
EasyChair Preprint
№ 11210

An Improved Deep Reinforcement
Learning-Based Multi-Agent Cooperative Game
Approach

Zhongqi Zhao, Chuang Zhang, Haoran Xu, Jiawei Kou and
Hui Cheng

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

October 31, 2023

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

An Improved Deep Reinforcement Learning-Based
Multi-Agent Cooperative Game Approach

1st Zhongqi Zhao
School of Computer and Engineering

Xi'an University of Technology

 Xi 'an City, Shaanxi Province,China
3190111026@stu.xaut.edu.cn

4th Jiawei Kou
School of Computer and Engineering

Xi'an University of Technology

 Xi 'an City, Shaanxi Province,China
3200121024@stu.xaut.edu.cn

2nd Chuang Zhang
School of Computer and Engineering

Xi'an University of Technology

Xi 'an City, Shaanxi Province,China
3200432049@stu.xaut.edu.cn

5th Hui Cheng
School of Computer and Engineering

Xi'an University of Technology

 Xi 'an City, Shaanxi Province,China
3200131045@stu.xaut.edu.cn

3rd Haoran Xu
School of Computer and Engineering

Xi'an University of Technology

Xi 'an City, Shaanxi Province,China
3200921050@stu.xaut.edu.cn

Abstract—Multi-agent collaborative games based on deep

reinforcement learning have been one of the hot topics in the

field of artificial intelligence in recent years. Building on existing

research, this paper selects the on-policy Multi-Agent Proximal

Policy Optimization (MAPPO) algorithm to explore its

performance in multi-agent collaborative games, providing new

insights for further research.

Using the Hanabi game environment, this paper implements

the MAPPO algorithm with an appropriate action space to

maximize collaborative efficiency and competitiveness.

Experimental results demonstrate that the MAPPO algorithm

performs well in collaborative gaming scenarios. Compared to

the off-policy Value-Decomposition Networks (VDN) algorithm

[1], it improves the decision efficiency and outcomes of

intelligent agents. This study highlights the feasibility and

advantages of the MAPPO algorithm in multi-agent

collaborative games.

Furthermore, this experiment delves into the application of

the MAPPO algorithm in multi-agent collaborative games,

offering valuable insights for enhancing reinforcement learning

algorithms and their practical applications. This study also

poses new questions and provides guidance and inspiration for

future researchers.

Keywords—reinforcement learning;multi-agent collaborative

games; MAPPO

I. INTRODUCTION

With the advancement of perceptual intelligence
technology, artificial intelligence is gradually shifting from
perceptual intelligence to decision-making intelligence, as
evidenced by the remarkable performance of AlphaGo and
DQN in Atari games[2]. However, the real world is complex
and ever-changing, and the decisions of individual agents are
no longer sufficient to meet the demands. Group intelligent
decision-making is becoming mainstream[3]. For example, in
fields such as logistics warehousing and smart cities, multi-
agent systems can collaborate to achieve task distribution,
planning, and execution. In summary, multi-agent systems
based on deep reinforcement learning have vast development
prospects and significant application value.

Currently, several teams have made notable progress. The
DeepMind team led by Silver et al. proposed the AlphaGo
algorithm, which combines deep learning algorithms with
Monte Carlo tree search[4]. The team at Tsinghua University
implemented collaborative decision-making among multiple
intelligent agents in an aerial combat simulation platform,
achieving significant performance improvements[5].

Researchers from Beijing Institute of Technology proposed an
approach to achieving multi-agent collaborative control
through interactive learning, obtaining favorable experimental
results[6]. A team at Shanghai Jiao Tong University
introduced a multi-agent collaborative path planning method
based on game theory and machine learning, which achieved
excellent results in logistics delivery scenarios[7]. The
research team at Tsinghua University presented a multi-agent
collaborative learning method based on dynamic cooperation
mechanisms, achieving outstanding performance in multiple
tasks[8].

The main research contents of this paper include:
comparing the efficiency of the MAPPO algorithm with the
VDN algorithm in the field of multi-agent applications;
designing the action space for collaborative tasks, designing
and implementing a multi-agent collaborative game model
based on the Hanabi environment; and verifying the
advantages of MAPPO in terms of training time efficiency and
scores in multi-agent collaborative tasks.

II. MODEL DESIGN

In this chapter, a multi-agent collaborative game model
based on the MAPPO algorithm is designed, taking into
account the gameplay process of the Hanabi game.

A. Multi-Agent Design

The goal of MAPPO is to enable multiple intelligent
agents to learn robust strategies in both cooperative and
competitive environments to maximize cumulative rewards. It
employs the proximal policy optimization concept of PPO[9],
which aims to ensure that the new policy is not too far from
the old policy in each policy update, thereby improving
algorithm stability. In the field of multi-agent collaborative
games, the Hanabi game presents a highly challenging
problem[10]. Hanabi agents utilize a centralized training,
distributed execution approach, consisting primarily of three
components: the policy network, the action space construction
module based on the current environment, and the value-based
action decision module. The architecture of the intelligent
agents is illustrated in Fig.1.

Figure 1. Overall Architecture of Multi-Agents

B. Construction of Multi-Agent Action Space

In the Hanabi game, the legal action space includes: first,
ensuring that the combinations required to form fireworks in
Hanabi exist either in all players' hands or in the un-drawn
deck; second, ensuring that the type (color) of the played card
matches the responding card and that the card value is greater
than the responding card (number). This paper constructs the
Hanabi action space state by identifying responding cards,
calculating the available actions for the current player's card,
and selecting the optimal action card value through three main
sections. The processing flow of each subpart is as follows.

1) Identification of Responding Cards: The method for

identifying responding cards involves matching and

recognizing the card type and value based on the

combinations of cards already played and inferred

information about one's own hand.

2) Available Actions for the Current Player: Based on

the identified responding card information and game rule

restrictions, the paper calculates the action combinations of

cards in the current player's hand that match the environment

and computes the log probabilities and card values of these

combinations.

3) Selection of Optimal Action Card Value: From the

available actions for the current player, suitable actions that

would result in a total card value greater than the responding

card value are selected as valid action states.

C. Actor Policy Network

The policy function of the actor network is represented as

a probability density function (|)sπ α , which outputs the

action with the highest log probability. This function is
responsible for controlling the agent's actions, i.e., the choice

of card-playing strategies. The (|)sπ α

function takes an

observation state s as input and outputs the log probability
distribution for the corresponding action α. The policy
network approximates the policy function by training a neural

network. For the parameters of θ , policy gradient algorithms
can be employed to facilitate updates, thus completing the

training of the policy network (| ;)sπ α θ .

In the training process, the state-value function ()tV S
π

 is

the weighted average of the action-value function (,)t tQ S
π

α

and represents the expected value with respect to the action α.
The value of this function is independent of the magnitude of
action α and solely depends on the policy function and the

current state tS . In other words, when the policy function is

determined, a larger state-value function indicates the
potential for greater rewards in the current state. Therefore, the
state-value function can be used to evaluate the quality of the
implemented policy. By using the policy network to
approximate the state-value function, the policy function can
be formulated as shown in Formula 1.

 (;) (| ;) (,)dt t t t tV S S Q S
π

α π α θ α α= (1)

During training, the actor policy network continuously

optimizes the relevant parameters θ , leading to an increase in

the state-value function. Consequently, the corresponding
objective function for the policy network is defined as shown
in Formula 2, allowing it to achieve better performance as
training progresses.

 () [(;)]sJ V Sθ θ= Ε (2)

D. Critic Policy Network

Rewards play a crucial role in reinforcement learning,
where the ultimate objective is to find the optimal policy that
maximizes the cumulative reward. In the context of the
Hanabi game, intelligent agents engage in cyclic interactions,
culminating in a final state. Assuming a value function
provides the optimal actions, each agent can derive the
optimal policy based on this function. However, since the
optimal action-value function is typically unknown, it is often
estimated using temporal-difference algorithms. The goal of
this algorithm is to make the value function predictions for
observed actions closer to the target values. To achieve this, a
least squares loss function is constructed, as shown in Formula
3. Weight updates, denoted by , are carried out using gradient
descent to minimize the loss function.

1 2

[(, ;)]
2

t t t t tL Q S w yα= − (3)

 Hanabi's cooperative gameplay scenario involves
receiving dense rewards. Throughout the cooperative game,
rewards may be generated after each move or a series of
moves. The final reward is provided at the conclusion of the
entire game, but it can be considered that there are no rewards
during the process. The focus is solely on the final score,
effectively leading to a sparse reward scenario, where

0()tr t T= ≠ . Training samples in such scenarios have

minimal impact on the overall network and cannot lead to
significant policy improvements. Training becomes
exceptionally slow, and there is a risk that the network may
not converge. However, since the Hanabi game's cooperative
gameplay is more concerned with long-term benefits,
specifically the final score achieved by all players, the
discount factor (denoted as γ) can be set to 1, making the

cumulative return at time t become t TG r= .

In the algorithm presented in this paper, the design of the
reward function takes several factors into consideration,
including the number of cards of each color, their numerical
values in each player's hand, and the count of tokens passed.
During the gameplay, if a player's hand contains a higher
number of cards of a specific color or a wider range of
numerical values, it becomes easier to play cards from their
hand and complete fireworks. Therefore, this paper chooses to
use the average number of cards from the player's hand with
more colors and a broader numerical range as one of the
reward components.

III. EXPERIMENTS AND ANALYSIS

In this chapter, we measure and compare the performance
and efficiency of the MAPPO algorithm and the VDN method
in the Hanabi game environment using two metrics: training
time and training score.

A. Evaluation Metrics

1) Training Time: The level of cooperative collaboration

among agents generally improves gradually with training

time (or iteration count) and tends to stabilize over time.

Therefore, this experiment compares the two algorithms from

two perspectives. First, it evaluates time under equal effects.

That is, when the scores have stabilized, it compares the time

consumed by each algorithm, with shorter times indicating

higher efficiency. Second, it evaluates scores under equal

time. In this case, the experiment ensures that different

reinforcement learning algorithms achieve cooperative scores

while training for the same amount of time, with higher scores

indicating faster convergence.

2) Training Score: Training Score: The final score in

cooperative games represents the overall performance of the

algorithm. Each algorithm's intelligent agents compute their

respective final scores. Higher scores indicate a higher level

of cooperative collaboration.

B. Experimental Setup

The multi-agent environment in the experiment is based
on the non-reinforcement learning Hanabi game environment
provided by the DeepMind open-source toolkit. To avoid
errors introduced by differences in initial card hands and turn
order, all comparative experiments use the same initial card
hands and clockwise turn order for repeated training.

Training Time Comparison Setup:Training time
comparison measures the scores achieved by intelligent agents
collaborating in a fixed number of cooperative games. During
the training process of MAPPO and VDN, two sets of
intelligent agents are periodically extracted at the same time
intervals and engage in cooperative games with intelligent
agents from the DeepMind open-source environment. Each
stage involves 2000 rounds of games, and the average scores
for MAPPO and VDN are recorded. The performance of
MAPPO and VDN in terms of training time efficiency is
compared based on the score curves during training.

Training Score Comparison Setup:To assess the
performance of the MAPPO algorithm in multi-agent
cooperative Hanabi games, multiple intelligent agents trained
for the same time intervals engage in cooperative games.
Specifically, MAPPO and VDN intelligent agents are
evaluated after the same training duration, with each pair

playing 2000 cooperative games, and the final scores are
recorded.

C. Experimental Results and Analysis

1) Comparison of Training Time between MAPPO and

VDN: During the training process, as shown in Fig.2, we

present the score evolution curves for two types of agents

based on MAPPO and VDN, with training progress measured

in days.

Figure 2. Game Score Changes for MAPPO and VDN Algorithm

As shown in Fig.2, the score curves for both types of
intelligent agents exhibit two phases. In the early stage of
training (0-4 days), the agents continuously explore various
strategies, representing a trial-and-error process. With an
increase in interaction frequency and the number of analyzed
samples, the agents gradually learn card-playing strategies,
leading to a rapid improvement in game scores. In the later
stage of training (after 5 days), agents primarily rely on
existing knowledge for decision-making and continue to
explore better strategies, resulting in slower score
improvements.

Simultaneously, based on the results in Fig.2, it is
concluded that the training efficiency of the MAPPO
algorithm is superior to VDN. Taking a score of 20 as the
baseline for early training, the MAPPO algorithm reaches this
baseline one day earlier than VDN. MAPPO also achieves
convergence earlier, with the curve flattening at 4 days.
Furthermore, in the later stages of training, MAPPO
consistently outperforms VDN in terms of scores. These
results collectively demonstrate the effectiveness of the deep
reinforcement learning algorithm MAPPO in training Hanabi
intelligent agent models.

2) Comparison of Training Score between MAPPO and

VDN: Under the condition of basic parameters being the

same, the average scores and highest scores for both

algorithms are presented in Table 1.

TABLE I. SCORES OF MAPPO AND VDN IN HANABI GAMES

Number of Players Score MAPPO VDN

2
Average 23.56 23.50

Highest 23.94 23.78

3
Average 23.48 23.45

Highest 23.87 23.80

4
Average 23.24 22.86

Highest 23.55 23.53

5
Average 22.77 21.04

Highest 23.01 21.62

Table 1 shows the scores of MAPPO and VDN algorithms
in the Hanabi game environment with varying numbers of
agents, ranging from 2 to 5. All the methods listed in the table
have iterated over at least 10 billion environment steps. As
shown in the table, MAPPO achieves the best results in terms
of both highest and average scores in most cases. This
indicates that MAPPO exhibits strong performance in the
Hanabi environment.

IPPO's performance is comparable to MAPPO in the
setting with 2 agents. However, as the number of agents
increases, MAPPO shows significant performance
improvement over IPPO and the other two off-policy methods,
indicating that the architecture of centralized training and
decentralized execution may be crucial.

In summary, in the experimental comparison between
MAPPO and VDN, the MAPPO algorithm outperforms VDN
in terms of both training time and post-training score
performance in the Hanabi game. Therefore, the multi-agent
collaborative game model based on the MAPPO algorithm
improves game efficiency and effectiveness, carrying
significant research value and significance.

IV. CONCLUSION

This paper presents a study on multi-agent collaborative
gaming using the deep reinforcement learning algorithm
MAPPO, validated through experiments conducted in the
Hanabi game environment. The research involves designing
an action space suitable for reinforcement learning models and,
through comparison with the off-policy VDN algorithm,
confirms the outstanding performance and stability of the
MAPPO algorithm in different gaming scenarios. The
experimental results demonstrate that the MAPPO algorithm
adapts better to scenarios involving multi-agent collaborative
gaming, significantly enhancing the agents' collaborative
efficiency and competitive capabilities, with broad potential

applications. Additionally, the study finds that action space
design plays a crucial role in the performance of reinforcement
learning models, particularly in addressing issues related to
action continuity and high dimensionality.

Research in the domain of multi-agent collaborative
gaming holds vast potential for various applications, including
intelligent transportation and optimization of power systems.
However, this field still faces numerous unresolved challenges,
such as improving the robustness of multi-agent collaborative
learning and addressing issues related to incomplete
information and uncertainty. We will continue to delve deeper
into the field of multi-agent collaborative gaming, optimize
and enhance algorithms, expand the scope of experimental
research, and integrate with other technologies, such as pre-
training techniques. In our future research endeavors, we
aspire to achieve richer and more in-depth research outcomes,
providing more effective solutions and optimization methods
for the domains of intelligent decision-making and
collaborative cooperation.

REFERENCES

[1] Sunehag P., Lever G., Gruslys A., ... & Graepel T, “Value-
Decomposition Networks For Cooperative Multi-Agent Learning,”
arXiv preprint arXiv: 1706.05296, 2017.

[2] C. Du, “Research on Multi-Agent Cooperative Adversarial Methods
Based on Deep Reinforcement Learning,” Doctoral dissertation,
Xidian University, 2020.

[3] Gronauer S., Diepold K, “Multi-agent deep reinforcement learning: a
survey,” Artif Intell Rev 55, 2022, pp. 895–943.

[4] Silver D., Huang A., Maddison C, ... & Hassabis D, “Mastering the
game of Go with deep neural networks and tree search,” Nature 529,
2016, pp. 484-489.

[5] Y. Chao, V. Akash, V. Eugene, ... and W. YI, “The Surprising
Effectiveness of PPO in Cooperative Multi-Agent Games,” Advances
in Neural Information Processing Systems, Inc. Curran Associates,
2022, vol. 35, pp. 24611-24624.

[6] Yu C, Velu A, Vinitsky E, ... “Dynamic Traffic Signal Optimization
with Multi-Agent Deep Reinforcement Learning,” arXiv preprint
arXiv:1803.08094, 2018.

[7] Marcin Andrychowicz, Anton Raichuk, Piotr Stanczyk, ..., “What
matters for on-policy deep actor-critic methods? a large-scale study,”
In International Conference on Learning Representations, 2021.

[8] Luo C, Liu X, Chen X, ..., “Multi-agent Fault-tolerant Reinforcement
Learning with Noisy Environments,” 2020 IEEE 26th International
Conference on Parallel and Distributed Systems (ICPADS), IEEE,
2020, pp. 164-171.

[9] Schulman J, Wolski F, Dhariwal P, ..., “Proximal Policy Optimization
Algorithms,” arXiv preprint arXiv:1707.06347, 2017.

[10] J. Wang, L. Cao, X. Chen, ... “A Comprehensive Review of Multi-
Agent Game Reinforcement Learning,” Computer Engineering and
Applications, 2019, 55(8), pp. 197-207.

