s2n(x; ξ
n) =

1

n− 1

n∑
i=1

H(x,
1

n
F (x, ξi), ξi). (6)

Throughout the paper, we make the following assumptions:

A1. X ⊂ Rp is a nonempty compact convex set contained in a cube whose edge-
length is D.

A2. F (x, ξ) is Hölder continuous in x with constant LF and γ ∈ (0, 1].
A3. There exists MF ∈ (0,∞) such that supx∈X,ξ∈Ξ |F (x, ξ)| < MF . Let Y ⊂ R

be Y ≜ [−MF ,MF ].

We note that the assumption of boundedness of the feasible region and the ob-
jective function is common in the Stochastic Programming literature [26, 19, 8].
Also, Hölder continuity condition of the objective function is a generalization of
its Lipschitzian counterpart. The introduction of the soundness parameters and
Hölder continuity-related parameters are later used to bound the Rademacher
average of the random cost function and its variance.

The Rademacher average of a function class is defined as follows.

Definition 1 ([8]). Let σ̃1, σ̃2, . . . , σ̃n be i.i.d. random variables with σ̃i for i =
1, 2, . . . , n being equally likely to be 1 or −1. For a set of points (ξ1, . . . , ξn) = ξn

in Ξ and a sequence of functions {F (·, ξi) : X 7→ R}, the Rademacher average
of a function class is defined by:

Rn(F, ξ
n) ≜ Eσ̃

[
sup
x∈X

∣∣∣∣∣ 1n
n∑

i=1

σ̃iF (x, ξi)

∣∣∣∣∣
]

(7)

The upper bound of Rademacher average of the random cost function, F (x, ξ),
is given in the following lemma.

Lemma 1 ([8]). Suppose that assumptions A1 - A3 hold. Then

Rn(F, ξ
n) ≤ (LFD

γd
γ
2 +MF

√
2(log 2 +

d

2γ
log n))/

√
n, (8)

furthermore, for λ ∈ (0, 1
2 ), we have

Rn(F, ξ
n) ≤ NF

nλ
(9)

where NF = LFD
γd

γ
2 +MF

√
2(log 2) + MF d1/2√

γ(1−2λ)e
.
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The upper bound of the Rademcaher average of the compound function
H(x, y, ξ) is given below.

Lemma 2. Let σ̃1, σ̃2, . . . , σ̃n be i.i.d. random variables with σ̃i for i = 1, 2, . . . , n
being equally likely to be 1 or −1. Let the Rademacher average of the set of se-
quences of H be

Rn(H, ξn) = Eσ̃ sup
x∈X,y∈Y

∣∣∣∣∣ 1n
n∑

i=1

σ̃iH(x, y, ξi)

∣∣∣∣∣ .
Suppose that assumptions A1 - A3 hold. Let LH = 4MF

√
L2
F + 1 and MH =

4M2
F . For any λ ∈ (0, 1

2 ), we have the following result:

Rn(H, ξn) ≤ NH

nλ
, (10)

where NH = LHD(d+ 1)
1
2 +MH

√
2(log 2) + MF (d+1)1/2√

(1−2λ)e
.

Since NH does not depend on ξ, we observe that

Rn(F,Ξ) = sup
ξ1∈Ξ1,...,ξn∈Ξn

Rn(F, ξ
n) ≤ sup

ξ1∈Ξ1,...,ξn∈Ξn

NH

nλ
=

NH

nλ
.

Denote

δfn(ξ
n) = sup

x∈X

∣∣∣∣∣ 1n
n∑

i=1

F (x, ξi)− Eξ̃[F (x, ξ̃)]

∣∣∣∣∣ (11)

One key property of Rademacher average is that we can use a symmetric
argument to bound the estimated error defined in (11). For more details about
the symmetric argument, please see [5]. We summarize the bound of δfn(ξ

n)
derived by Ermoliev and Norkin [8] in the following theorem.

Theorem 2. Suppose that assumptions A1 - A3 hold. Then the following holds:

1.
E[δfn(ξ̃n)] ≤ 2Rn(F,Ξ) ≤ 2NF

nλ
,

2.

Pr
{
nλδfn(ξ̃

n) ≥ 2NF + t
}
≤ exp

(
− t2

2M2
F

)
.

Similarly, we derive the sample complexity of the sample variance in the next
lemma.

Lemma 3. Denote

δhn(ξ
n) = sup

x∈X

∣∣∣∣∣∣ 1n
n∑

i=1

H(x,
1

n

n∑
j=1

F (x, ξj), ξi)− Eξ̃[H(x,Eξ̃[F (x, ξ̃)], ξ̃)]

∣∣∣∣∣∣
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and

δ̂n(ξ
n) = sup

x∈X,y∈Y

∣∣∣∣∣ 1n
n∑

i=1

H(x, y, ξi)− Eξ̃[H(x, y, ξ̃)]

∣∣∣∣∣
Suppose that assumptions A1 - A3 hold. Then the following holds:

1.
δhn(ξ

n) ≤ 4MF δ
f
n(ξ

n) + δ̂n(ξ
n)

2.
E[δhn(ξ̃n)] ≤ 8MFRn(F,Ξ) + 2Rn(H,Ξ)

≤ 8MFNH + 2NF

nλ
,

where λ ∈ (0, 1
2 ), NF = LFD

γd
γ
2 + MF

√
2(log 2) + MF d1/2√

γ(1−2λ)e
, and NH =

LHD(d+ 1)
1
2 +MH

√
2(log 2) + MF (d+1)1/2√

(1−2λ)e
.

2.1 Sample Complexity of the Margin of Error

We let ξni = {ξ(i−1)n+j}nj=1 denote the ith sample set with size n. The SAA
objective function of the ith replication is

fn(x; ξ
n
i ) ≜

1

n

n∑
j=1

F (x, ξ(i−1)n+j), i = 1, 2, . . . ,m.

s2n(x; ξ
n
i ) is sample variance of F (x, ξ) in the ith replication:

s2n(x; ξ
n
i ) =

1

n− 1

n∑
j=1

[F (x, ξ(i−1)n+j)− fn,i(x)]
2. (12)

Let Z1−α
2
= Φ−1

(
1− α

2

)
. With m replications, the margin of error or the 1− α

confidence interval of f(x) is written as:

1

m

√∑m
i=1 s

2
n(x; ξ

n
i )

n
Z1−α

2
(13)

By using Jensen’s inequality, the upper bound of the expected margin of error
(half-width of the (1− α) confidence interval) is

E

 1

m

√∑m
i=1 s

2
n(x; ξ̃

n
i )

n
Z1−α

2

 ≤

√
σ2(x)

mn
+

8MFNH + 2NF

mn(1+λ)
+

4M2
F

mn(n− 1)
Z1−α

2

≤ O((mn)−
1
2 ),

(14)
where λ ∈ (0, 1

2 ). The upper bound given in (14) not only agrees with the com-
mon sense, (O((mn)−

1
2 )), but also indicates that the bias terms ( 8MFNH+2NF

mn(1+λ) +
4M2

F

mn(n−1) ) diminishes faster than the unbiased term σ2(x)
mn .
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3 Sample Complexity of Compromise Decision Problem

In this section, we shall formulate the Compromise Decision problem and then
study the sample complexity of the associated compromise decision. We start
with a basic formulation where we can solve each replication of the SAA problem
to optimal. In particular, we let xn(ξ

n
i ) denote the optimal solution of the ith

replication:
xn(ξ

n
i ) ∈ arg min

x∈X
fn(x; ξ

n
i ), i = 1, 2, . . . ,m.

Given a regularizer ρ ∈ (0,∞), the compromise stochastic program can be for-
mulated as follows:

min
x∈X

1

m

m∑
i=1

fn(x; ξ
n
i ) +

ρ

2
∥x− 1

m

m∑
i=1

xn(ξ
n
i )∥2. (15)

Let θN,ρ(ξ
N ) and θ∗ denote the optimal values of Compromise Decision problem

in (15) and true problem in (1), respectively, we shall show that E[|θN,ρ(ξ̃
N ) −

θ∗|] ≤ 4m−2
mnλ NF , for some problem specific constant NF .

In practice, we often obtain an ϵ-optimal solution with ϵ > 0. Hence, the
more tractable compromise stochastic program is formulated below:

min
x∈X

1

m

m∑
i=1

fn(x; ξ
n
i ) +

ρ

2
∥x− 1

m

m∑
i=1

xn,ϵ(ξ
n
i )∥2 (16)

where xn,ϵ(ξ
n
i ) is the ϵ-optimal solution of the ith replication of the SAA problem

(i.e., fn(xn,ϵ(ξ
n
i ); ξ

n
i ) ≤ minimum{fn(x; ξni )|x ∈ X}+ ϵ).

We make one extra assumption on the convexity of the objective function
below:

A4. F (x, ξ) is convex in x ∈ X for every ξ ∈ Ξ.

Also, recall that the estimation error of each replication is defined as follows:

δfn(ξ
n
i ) = sup

x∈X
|fn(x; ξni )− f(x)|, i = 1, 2, . . . ,m.

With the symmetric argument (see [5, 8]), we have E[δn(ξ̃ni )] ≤ 2Rn(F,Ξ). In
the next theorem, we use this relation to derive the sample complexity of the
optimal cost of (15).

Theorem 3. Suppose that assumptions A1 - A4 hold. Let

θN,ρ(ξ
N ) = min

x∈X

1

m

m∑
i=1

fn(x; ξ
n
i ) +

ρ

2
∥x− 1

m

m∑
i=1

xn(ξ
n
i )∥2.

Then the following holds:

E[|θN,ρ(ξ̃
N )− θ∗|] ≤ 4m− 2

m
Rn(F,Ξ) ≤ 4m− 2

mnλ
NF ,

where Rn(F,Ξ) is the Rademacher average associated with F and sample size
n, and λ ∈ (0, 1

2 ), NF = LFD
γd

γ
2 +MF

√
2(log 2) + MF d1/2√

γ(1−2λ)e
.
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We further define the ϵ-optimal solution set of the compromise problem.

X̂N,ρ,ϵ(ξ
N ) = {x ∈ X :

1

m

m∑
i=1

fn(x; ξ
n
i ) +

ρ

2
∥x− 1

m

m∑
i=1

xn,ϵ(ξ
n
i )∥2 ≤ θN,ρ,ϵ + ϵ},

(17)
We close the section by giving the finite-sample complexity of the compromise
decisions defined in (17).

Theorem 4. Suppose that assumptions A1 - A4 hold. Let λ ∈ (0, 1
2 ) and NF =

LFD
γd

γ
2 +MF

√
2(log 2) + MF d1/2√

γ(1−2λ)e
. Then the following hold:

1.

∆(X̂N,ρ,ϵ(ξ
N ), X∗

ϵ ) ≤

2
m

∑m
j=1 δn(ξ

n
j ) +

1
m2

∑m
i,j=1
i ̸=j

(δn(ξ
n
i ) + δn(ξ

n
j ))

ϵ
DX+2

√
ϵ/ρ.

(18)
2.

E[∆(X̂N,ρ,ϵ(ξ̃
N ), X∗

ϵ )] ≤
DXNF

ϵ

8m− 4

mnλ
+ 2

√
ϵ/ρ.

3. Further let ρ = n and C = ϵ
3
2

DX
+ (3m−2)2NF

m , then we have

Pr

{
ϵnλ

2DX
∆(X̂N,ρ,ϵ(ξ̃

N ), X∗
ϵ ) ≥ C + t

}
≤ m exp

{
− m2t2

2MF (3m− 2)2

}
.

4 Algorithms for Compromise Decision Problems

In this section, we study the scenario where a proper algorithm is applied to
solve each replication of SAA problem. We will provide a framework to merge
the computational results from each replication to create a Compromise Decision
problem.

Let x̂n(ξ
n) and f̂n(x; ξ

n) denote the estimated solution and approximated
objective function of fn(x; ξ

n) output by the algorithm. When the algorithm
terminates, we require that the following conditions hold:

C1. There exists ϵ1 ∈ (0,∞) such that x̂n(ξ) ∈ argminx∈X f̂n(x; ξ
n) and

fn(x̂n(ξ
n); ξn)− f̂n(x̂n(ξ

n); ξn) ≤ ϵ1.

C2. Given ϵ2 ∈ (0,∞). f̂n(x; ξn) is a convex piecewise linear approximation (i.e.,
f̂n(x; ξ

n) = maxℓ∈L{αℓ + ⟨βℓ, x⟩}) of fn(x; ξ
n) with possibly some errors

such that f̂n(x; ξ
n) ≤ fn(x; ξ

n) + ϵ2 for all x ∈ X.

In Condition C1, fn(x̂n(ξ
n); ξn) is the upper bound estimate of the optimal cost

and f̂n(x̂n(ξ
n); ξn) is the lower bound estimate of the optimal cost. Condition

C2 ensures that it outputs an inexact outer approximation of the SAA of the
objective function. Conditions C1 and C2 altogether ensure that an algorithm
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yields an (ϵ1 + ϵ2)-optimal solution of the SAA problem. For instance, Kelley’s
Cutting Plane Methods ([14]) and other Benders’ type decomposition-based al-
gorithms ([20, 21, 23, 28]) will satisfy the conditions above.

Here, we discuss a pre-processing step for building Compromise Decision
problem. For i = 1, 2, . . . ,m, we let x̂n(ξ

n
i ) and f̂n(ξ

n
i ) denote the estimated

solution of minx∈X fn(x; ξ
n
i ) and surrogate function of fn(x; ξ

n
i ). In the pre-

processing step, we augment f̂n(x; ξ
n
i ) by letting

f̌n(x; ξ
n
i ) = max{f̂n(x; ξni ), max

j=1...n
{fn(x̂n(ξ

n
j ); ξ

n
i )+⟨f ′

n,ϵ2(x̂n(ξ
n
j ); ξ

n
i ), x−x̂n(ξ

n
j )⟩}},

where f ′
n,ϵ2;ξni

(x̂j
n) is the ϵ2-subgradient of fn(·; ξni ) at x.

Now we can set up a Compromise Decision problem below:

min
x∈X

1

m

m∑
i=1

f̌n(x; ξ
n
i ) +

ρ

2
∥x− 1

m

m∑
j=1

x̂n(ξ
n
j )∥2. (19)

Let ϵ < ϵ1 + ϵ2. We define the ϵ-optimal solution set of problem (19) below:

θ̂N,ρ,ϵ(ξ
N ) = min

x∈X

1

m

m∑
i=1

f̌n(x; ξ
n
i ) +

ρ

2
∥x− 1

m

m∑
i=1

x̂n(ξ
n
i )∥2,

X̌N,ρ,ϵ(ξ
N ) = {x ∈ X :

1

m

m∑
i=1

fn(x; ξ
n
i ) +

ρ

2
∥x− 1

m

m∑
i=1

x̂n(ξ
n
i )∥2 ≤ θ̂N,ρ,ϵ(ξ

N ) + ϵ}.

Finally, we derive the finite-sample complexity of the compromise decisions in
(19) below.

Theorem 5. Suppose that assumptions A1 - A4 and conditions C1 - C2 hold.
Let λ ∈ (0, 1

2 ) and NF = LFD
γd

γ
2 + MF

√
2(log 2) + MF d1/2√

γ(1−2λ)e
. Then the fol-

lowing holds:

1.
E[∆(X̌N,ρ,ϵ(ξ̃

N ), X∗
ϵ )] ≤

DXNF

ϵ

8m− 4

mnλ
+

ϵ1 + ϵ2 − ϵ

ϵ
2DX

+
2m(m− 1)ϵ2

m2ϵ
DX + 2

√
ϵ/ρ.

2. Furthermore, pick ϵ = ϵ1, ϵ2 = 1√
n
, ρ = n, and C = (2m−1)

m + ϵ
3
2

DX
+

(3m−2)2NF

m , then

Pr

{
ϵnλ

2DX
∆(X̌N,ρ,ϵ(ξ̃

N ), X∗
ϵ ) ≥ C + t

}
≤ m exp

{
− m2t2

2MF (3m− 2)2

}
.
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