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Abstract—Multi-agent collaborative games based on deep 

reinforcement learning have been one of the hot topics in the 

field of artificial intelligence in recent years. Building on existing 

research, this paper selects the on-policy Multi-Agent Proximal 

Policy Optimization (MAPPO) algorithm to explore its 

performance in multi-agent collaborative games, providing new 

insights for further research. 

Using the Hanabi game environment, this paper implements 

the MAPPO algorithm with an appropriate action space to 

maximize collaborative efficiency and competitiveness. 

Experimental results demonstrate that the MAPPO algorithm 

performs well in collaborative gaming scenarios. Compared to 

the off-policy Value-Decomposition Networks (VDN) algorithm 

[1], it improves the decision efficiency and outcomes of 

intelligent agents. This study highlights the feasibility and 

advantages of the MAPPO algorithm in multi-agent 

collaborative games. 

Furthermore, this experiment delves into the application of 

the MAPPO algorithm in multi-agent collaborative games, 

offering valuable insights for enhancing reinforcement learning 

algorithms and their practical applications. This study also 

poses new questions and provides guidance and inspiration for 

future researchers. 

Keywords—reinforcement learning;multi-agent collaborative 

games; MAPPO 

I. INTRODUCTION 

With the advancement of perceptual intelligence 
technology, artificial intelligence is gradually shifting from 
perceptual intelligence to decision-making intelligence, as 
evidenced by the remarkable performance of AlphaGo and 
DQN in Atari games[2]. However, the real world is complex 
and ever-changing, and the decisions of individual agents are 
no longer sufficient to meet the demands. Group intelligent 
decision-making is becoming mainstream[3]. For example, in 
fields such as logistics warehousing and smart cities, multi-
agent systems can collaborate to achieve task distribution, 
planning, and execution. In summary, multi-agent systems 
based on deep reinforcement learning have vast development 
prospects and significant application value. 

Currently, several teams have made notable progress. The 
DeepMind team led by Silver et al. proposed the AlphaGo 
algorithm, which combines deep learning algorithms with 
Monte Carlo tree search[4]. The team at Tsinghua University 
implemented collaborative decision-making among multiple 
intelligent agents in an aerial combat simulation platform, 
achieving significant performance improvements[5]. 

Researchers from Beijing Institute of Technology proposed an 
approach to achieving multi-agent collaborative control 
through interactive learning, obtaining favorable experimental 
results[6]. A team at Shanghai Jiao Tong University 
introduced a multi-agent collaborative path planning method 
based on game theory and machine learning, which achieved 
excellent results in logistics delivery scenarios[7]. The 
research team at Tsinghua University presented a multi-agent 
collaborative learning method based on dynamic cooperation 
mechanisms, achieving outstanding performance in multiple 
tasks[8]. 

The main research contents of this paper include: 
comparing the efficiency of the MAPPO algorithm with the 
VDN algorithm in the field of multi-agent applications; 
designing the action space for collaborative tasks, designing 
and implementing a multi-agent collaborative game model 
based on the Hanabi environment; and verifying the 
advantages of MAPPO in terms of training time efficiency and 
scores in multi-agent collaborative tasks. 

II. MODEL DESIGN 

In this chapter, a multi-agent collaborative game model 
based on the MAPPO algorithm is designed, taking into 
account the gameplay process of the Hanabi game. 

A. Multi-Agent Design 

The goal of MAPPO is to enable multiple intelligent 
agents to learn robust strategies in both cooperative and 
competitive environments to maximize cumulative rewards. It 
employs the proximal policy optimization concept of PPO[9], 
which aims to ensure that the new policy is not too far from 
the old policy in each policy update, thereby improving 
algorithm stability. In the field of multi-agent collaborative 
games, the Hanabi game presents a highly challenging 
problem[10]. Hanabi agents utilize a centralized training, 
distributed execution approach, consisting primarily of three 
components: the policy network, the action space construction 
module based on the current environment, and the value-based 
action decision module. The architecture of the intelligent 
agents is illustrated in Fig.1. 



 

Figure 1.  Overall Architecture of Multi-Agents 

B. Construction of Multi-Agent Action Space 

In the Hanabi game, the legal action space includes: first, 
ensuring that the combinations required to form fireworks in 
Hanabi exist either in all players' hands or in the un-drawn 
deck; second, ensuring that the type (color) of the played card 
matches the responding card and that the card value is greater 
than the responding card (number). This paper constructs the 
Hanabi action space state by identifying responding cards, 
calculating the available actions for the current player's card, 
and selecting the optimal action card value through three main 
sections. The processing flow of each subpart is as follows. 

1) Identification of Responding Cards: The method for 

identifying responding cards involves matching and 

recognizing the card type and value based on the 

combinations of cards already played and inferred 

information about one's own hand. 

2) Available Actions for the Current Player:  Based on 

the identified responding card information and game rule 

restrictions, the paper calculates the action combinations of 

cards in the current player's hand that match the environment 

and computes the log probabilities and card values of these 

combinations. 

3) Selection of Optimal Action Card Value: From the 

available actions for the current player, suitable actions that 

would result in a total card value greater than the responding 

card value are selected as valid action states. 

C. Actor Policy Network 

The policy function of the actor network is represented as 

a probability density function ( | )sπ α , which outputs the 

action with the highest log probability. This function is 
responsible for controlling the agent's actions, i.e., the choice 

of card-playing strategies. The ( | )sπ α
 
function takes an 

observation state s as input and outputs the log probability 
distribution for the corresponding action α. The policy 
network approximates the policy function by training a neural 

network. For the parameters of θ , policy gradient algorithms 
can be employed to facilitate updates, thus completing the 

training of the policy network ( | ; )sπ α θ . 

In the training process, the state-value function ( )tV S
π

 is 

the weighted average of the action-value function ( , )t tQ S
π

α  

and represents the expected value with respect to the action α. 
The value of this function is independent of the magnitude of 
action α and solely depends on the policy function and the 

current state tS . In other words, when the policy function is 

determined, a larger state-value function indicates the 
potential for greater rewards in the current state. Therefore, the 
state-value function can be used to evaluate the quality of the 
implemented policy. By using the policy network to 
approximate the state-value function, the policy function can 
be formulated as shown in Formula 1.  

 ( ; ) ( | ; ) ( , )dt t t t tV S S Q S
π

α π α θ α α=   (1) 

During training, the actor policy network continuously 

optimizes the relevant parameters θ , leading to an increase in 

the state-value function. Consequently, the corresponding 
objective function for the policy network is defined as shown 
in Formula 2, allowing it to achieve better performance as 
training progresses. 

 ( ) [ ( ; )]sJ V Sθ θ= Ε  (2) 

D. Critic Policy Network 

Rewards play a crucial role in reinforcement learning, 
where the ultimate objective is to find the optimal policy that 
maximizes the cumulative reward. In the context of the 
Hanabi game, intelligent agents engage in cyclic interactions, 
culminating in a final state. Assuming a value function 
provides the optimal actions, each agent can derive the 
optimal policy based on this function. However, since the 
optimal action-value function is typically unknown, it is often 
estimated using temporal-difference algorithms. The goal of 
this algorithm is to make the value function predictions for 
observed actions closer to the target values. To achieve this, a 
least squares loss function is constructed, as shown in Formula 
3. Weight updates, denoted by , are carried out using gradient 
descent to minimize the loss function. 

 
1 2

[ ( , ; ) ]
2

t t t t tL Q S w yα= −  (3) 

 Hanabi's cooperative gameplay scenario involves 
receiving dense rewards. Throughout the cooperative game, 
rewards may be generated after each move or a series of 
moves. The final reward is provided at the conclusion of the 
entire game, but it can be considered that there are no rewards 
during the process. The focus is solely on the final score, 
effectively leading to a sparse reward scenario, where 

0( )tr t T= ≠ . Training samples in such scenarios have 

minimal impact on the overall network and cannot lead to 
significant policy improvements. Training becomes 
exceptionally slow, and there is a risk that the network may 
not converge. However, since the Hanabi game's cooperative 
gameplay is more concerned with long-term benefits, 
specifically the final score achieved by all players, the 
discount factor (denoted as γ ) can be set to 1, making the 

cumulative return at time t become t TG r= . 

 



In the algorithm presented in this paper, the design of the 
reward function takes several factors into consideration, 
including the number of cards of each color, their numerical 
values in each player's hand, and the count of tokens passed. 
During the gameplay, if a player's hand contains a higher 
number of cards of a specific color or a wider range of 
numerical values, it becomes easier to play cards from their 
hand and complete fireworks. Therefore, this paper chooses to 
use the average number of cards from the player's hand with 
more colors and a broader numerical range as one of the 
reward components. 

III. EXPERIMENTS AND ANALYSIS 

In this chapter, we measure and compare the performance 
and efficiency of the MAPPO algorithm and the VDN method 
in the Hanabi game environment using two metrics: training 
time and training score. 

A. Evaluation Metrics 

1) Training Time: The level of cooperative collaboration 

among agents generally improves gradually with training 

time (or iteration count) and tends to stabilize over time. 

Therefore, this experiment compares the two algorithms from 

two perspectives. First, it evaluates time under equal effects. 

That is, when the scores have stabilized, it compares the time 

consumed by each algorithm, with shorter times indicating 

higher efficiency. Second, it evaluates scores under equal 

time. In this case, the experiment ensures that different 

reinforcement learning algorithms achieve cooperative scores 

while training for the same amount of time, with higher scores 

indicating faster convergence. 

2) Training Score: Training Score: The final score in 

cooperative games represents the overall performance of the 

algorithm. Each algorithm's intelligent agents compute their 

respective final scores. Higher scores indicate a higher level 

of cooperative collaboration. 

B. Experimental Setup 

The multi-agent environment in the experiment is based 
on the non-reinforcement learning Hanabi game environment 
provided by the DeepMind open-source toolkit. To avoid 
errors introduced by differences in initial card hands and turn 
order, all comparative experiments use the same initial card 
hands and clockwise turn order for repeated training. 

Training Time Comparison Setup:Training time 
comparison measures the scores achieved by intelligent agents 
collaborating in a fixed number of cooperative games. During 
the training process of MAPPO and VDN, two sets of 
intelligent agents are periodically extracted at the same time 
intervals and engage in cooperative games with intelligent 
agents from the DeepMind open-source environment. Each 
stage involves 2000 rounds of games, and the average scores 
for MAPPO and VDN are recorded. The performance of 
MAPPO and VDN in terms of training time efficiency is 
compared based on the score curves during training. 

Training Score Comparison Setup:To assess the 
performance of the MAPPO algorithm in multi-agent 
cooperative Hanabi games, multiple intelligent agents trained 
for the same time intervals engage in cooperative games. 
Specifically, MAPPO and VDN intelligent agents are 
evaluated after the same training duration, with each pair 

playing 2000 cooperative games, and the final scores are 
recorded. 

C. Experimental Results and Analysis 

1) Comparison of Training Time between MAPPO and 

VDN: During the training process, as shown in Fig.2, we 

present the score evolution curves for two types of agents 

based on MAPPO and VDN, with training progress measured 

in days. 

 
Figure 2.  Game Score Changes for MAPPO and VDN Algorithm 

As shown in Fig.2, the score curves for both types of 
intelligent agents exhibit two phases. In the early stage of 
training (0-4 days), the agents continuously explore various 
strategies, representing a trial-and-error process. With an 
increase in interaction frequency and the number of analyzed 
samples, the agents gradually learn card-playing strategies, 
leading to a rapid improvement in game scores. In the later 
stage of training (after 5 days), agents primarily rely on 
existing knowledge for decision-making and continue to 
explore better strategies, resulting in slower score 
improvements. 

Simultaneously, based on the results in Fig.2, it is 
concluded that the training efficiency of the MAPPO 
algorithm is superior to VDN. Taking a score of 20 as the 
baseline for early training, the MAPPO algorithm reaches this 
baseline one day earlier than VDN. MAPPO also achieves 
convergence earlier, with the curve flattening at 4 days. 
Furthermore, in the later stages of training, MAPPO 
consistently outperforms VDN in terms of scores. These 
results collectively demonstrate the effectiveness of the deep 
reinforcement learning algorithm MAPPO in training Hanabi 
intelligent agent models. 

2) Comparison of Training Score between MAPPO and 

VDN: Under the condition of basic parameters being the 

same, the average scores and highest scores for both 

algorithms are presented in Table 1. 
 
 
 
 
 
 
 

TABLE I.  SCORES OF MAPPO AND VDN IN HANABI GAMES 

 



Number of Players Score MAPPO VDN 

2 
Average 23.56 23.50 

Highest 23.94 23.78 

3 
Average 23.48 23.45 

Highest 23.87 23.80 

4 
Average 23.24 22.86 

Highest 23.55 23.53 

5 
Average 22.77 21.04 

Highest 23.01 21.62 

Table 1 shows the scores of MAPPO and VDN algorithms 
in the Hanabi game environment with varying numbers of 
agents, ranging from 2 to 5. All the methods listed in the table 
have iterated over at least 10 billion environment steps. As 
shown in the table, MAPPO achieves the best results in terms 
of both highest and average scores in most cases. This 
indicates that MAPPO exhibits strong performance in the 
Hanabi environment. 

IPPO's performance is comparable to MAPPO in the 
setting with 2 agents. However, as the number of agents 
increases, MAPPO shows significant performance 
improvement over IPPO and the other two off-policy methods, 
indicating that the architecture of centralized training and 
decentralized execution may be crucial. 

In summary, in the experimental comparison between 
MAPPO and VDN, the MAPPO algorithm outperforms VDN 
in terms of both training time and post-training score 
performance in the Hanabi game. Therefore, the multi-agent 
collaborative game model based on the MAPPO algorithm 
improves game efficiency and effectiveness, carrying 
significant research value and significance. 

IV. CONCLUSION 

This paper presents a study on multi-agent collaborative 
gaming using the deep reinforcement learning algorithm 
MAPPO, validated through experiments conducted in the 
Hanabi game environment. The research involves designing 
an action space suitable for reinforcement learning models and, 
through comparison with the off-policy VDN algorithm, 
confirms the outstanding performance and stability of the 
MAPPO algorithm in different gaming scenarios. The 
experimental results demonstrate that the MAPPO algorithm 
adapts better to scenarios involving multi-agent collaborative 
gaming, significantly enhancing the agents' collaborative 
efficiency and competitive capabilities, with broad potential 

applications. Additionally, the study finds that action space 
design plays a crucial role in the performance of reinforcement 
learning models, particularly in addressing issues related to 
action continuity and high dimensionality. 

Research in the domain of multi-agent collaborative 
gaming holds vast potential for various applications, including 
intelligent transportation and optimization of power systems. 
However, this field still faces numerous unresolved challenges, 
such as improving the robustness of multi-agent collaborative 
learning and addressing issues related to incomplete 
information and uncertainty. We will continue to delve deeper 
into the field of multi-agent collaborative gaming, optimize 
and enhance algorithms, expand the scope of experimental 
research, and integrate with other technologies, such as pre-
training techniques. In our future research endeavors, we 
aspire to achieve richer and more in-depth research outcomes, 
providing more effective solutions and optimization methods 
for the domains of intelligent decision-making and 
collaborative cooperation. 
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