
EasyChair Preprint
№ 5176

Integer Induction in Saturation

Petra Hozzová, Laura Kovács and Andrei Voronkov

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

March 18, 2021



Integer Induction in Saturation

Petra Hozzová1 , Laura Kovács1 , and Andrei Voronkov2,3

1 TU Wien
2 The University of Manchester

3 EasyChair

Abstract. Integers are ubiquitous in programming and therefore also in
applications of program analysis and verification. Such applications often
require some sort of inductive reasoning. In this paper we analyze the
challenge of automating inductive reasoning with integers. We introduce
inference rules for integer induction within the saturation framework of
first-order theorem proving. We implemented these rules in the theorem
prover Vampire and evaluated our work against other state-of-the-art
theorem provers. Our results demonstrate the strength of our approach
by solving new problems coming from program analysis and mathemat-
ical properties of integers.

1 Introduction

One of the most commonly used data types in imperative/functional programs
are integers. For example, iterating over arrays in imperative programs or recur-
sively computing sums in functional programs include integer-valued program
variables, as illustrated in Figure 1. While for many uses of integers in program-
ming we only need to consider non-negative integers, there are also applications
where integers are essential, for example, reasoning about memory. To formally
prove functional correctness of such and similar programs, reasoning about inte-
gers is indispensable but so is handling some sort of induction over integers. In
this paper we address this two reasoning challenges and fully automate inductive
reasoning with integers within saturation-based theorem proving.

Induction in saturation-based theorem proving is a new exciting direction
in the automation of induction, recently introduced in [6,17,11]. This work fo-
cused on induction on inductively defined data types, also called algebraic data
types [13], such as natural numbers or lists. However, automating integer induc-
tion, that is, induction on integers, has not yet been addressed sufficiently.

While natural numbers have a well-founded order and induction over this
order is very useful in automated inductive theorem proving, the standard order
on integers is not well-founded, so it cannot be directly used as the induction
ordering. In this paper we will use the observation that the standard ordering
< is well-founded on every set of integers having a lower bound b and likewise,
the inverse > of this ordering is well-founded on every set of integers having an
upper bound b. This gives us two induction rules on such integer subsets: induc-
tion (with the base case b) using < and induction (with the base case b) using >,

http://orcid.org/0000-0003-0845-5811
http://orcid.org/0000-0002-8299-2714


2 Hozzová, Kovács and Voronkov

respectively, to prove that a property holds for all integers ≥ b and, respectively,
≤ b. We define these induction rules as upward, respectively, downward induc-
tion rules with symbolic bounds. We also consider two variations of these rules
over integer intervals and refer to such rules as interval upward, respectively,
downward induction rules with symbolic bounds.

For natural numbers, 0 is an obvious base case candidate, which also turns
out to be successful in the theorem proving practice. It is also a natural base case
candidate for induction. In this paper we will give some natural problems for
which neither 0 nor any concrete integer is a good base case. Our paper focuses
on the following three issues:

1. proofs of properties of integers by induction on bounded sets of integers in
saturation theorem proving, using (interval) downward/upward induction
rules with symbolic bounds;

2. techniques for discovering a suitable base case;
3. implementation techniques.

This paper is organized as follows. In Section 2 we illustrate our approach
by considering properties of the functional and imperative programs of Figure 1.
Then in Section 3 we define four induction rules over integers, called (interval)
downward, respectively upward, induction rules with symbolic bounds, and prove
their soundness. Section 4 introduces an extension of superposition calculus by
our new integer induction rules. We demonstrate that, using this extension, su-
perposition provers can prove integer properties similarly to how humans would
do. In particular, this extension is especially successful when used together with
the AVATAR architecture [20], since AVATAR helps in reasoning efficiently using
constraints coming out of the integer induction rules.

We implemented our work in the Vampire theorem prover [14] and compare
our implementation with other relevant provers, including Vampire without in-
teger induction (Section 5). Our experiments show that integer induction can
solve many new problems that could not so far be solved by any prover. For ex-
ample, 75 problems coming from program analysis and/or mathematical integer
properties could be solved only by Vampire with the new induction rules.

Contributions. This paper makes the following contributions:

• We introduce four new inference rules for automating integer induction: (in-
terval) downward, respectively upward, induction rules with symbolic bounds
(Section 3).
• Based on these rules, we introduce corresponding inference rules for integer

induction in the superposition calculus (Section 4). These rules are formu-
lated in the context of saturation-based theorem proving in a way that avoids
an immediate combinatorial explosion of the search space.
• We implement and evaluate the new rules in the theorem prover Vampire.

Our experimental results show that our implementation can solve a number
of problems previously unsolved by any prover (Section 5).
• We introduce a large collection of new inductive benchmarks, publicly avail-

able at https://github.com/vprover/inductive_benchmarks.

https://github.com/vprover/inductive_benchmarks


Integer Induction in Saturation 3

fun sum(n,m) =
if n = m then n
else n+ sum(n+ 1,m);

assert
∀n,m ∈ Z.(n ≤ m→

2 · sum(n,m) =
m ·(m+1)−n ·(n−1))

(a) Sum of integers
from [n,m].

assume 0 ≤ pos < A.size

i := pos;
while i+ 1 < A.size do

A[i+ 1] := A[i];
i := i+ 1;
inv ∀j ∈ Z.(pos ≤ j < i→ valA(j + 1) = valA(j))

end

assert
∀j ∈ Z.(pos ≤ j < A.size→ valA(j) = valA(pos))

(b) Array initialization, with valA(j) denoting A[j].

Fig. 1. Motivating examples for inductive reasoning with integers.

2 Motivating Examples

2.1 Preliminaries

We assume familiarity with standard many-sorted first-order logic with equal-
ity. For details we refer to [14]. Throughout this paper we denote variables by
x, y, e, j, n,m, constants by c, c′, Skolem constants by σ, all possibly with indices.
We denote terms by t, literals by L, formulas by F and clauses by C. We denote
the equality predicate by = and write t1 6= t2 for the literal ¬(t1 = t2).

We will focus on integer induction. To this end, we assume a distinguished
integer sort, denoted by Z. When we use standard integer predicates <, ≤, >,
≥, functions +,−, . . . and constants 0, 1, 2, . . . , we assume that they denote the
corresponding interpreted integer predicates and functions with their standard
interpretations. All other symbols are uninterpreted. We will write quantifiers
like ∀x ∈ Z to denote that x has the integer sort.

In what follows, we will sometimes write “this problem requires integer in-
duction”. This should not be regarded as a formal statement: this property is
not easy to formalize in general and it is possible that some of these problems
can be proved by certain combinations of decision procedures, first-order the-
orem proving with uninterpreted functions, and axiomatization of interpreted
functions on integers. However, when we make such statements, one can see that
these problems have relatively simple proofs involving induction and cannot be
proved by existing provers without induction.

2.2 Examples

To illustrate problems arising in automating integer induction, let us consider
the programs of Figure 1. Properties of both programs are specified using as-
sertions expressed in first-order logic, with pre- and post-conditions specified by
the keywords assume and assert, respectively.



4 Hozzová, Kovács and Voronkov

Functional programs. The ML-style functional program of Figure 1(a) computes
the sum sum(n,m) of integers in the interval [n,m], that is

∑m
i=n i, where m ≥ n.

The function definition uses the following axioms of sum:

∀n ∈ Z.(sum(n, n) = n); (1)

∀n,m ∈ Z.(n 6= m→ sum(n,m) = n+ sum(n+ 1,m)). (2)

We should prove the assertion

∀n,m ∈ Z.(n ≤ m→ 2 · sum(n,m) = m · (m+ 1)− n · (n− 1)). (3)

Formally proving (3) requires inductive reasoning with both integers and quan-
tifiers. Let F [x] be a formula with one or more occurrences of an integer variable
x and b an integer term not containing x. Consider the following formula:

F [b] ∧ ∀x ∈ Z.(x ≤ b ∧ F [x]→ F [x− 1])→ ∀x ∈ Z.(x ≤ b→ F [x]). (4)

This formula is, obviously, valid. It is similar to the standard induction on natural
numbers, yet with two essential differences. First, we use x− 1 instead of x+ 1
and second, we use the term b where for the standard induction we would use 0.
Note that b does not have to be a concrete integer, it can be any term. In the
sequel we will refer to such terms b used in induction rules as symbolic bounds.

For proving (3) using a theorem prover, we first negate and skolemize (3),
obtaining the following formula, where σn, σm are fresh skolem constants:

σn ≤ σm ∧ 2 · sum(σn, σm) 6= σm · (σm + 1)− σn · (σn − 1) (5)

Modern theorem provers implementing linear integer arithmetic and quantifiers
can prove unsatisfiability of (1), (2) and (5) in a relatively straightforward way
if we also add an instance of induction rule (4) with

F [x]
def
= 2 · sum(x, σm) = σm · (σm + 1)− x · (x− 1);

b
def
= σm.

Here and in the sequel
def
= means “equal by definition” or “defined as”. If we

want to automate this kind of reasoning, the main question is finding the cor-
responding instance of induction rule (4), that is, finding the induction formula
F [x] and the (symbolic) bound b.

Imperative programs. The C-style imperative program of Figure 1(b) initializes
an integer-valued array A starting at the index pos. We should prove the asser-
tion stating that all array elements at indices greater than or equal to pos are
equal to each other. Proving such assertions typically requires loop invariants
“summarizing” the loop behavior. One such invariant I is shown in the loop
after the keyword inv. This invariant I could be derived by existing approaches
to invariant generation [9,10].



Integer Induction in Saturation 5

The assertion of Figure 1(b) is then proved using I, by establishing that the
post-condition

∀j ∈ Z.(pos ≤ j < A.size→ valA(j) = valA(pos)) (6)

is a logical consequence of the invariant I and the negation of the loop condition:

∀j ∈ Z.(pos ≤ j < i→ valA(j + 1) = valA(j));
¬(i+ 1 < A.size).

(7)

Interestingly, modern theorem provers cannot perform such proofs. Similar to
the first example, we can use an induction rule for integers formulated as follows:(

F [b1] ∧ ∀x ∈ Z.(b1 ≤ x < b2 ∧ F [x]→ F [x+ 1])
)

→ ∀x ∈ Z.(b1 ≤ x ≤ b2 → F [x]).
(8)

If we add an instance of this rule defined as follows:

F [x]
def
= valA(x) = valA(pos);

b1
def
= pos;

b2
def
= A.size− 1,

then state-of-the-art theorem provers can easily prove that (6) is a logical con-
sequence of (7) and the corresponding instance of (8). For example, Cvc4 [1],
Z3 [7] and Vampire prove such an instance in essentially no time. However, sim-
ilarly to the example of Figure 1(a), in order to find such proofs automatically
using the induction rule of (8), we need to be able to discover, during the proof
search, the induction formula F [x] and the symbolic bounds b1, b2. In what fol-
lows, we describe our solution to automating this discovery by integrating integer
induction within saturation-based theorem proving.

3 Integer Induction

In this section we define four induction rules, or induction schemas, on integers.
Two of them were already considered in Section 2 – namely (4) and (8).

Definition 1 (Downward/Upward Induction). A downward, respectively
upward, induction axiom with symbolic bounds is any formula of the form

F [b] ∧ ∀x.(x ≤ b ∧ F [x]→ F [x− 1])→ ∀x.(x ≤ b→ F [x]); (downward)

F [b] ∧ ∀x.(x ≥ b ∧ F [x]→ F [x+ 1])→ ∀x.(x ≥ b→ F [x]), (upward)

respectively, where F [x] is a formula with one or more occurrences of an integer
variable x and b is an integer term not containing x. ut

Note that (4) is a downward induction axiom with symbolic bounds.



6 Hozzová, Kovács and Voronkov

Definition 2 (Interval Downward/Upward Induction). An interval down-
ward, respectively upward, induction axiom with symbolic bounds is any formula
of the form

F [b2] ∧ ∀x.(b1 < x ≤ b2 ∧ F [x]→ F [x− 1])→ ∀x.(b1 ≤ x ≤ b2 → F [x]); (downward)

F [b1] ∧ ∀x.(b1 ≤ x < b2 ∧ F [x]→ F [x+ 1])→ ∀x.(b1 ≤ x ≤ b2 → F [x]), (upward)

respectively, where F [x] is a formula with one or more occurrences of an integer
variable x and b1, b2 are integer terms not containing x. ut

Note that (8) is an interval upward induction axiom with symbolic bounds.
In the sequel, we will refer to the integer terms of b, b1, b2 from Definitions 1-2
as symbolic bounds and the formulas F [x] from the induction axioms of Defini-
tions 1-2 as induction formulas.

Definition 3 (Downward/Upward Induction Rules). The downward (re-
spectively, upward) induction rule with symbolic bounds, or simply downward
(respectively, upward) induction rule is the inference rule whose instances are all
downward (respectively, upward) induction axioms with symbolic bounds.

Likewise, the interval downward (respectively, upward) induction rule with
symbolic bounds, or simply interval downward (respectively, upward) induction
rule is the inference rule whose instances are all interval downward (respectively,
upward) induction axioms with symbolic bounds. ut

It is easy to see that the following theorem holds.

Theorem 1 (Soundness). The (interval) downward/upward induction rules
of Definition 3 are sound, that is, all corresponding induction axioms from Def-
initions 1-2 are valid. ut

4 Integer Induction in Saturation-Based Proof Search

Our next aim is to define analogues of the induction rules introduced in Sec-
tion 3 that can be used in superposition theorem provers and their saturation
algorithms. For a general discussion of superposition and saturation we refer
to [14]. In this section we use � to denote the empty clause and write CNF(F )
to mean (any) clausal normal form of a formula F .

The most general way to introduce our new induction rules at the calculus
level is to add clausal forms of our new induction axioms to the search space.
That is, for every induction axiom F from Section 3, we add the rule

CNF(F )
.

However, we cannot efficiently implement such a calculus, as any formula with
one variable can be used as an induction formula. We will therefore introduce
different, more specialized, rules, which still correspond to the previously defined
induction rules. The new rules use variations of the following three ideas:



Integer Induction in Saturation 7

1. Use only simple induction formulas, for example literals;
2. To find an induction formula, generalize a subgoal occurring in the search

space. Then the derived induction formula can be immediately used to prove
this subgoal;

3. Use (symbolic) bounds that correspond to bounds already occurring in the
search space.

The first two ideas were already used in the first papers underlying our approach
to induction in saturation theorem proving [17,11]. For example, they can be
implemented by using only induction formulas that are obtained from ground
literals L[t] in the search space, where t is a ground term. The corresponding
induction formula will be ¬L[x]. The idea is that, when we prove the induction
formula, ¬L[x] will be resolved against L[t].

The third idea is new. Note that, if we use the first two ideas and the upward
induction rule, instead of ¬L[x] we will derive b ≤ x→ ¬L[x]. When we resolve
this against L[t], we obtain the clause ¬(b ≤ t). However, if we already previously
derived b ≤ t, we can also resolve away ¬(b ≤ t). This gives us the idea to only
apply the upward induction rules when we have b ≤ t; for example, when b ≤ t
occurs in the current set of AVATAR literals (or is true in the current AVATAR
model).

Based on the three ideas above, we introduce the following four induction
rules on clauses. In these rules t is a ground term, b is a constant and L[x] is a
literal containing at least one occurrence of a variable x and no other variables.
The rules depend on which comparisons among t ≥ b, t > b, t ≤ b and t < b
already occur in the current search space:

¬L[t] ∨ C t ≥ b

CNF
((
L[b] ∧ ∀x.(x ≥ b ∧ L[x]→ L[x+ 1])

)
→ ∀y.(y ≥ b→ L[y])

) (IntInd≥)

¬L[t] ∨ C t > b

CNF
((
L[b] ∧ ∀x.(x ≥ b ∧ L[x]→ L[x+ 1])

)
→ ∀y.(y > b→ L[y])

) (IntInd>)

¬L[t] ∨ C t ≤ b

CNF
((
L[b] ∧ ∀x.(x ≤ b ∧ L[x]→ L[x− 1])

)
→ ∀y.(y ≤ b→ L[y])

) (IntInd≤)

¬L[t] ∨ C t < b

CNF
((
L[b] ∧ ∀x.(x ≤ b ∧ L[x]→ L[x− 1])

)
→ ∀y.(y < b→ L[y])

) (IntInd<)

Note that IntInd≥ and IntInd> are upward induction rules, whereas IntInd≤
and IntInd< are downward induction rules. One can also introduce non-ground
analogues of these rules but we do not consider them in this paper.

Similarly to the above rules on the clausal level, we also introduce the interval
upward/downward induction rules on clauses to be used in saturation algorithms
for the superposition calculus. Since these rules are similar to each other, here
we only define one rule IntInd[≥] for interval upward induction. For a ground



8 Hozzová, Kovács and Voronkov

term t, constants b1, b2, and L[x] a literal containing at least one occurrence of a
variable x and no other variables, an interval upward induction rule on clauses:

¬L[t] ∨ C t ≥ b1 t ≤ b2
CNF

((
L[b1] ∧ ∀x.(b1 ≤ x < b2 ∧ L[x]→ L[x+ 1])

)
→ ∀y.(b1 ≤ y ≤ b2 → L[y])

) (IntInd[≥])

In view of Theorem 1, all induction rules of Section 3 are sound. Assuming
that our CNF function preserves satisfiability, we conclude that all our induction
rules IntInd≥, IntInd>, IntInd≤, IntInd< and IntInd[≥] on the clausal level
are sound.

Theorem 2 (Soundness). For every satisfiability preserving CNF function,
the induction rules from Definition 3 are sound. ut

Example 1. To illustrate again how the choice of induction formulas allows us
to have shorter clauses, consider IntInd≤. The CNF in its conclusion consists
of three clauses:

¬L[b] ∨ σ ≤ b ∨ ¬y ≤ b ∨ L[y]
¬L[b] ∨ L[σ] ∨ ¬y ≤ b ∨ L[y]
¬L[b] ∨ ¬L[σ − 1] ∨ ¬y ≤ b ∨ L[y]

(9)

These clauses can be resolved against premises of IntInd≤, yielding the fol-
lowing clauses:

¬L[b] ∨ σ ≤ b ∨ C
¬L[b] ∨ L[σ] ∨ C
¬L[b] ∨ ¬L[σ − 1] ∨ C

(10)

They have an especially simple form when C is the empty clause �. In this case
we have three clauses:

¬L[b] ∨ σ ≤ b
¬L[b] ∨ L[σ]
¬L[b] ∨ ¬L[σ − 1]

(11)

which subsume the original three longer clauses and are ground. Since they are
ground, they can be handled efficiently by AVATAR. ut

Example 2. Let us now demonstrate how the downward induction rule IntInd≤
works for refuting the inductive property (3) from our motivating example of
Figure 1(a). We use literals from (5) as the premises of the IntInd≤ rule. The
corresponding instance of the downward induction rule is defined by

b
def
= σm;

t
def
= σn;

L[x]
def
= 2 · sum(x, σm) = σm · (σm + 1)− x · (x− 1).

This instance of IntInd≤ is



Integer Induction in Saturation 9

2 · sum(σn, σm) 6= σm · (σm + 1)− σn · (σn − 1) σn ≤ σm

CNF
((

2 · sum(σm, σm) = σm · (σm + 1)− σm · (σm − 1)

∧ ∀x.(x ≤ σm → 2 · sum(x, σm) = σm · (σm + 1)− x · (x− 1)
→ 2 · sum(x− 1, σm) = σm · (σm + 1)− (x− 1) · ((x− 1)− 1))

)
→ ∀y.(y ≤ σm → 2 · sum(y, σm) = σm · (σm + 1)− y · (y − 1))

)
(IntInd≤)

This single instance of the induction rule does the magic. By adding its
conclusion to the search space we can obtain contradiction in a few steps by
applying a few superposition rules and using ground reasoning in linear integer
arithmetic with uninterpreted functions (as evidenced by the results for the first
problem subset, x all of sum, in Table 3).

We finally note that functional correctness of Figure 1(b) is proved by the
interval upward induction rule IntInd[≥], in a similar way as above (and as
evidenced by the results of Table 3 for declared unint ax-fin conj-fin in val). ut

What we find especially interesting in Example 2 is that the induction axiom
used in it (and discovered by our implementation of induction in Vampire) uses
the induction argument that would probably be used by a majority of humans
who would try to argue why the program property holds.

5 Implementation and Experiments

5.1 Implementation

We implemented our integer induction rules IntInd≥, IntInd>, IntInd≤, IntInd<,
IntInd[≥] and the corresponding interval induction rules in Vampire. Further,
we also implemented a more general induction rule IntInd that does not require
bounds to be in the search space and uses 0 as the lower or the upper bound.

Our implementation in Vampire, consisting of approximately 1,200 lines of
new C++ code, is available at https://github.com/vprover/vampire/tree/

int-induction. The size of this additional code is relatively small because Vam-
pire has libraries for indexing and chaining inference rules that could be used
off the shelf.

Our (interval) downward/upward induction rules described in Section 4 can
be applied when either (i) the comparison literal (e.g., t ≥ b for the IntInd≥
rule) is selected and the corresponding clause ¬L[t] ∨ C was already selected as
an induction candidate before, or (ii) if ¬L[t] ∨ C is selected as an induction
candidate and the corresponding comparison literal was already selected before.
To implement these rules efficiently, we should be able to efficiently retrieve
comparison literals and literals selected for induction. To do so, we extended the
indexing mechanism of Vampire to index such literals.

We do not apply induction when the induction formula L[x] is a comparison
having x as the top level, for example, x ≤ t, and allow to apply it to all other
suitable induction formulas.

https://github.com/vprover/vampire/tree/int-induction
https://github.com/vprover/vampire/tree/int-induction


10 Hozzová, Kovács and Voronkov

assume e ≥ 1

fun power(x, 1) = x

| power(x, e) = x · power(x, e− 1);

assert ∀x, y ∈ Z.(power(x · y, e) = power(x, e) · power(y, e))

Fig. 2. ML-like functional program computing integer powers for positive exponents.

Our (interval) downward/upward induction rules in Vampire are enabled
by the new option --induction math --math induction kind all. Our new
induction rules can also be controlled by other Vampire options for well-
founded/structural induction rules, such as --induction on complex terms

on, which enables applying induction on any ground complex term. To improve
Vampire’s performance for integer induction, we combined our (interval) down-
ward/upward induction rules with --induction on complex terms on and also
other options not specific for induction. We extended Vampire with a new mode
scheduling various option configurations for integer induction, switched on by
the option --mode portfolio --schedule integer induction. Additionally,
we introduced the option --schedule induction which uses either the integer
induction configurations as for --schedule integer induction, or structural
induction configurations, or both, depending on the data types used in the prob-
lem/property to be proved.

5.2 Benchmarks

In our experiments, we used two sets of examples: (i) benchmark sets LIA and
UFLIA from the SMT-LIB collection [2], consisting of, respectively, 607 and
10,137 examples, and (ii) 120 new benchmarks similar to our motivating exam-
ples from Section 2.

To the best of our knowledge, the state-of-the-art systems implementing in-
ductive reasoning have so far not yet considered inductive reasoning over integers,
with two exceptions: [18], which mainly focuses on induction over inductively
defined data types but mentions induction on non-negative integers and [12],
which supports inductive reasoning using recursive function definitions without
any special treatment for integers.

Since integer induction has not yet attracted enough attention in theorem
proving, there is no significant collection of benchmarks for integer induction. To
properly carry out experiments, we therefore created a set of 120 new benchmarks
based on variations of our motivating examples from Section 2 and on properties
of computing integer powers. One example is the function correctness of the
program of Figure 2, which is formalized as follows:

axioms: ∀x ∈ Z.(power(x, 1) = x)

∀x, e ∈ Z.(2 ≤ e→ power(x, e) = x · power(x, e− 1))

conjecture: ∀x, y, e.(1 ≤ e→ power(x · y, e) = power(x, e) · power(y, e))

(12)



Integer Induction in Saturation 11

Set Variant tag Description

sum
x / y sum(x, y) for x > y defined as x+sum(x+1, y) or y+sum(x, y−1)
all / geq / leq the conjecture holds for all x, y where x ≤ y, or only for x ≤ y =

c, or only for c = x ≤ y; where c ∈ Z is an interpreted constant

val

declared /
defined

val was either not defined, only declared and axiomatized (as
in (6)), or defined as a total computable function (as in (14))

inter / unint /
mixed

the axiom and conjecture use concrete interpreted constants, or
uninterpreted constants, or a mix of both

ax-fin / ax-all /
ax-leq / ax-geq

the axiom holds for integers in an interval [c, c′), or for all x ∈ Z,
or only for x ≤ c, or only for x ≥ c; where c, c′ ∈ Z are constants

conj-fin / conj-
all / conj-leq
/ conj-geq

the conjecture holds for integers in an interval [c, c′], or for all
integers, or only for integers ≤ c, or only for integers ≥ c; where
c, c′ ∈ Z are constants

power
0 / 1 power defined starting with power(x, 0) = 1 or power(x, 1) = x
all / pos / neg the conjecture holds either for all x, y, or only for x, y ≥ 0, or

only for x, y ≤ 0

Table 1. Description of our benchmark set of 120 new examples.

Our set of 120 new benchmarks is described in Table 1 and available online at:

https://github.com/vprover/inductive_benchmarks

To confirm that our new benchmarks require the use of inductive reasoning,
we tested them on the SMT solver Z3 [7] that does not support induction.
Z3 could not solve any of the 120 problems from our benchmark set. Names of
subsets of our new benchmarks are constructed by joining variant tags described
in Table 1. For example, problem (6) belongs to the category declared unint ax-
fin conj-fin of the set val.

The following benchmark:

axiom: ∀x ∈ Z.(val(x) = val(x+ 1))

conjecture: ∀x, y ∈ Z.(val(x) = val(y))
(13)

belongs to declared unint ax-all conj-all of val and the following benchmark is
from defined inter ax-geq conj-geq of val :

axioms: ∀x ∈ Z.(x ≤ 0→ val(x) = 0)

∀x ∈ Z.(0 < x→ val(x) = val(x− 1))

conjecture: ∀x ∈ Z.(0 ≤ x→ val(x) = val(0))

(14)

While 9 of the benchmarks (all in val) use finite intervals in both the asser-
tion and the invariant (ax-fin conj-fin), the remaining 111 benchmarks require
inductive reasoning over infinite intervals.

https://github.com/vprover/inductive_benchmarks


12 Hozzová, Kovács and Voronkov

Problem
set

Total
count

Cvc4 Z3 Vampire Vampire-I

new
compared to
Vampire

new
compared to
Cvc4 & Z3

LIA 607 553 435 216 214 10 1

UFLIA 10137 7002 6705 6116 5796 99 44

Table 2. Comparison of solvers on SMT-LIB benchmarks.

5.3 Experimental Setup

We ran our experiments on computers with 32 cores (AMD Epyc 7502, 2.5
GHz) and 1 TB RAM. In all experiments we used the memory limit of 16 GB
per problem. For the new benchmarks we used a 300 seconds time limit. For the
experiments on the larger LIA and UFLIA sets we used a 10 seconds time limit.

In what follows, Vampire refers to the (default) version of Vampire, as
in [17,11]. By Vampire-I we denote our new version of Vampire, using integer
induction rules (--induction math). Vampire-I* refers to the portfolio mode
of Vampire-I, scheduling various option configurations for integer induction
(--mode portfolio --schedule induction).

For experiments with the new benchmarks, we note that Vampire with-
out integer induction cannot solve any of the problems. In this set of
experiments, we therefore compared Vampire-I to the provers Cvc4 [18]
and Acl2 [12], which are, to the best of our knowledge, the only two
automated solvers supporting inductive reasoning with integers in ad-
dition to reasoning with theories and quantifiers. For Cvc4, we used
the ig configuration from [18]: --quant-ind --quant-cf --conjecture-gen

--conjecture-gen-per-round=3 --full-saturate-quant. For Acl2, we used
its default configuration and translated our new problem set into the functional
program encoding syntax of Acl2. In the experiments with the LIA and UFLIA
benchmark sets of SMT-LIB, we also used Z3 [7] in the default configuration.

We ran Cvc4, Z3, Vampire and Vampire-I on problems encoded in the
SMT-LIB2 syntax [2]. For running Acl2 on the new benchmarks, we translated
problems into the functional program encoding syntax of Acl2.

5.4 Experimental Results

SMT-LIB Benchmarks. First, we evaluated the improvements of integer induc-
tion in Vampire-I when compared to Vampire. We also aimed to identify the
best values for options related to integer induction. To this end, we ran Vam-
pire and Vampire-I on the LIA and UFLIA sets of SMT-LIB [2]. We picked five
different strategies (e.g. using different saturation algorithms and selection func-
tions) and used different combinations of induction options. Table 2 summarizes
our results, showcasing that integer induction enabled Vampire-I to solve over
100 new problems that Vampire could not solve before (last but one column of
Table 2). Moreover, 45 of these problems were also new compared to Cvc4 and



Integer Induction in Saturation 13

Problem set Problem subset Count Acl2 Cvc4 Vampire-I*

sum

x all 1 0 0 1
y all 1 0 0 1
x leq 5 0 0 4
y geq 5 0 5 5
subset total 12 0 5 11

val

declared mixed ax-fin conj-fin 6 0 1 4
declared unint ax-fin conj-fin 3 0 0 3
declared inter ax-all conj-all 5 0 0 3
declared inter ax-all conj-geq 9 0 9 9
declared inter ax-all conj-leq 9 0 0 9
declared inter ax-geq conj-geq 13 0 13 10
declared inter ax-leq conj-leq 13 0 0 11
declared unint ax-all * 7 0 0 7
declared unint ax-geq conj-geq 2 0 0 2
declared unint ax-leq conj-leq 2 0 0 2
defined inter ax-all conj-all 3 1 0 3
defined inter ax-geq conj-geq 3 2 3 3
defined inter ax-leq conj-leq 3 2 0 3
defined unint * 6 0 0 6
subset total 84 5 26 75

power

0 all 4 0 0 4
0 pos 4 0 0 4
0 neg 4 0 0 4
1 all 4 0 0 2
1 pos 4 0 0 4
1 neg 4 0 0 2
subset total 24 0 0 20

all sets combined total 120 5 31 106

all sets uniquely solved - 0 3 75

Table 3. Experiments with our new benchmarks from Table 1.

Z3 (last column of Table 2), which most likely means that no theorem prover
was able to prove them before.

Experiments with 120 New Benchmarks. Comparison results for Vampire-I,
Acl2 and Cvc4 on our new benchmarks are displayed in Table 3, aggregated
by benchmark subsets, as described in Table 1. We do not show Vampire in the
table, since without integer induction it cannot solve any of the problems.

The results show that in some cases Acl2 can perform upward and downward
induction on integers, but only when using interpreted constants as a base case
(that is, it cannot handle symbolic bounds). However, it can only do so if it also
proves termination of the recursively defined function. It also has issues with
reasoning about multiplication.



14 Hozzová, Kovács and Voronkov

Cvc4 has limited support for integer induction: it can apply upward induc-
tion but only when the base case is an interpreted constant. Since some problems
seem to require induction with symbolic bounds, Cvc4 is mostly able to either
solve all problems in a subset, or none of them. The only exception is the subset
declared mixed ax-fin conj-fin, in which Cvc4 solves one problem, which can be
solved using upward induction with an interpreted constant as the base case.

Vampire-I* does not have any conceptual problems with solving the bench-
marks. However, since it uses axioms and inference rules rather than dedicated
decision procedures for handling integers, it sometime has issues with solving
problems with large integer values. For example, for the infinite interval subset
of the val benchmark set, the only problems Vampire-I* did not solve were those
containing the interpreted constant 100 or -100. Similarly, in the power bench-
mark set, the unsolved problems contained large numbers. Finally, in the de-
clared mixed ax-fin conj-fin subset, the two problems Vampire-I* did not solve
also required more sophisticated arithmetic reasoning. However, inability of ef-
ficiently dealing with large numbers is not an intrinsic problem of superposition
theorem provers. Reasoning with quantifiers and theories is still in its infancy
and major improvements are underway. For example, there are recent parallel
developments in superposition and linear arithmetic [16] that should improve
this kind of reasoning in Vampire.

6 Related Work

Previous works on automating induction mainly focused on inductive reason-
ing for inductively defined data types, for example in inductive theorem provers
Acl2 [12], IsaPlanner [8], HipSpec [5], Zeno [19] and Imandra [15]; superposi-
tion theorem provers Zipperposition [6] and Vampire [17]; and the SMT solver
Cvc4 [18]. While most of these solvers support reasoning with integers, only
Acl2 and Cvc4 implement some form of induction over integers.

The Acl2 approach [12] generates induction schemas based on recursive
function calls in the property to be proved. Hence, it can only use induction to
solve problems properties of recursively defined functions. On the other hand, the
SMT-based setting of Cvc4 [18] applies induction by inductive strengthening of
SMT properties in combination with subgoal discovery. As noted in Section 5,
Cvc4 is limited to induction with concrete base cases and upward induction.

While downward integer induction can be considered a straightforward gener-
alization of upward integer induction and does not solve many more problems in
our benchmark sets, symbolic bounds provide a very powerful generalization, as
witnessed by experimental results. In automated reasoning, the power provided
by more general rules comes with the price of uncontrollable blowup of the search
space. To harness this power we came up with defining (interval) upward/down-
ward induction rules with symbolic bounds in the superposition calculus in such
a way that they result in most cases in the addition of very simple clauses, which
can be efficiently handled within the AVATAR architecture.



Integer Induction in Saturation 15

We believe that variants of our induction rules defined in Section 4 can also
be successfully used by SMT solvers. The idea is to apply them, like we do, only
when there is a suitable bound in the current candidate model. One can also
combine this with the observation made in Example 1: one can resolve added
induction formulas against literals already occurring in the search space to add
only ground formulas.

The benchmark suite we propose and use in this paper is new and can be
used to complement existing benchmarks: the TIP library [4] and the examples
of [18]. Our 120 new examples are however more focused on integer properties,
whereas [4,18] contain a variety of problems mostly requiring induction over in-
ductively defined types. Specifically, out of more than 500 inductive problems in
TIP [4], only 3 use integers and no inductive data types. The examples from [18]
contain 311 inductive benchmarks translated into three encodings, (i) using only
inductive data types, (ii) using integers instead of natural numbers, but also
other inductive data types (such as lists or trees), and (iii) using both integers
and natural numbers to express the same properties, alongside other inductive
data types. Problems from (iii) are also included in SMT-LIB [2]. Note that
there is a substantial difference between our benchmarks and benchmarks from
(ii). The latter mostly require inductive reasoning only for inductive data types
(or no induction at all): they contain integers but only a few of them require
inductive reasoning over integers, while most of our benchmarks require proper
integer induction. For example, Vampire can solve 131 of 306 benchmarks in
(ii) without using integer induction.

7 Conclusions

We have defined, discussed and evaluated new inference rules for automating
inductive reasoning with integers. We have shown that they can be efficiently
implemented in saturation-based theorem provers. Many problems in program
analysis and mathematical problems of integers previously unsolvable by any
theorem prover can now be solved completely automatically.

Our results, though very preliminary, can further progress automated pro-
gram analysis and automation of mathematics, where integers are universally
used. We hope they will spark new research in these application areas.

Acknowledgments

We thank Márton Hajdú and Giles Reger for discussions related to the work. We
acknowledge funding supporting this work, in particular the ERC starting grant
2014 SYMCAR 639270, the EPSRC grant EP/P03408X/1 and the Austrian
FWF research project LogiCS W1255-N23.

References

1. Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanović, D., King, T.,
Reynolds, A., Tinelli, C.: CVC4. In: Proc. of CAV. pp. 171–177. Springer (2011)



16 Hozzová, Kovács and Voronkov

2. Barrett, C., Fontaine, P., Tinelli, C.: The Satisfiability Modulo Theories Library
(SMT-LIB). www.SMT-LIB.org (2016)

3. Boyer, R.S., Moore, J.S.: A Computational Logic Handbook, Perspectives in com-
puting, vol. 23. Academic Press (1979)

4. Claessen, K., Johansson, M., Rosén, D., Smallbone, N.: TIP: Tons of Inductive
Problems. In: Proc. of CICM. pp. 333–337. Springer (2015)

5. Claessen, K., Johansson, M., Rosén, D., Smallbone, N.: Automating Inductive
Proofs using Theory Exploration. In: Proc. of CADE. pp. 392–406. Springer (2013)

6. Cruanes, S.: Superposition with Structural Induction. In: Proc. of FRoCoS. pp.
172–188. Springer (2017)

7. De Moura, L., Bjørner, N.: Z3: An Efficient SMT Solver. In: Proc. of TACAS. pp.
337–340. Springer (2008)

8. Dixon, L., Fleuriot, J.: Higher Order Rippling in IsaPlanner. In: Proc. of TPHOLs.
pp. 83–98. Springer (2004)

9. Fedyukovich, G., Prabhu, S., Madhukar, K., Gupta, A.: Quantified Invariants via
Syntax-Guided Synthesis. In: Proc. of CAV. pp. 259–277. Springer (2019)

10. Georgiou, P., Gleiss, B., Kovács, L.: Trace Logic for Inductive Loop Reasoning. In:
Proc. of FMCAD. pp. 255–263 (2020)

11. Hajdú, M., Hozzová, P., Kovács, L., Schoisswohl, J., Voronkov, A.: Induction
with Generalization in Superposition Reasoning. In: Proc. of CICM. pp. 123–137.
Springerg (2020)

12. Kaufmann, M., Manolios, P., Moore, J.: Computer-Aided Reasoning: An Approach,
vol. 3 (06 2000). https://doi.org/10.1007/978-1-4615-4449-4

13. Kovács, L., Robillard, S., Voronkov, A.: Coming to Terms with Quantified Rea-
soning. In: Proc. of POPL. pp. 260–270 (2017)

14. Kovács, L., Voronkov, A.: First-Order Theorem Proving and Vampire. In: Proc. of
CAV. pp. 1–35. Springer (2013)

15. Passmore, G., Cruanes, S., Ignatovich, D., Aitken, D., Bray, M., Kagan, E., Kani-
shev, K., Maclean, E., Mometto, N.: The Imandra Automated Reasoning System.
In: Proc. of IJCAR. pp. 464–471. Springer (2020)

16. Reger, G., Schoisswohl, J., Voronkov, A.: Making theory reasoning simpler. Easy-
Chair Preprint no. 5000 (EasyChair, 2021)

17. Reger, G., Voronkov, A.: Induction in Saturation-Based Proof Search. In: Proc. of
CADE. pp. 477–494. Springer (2019)

18. Reynolds, A., Kuncak, V.: Induction for SMT Solvers. In: Proc. of VMCAI. pp.
80–98. Springer (2015)

19. Sonnex, W., Drossopoulou, S., Eisenbach, S.: Zeno: An Automated Prover for
Properties of Recursive Data Structures. In: Proc. of TACAS. pp. 407–421. Springer
(2012)

20. Voronkov, A.: AVATAR: The Architecture for First-Order Theorem Provers. In:
Proc. of CAV. pp. 696–710. Springer (2014)

https://doi.org/10.1007/978-1-4615-4449-4

