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Abstract. In the event of equipment failure, traffic accident, natural
disaster and other abnormal situations, the timely emergency disposal of
the traffic dispatcher is required. In order to accurately evaluate the hu-
man reliability of the high-speed railway traffic dispatcher in emergency
scenarios, this paper proposes a reliability analysis method based on the
Phoenix model. In order to eliminate the dependence of the traditional
human reliability analysis method on expert experience, a quantification
method based on multiple physiological signals is designed. This paper
also gives a specific application of this method in the case of inbound
signal machine failure. With this human reliability analysis method, the
human reliability of the traffic dispatcher and the causative behavior with
the highest probability of failure can be accurately calculated, which can
provide a reference for the improvement of the emergency handling pro-
tocol.

Keywords: Traffic dispatcher · Human reliability analysis · Physiolog-
ical signals.

1 Introduction

In the past decades, a variety of Human reliability analysis (HRA) models and
methods have been proposed, and the development of HRA can be divided into 3
phases in chronological order [1]. Some classical methods, such as THERP (Tech-
nique for Human Error Rate Prediction) and CREAM (Cognitive Reliability and
Error Analysis Method) have been widely used in nuclear power [2, 3], mining [4]
aviation [5], offshore oil and gas industry [6] and marine transportation [7]. How-
ever, in the railway field, there is a general lack of human-caused data in HRA
for traffic scheduling and command, which is manifested in the following points:
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first, the data are extremely difficult to collect, leading to difficulties in model
quantification; second, data citability, data from other countries or data from
other fields, due to differences in cultural background, social environment and
nature of operations and other factors, leading to different human behaviors and
habits of thinking, making human-caused data inappropriate to refer to; Third,
data reliability, the existing HRA is extremely dependent on expert judgment
and subjective opinions of method users, which makes the consistency and ac-
curacy of analysis results poor [8]. Therefore, this paper designs a quantification
method for human factors data by selecting physiological signals as objective
data for HRA, and establishes an HRA model applicable to railway dispatching
command based on PHOENIX.

2 PHOENIX-based Human Reliability Analysis Model

The Phoenix method is a HRA model proposed by Ekanem [9], which mixes
various methods such as event trees, fault trees, and Bayesian networks. Its
framework is divided into 3 layers, as shown in Fig. 1.

(1) The top layer is the Human Fault Event Layer (HFE), an event tree
model, which aims to identify the HFE and analyze the tasks to be solved by
operators in a chronological order to find the risk points that may lead to task
failure, which have two states of success/failure and whose probability values of
occurrence of the two states are calculated by the middle layer fault tree.

(2) The intermediate layer is the Crew Failure Model layer (CFM), which
is a fault tree model, and this layer aims to analyze the HFE retrospectively
and per-form deductive reasoning on. Combining the IDAC and SRK models,
the cognitive behavior of the dispatcher is divided into: information perception
I, rule based diagnostic decision D-1, knowledge-based diagnostic decision D-2,
and action execution A, and all failure modes are identified to constitute the
CFM set.

(3) The bottom layer is the Performance Shaping Factor layer (PSF), which is
a Bayesian network model, mainly reasoning about the probability of occurrence
of failure modes, and quantifying and analyzing the occurrence probability of
CFM by constructing a causal logic model between PSFs.

3 Human factors data quantification methods based on
physiological signals

3.1 Quantifiable Human Factors Data Collection

Subjects. Data for this experiment were obtained from 20 graduate students, 14
males and 6 females, aged between 22 and 26 years. The subjects were of normal
mind, normal or corrected hearing and vision, and had the necessary basic train
operation control knowledge. A week-long training was given to them before
participating in the experiment, and the training content was the disposal process
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Fig. 1. Model Structure.

summarized by the standard dispatching command process for six emergency
scenarios.

Experimental protocol. Stress, attention and workload from the PSF library
were selected as quantitative human factors data to design high, medium and low
level evoked experiments and dispatching command experiments and to collect
Electroencephalogram(EEG), Photoplethysmographic(PPG) and Electrodermal
activity(EDA). The stress-induced experiments used a mental arithmetic task,
the attention-induced experiments used a game task, and the workload induced
experiments used CPT and N-back dual tasks; the dispatching experiments in-
cluded high wind alarm, incoming signal machine failure, foreign object intrusion
limit, automatic train lowering bow, loss of turnout indication and signal clo-
sure in open state. Each group of experiments contains three evoked experiments
and six dispatching command emergency scenarios, all conducted on the human
factors engineering experimental platform shown in Fig. 2.

3.2 Feature Engineering

Preprocessing. Wavelet thresholding is applied to EEG, PPG and EDA for noise
reduction, and ICA is used to remove the EOG component of EEG to obtain
high-quality physiological signals.
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Fig. 2. Experimental platform.

Feature extraction.Through data. processing, time domain, frequency domain
and nonlinear features are extracted to obtain 224 EEG features of 14 types in
16 channels, 11 PPG features and 8 EDA features.

Feature selection. The RF-SFFS(Random Forest - Sequential Floating For-
ward Selection) feature selection algorithm constructed in this paper firstly con-
structs an existing feature subset using the feature importance of RF; then per-
forms SFFS search and uses the classification accuracy of RF as the discriminant
criterion of SFFS, traverses the unselected features, and if adding the feature to
the feature subset makes the RF classification accuracy higher, then adds the
feature to the subset; traverses the selected features, and if adding the If the
feature is removed to increase the classification accuracy, the feature is removed,
and the search stops when the preset number of features is finally reached, and
the optimal feature subsets are obtained as follows: 3 PPG features for pres-
sure level classification, 24 EEG features for attention level classification, and 18
multi-modal features for workload level classification.

Table 1. Classification results.

Status Classifier Accuracy(%) Precision(%) Recall(%) F1(%)
KNN 60.8 59.6 61.2 60.4

Pressure SVM 65.3 59.8 65.6 62.6
XGBoost 76.8 77.4 77.1 77.2
KNN 66.1 66.3 65.9 66.1

Attention SVM 71.6 73.2 72.3 72.7
XGBoost 81.2 81.7 81.6 81.6
KNN 58.4 66.3 65.9 58.7

Workload SVM 65.5 73.2 72.3 66.7
XGBoost 79.6 81.7 81.6 79.9
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3.3 Status level classification

In this paper, three algorithms, KNN, SVM and XGBoost, were selected for
multi-level level identification of attention, stress and workload, and the classifi-
cation model with high accuracy was selected to be applied to state identification
and prior probability assignment for scheduling experiments. The identification
results are shown in Table 1, and it was found that XGBoost performed better
than the first two, and the accuracy rates in the three classifications of stress,
attention and workload were 76.8%, 81.2% and 79.6%, respectively, so XGBoost
was chosen as the classifier for human factors data quantification.

4 Example analysis

4.1 Qualitative analysis

HFE layer. Selecting the home signal failure under the CTCS-3 train control
system as the travel scenario, the event tree model shown in Fig. 3

CFM layer. CFM classification of the 14 behaviors in the figure, with the
failure behavior as the top event and the failure mode as the bottom event to
construct the fault tree model. The CFM classification is shown in the fig.. 4.

PSF layer. Combined with the trained XGBoost model can identify the stress
level, attention level and workload of dispatchers in emergency disposal, by
counting the present probability of the high and low levels of the three as the
prior probability of Bayesian network nodes, accordingly all parent nodes of the
three can be eliminated as shown in Fig. 5.
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Fig. 3. Event Tree Model.
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Fig. 4. CFM classification.

4.2 Quantitative analysis

(1) BN inference. Prior probability assignment, for unmeasurable nodes using D-
S evidence theory to fuse the judgment results of different experts, for measurable
nodes using XGBoost recognition statistics of high and low levels of present
probability as the prior probability of Bayesian network nodes; conditional prob-
ability assignment is achieved by fuzzy inference algorithm [10]; the Bayesian
network inference results of four cognitive stages are obtained.

(2) CFM occurrence probability calculation. Through the SLIM-BN algo-
rithm [11], the Bayesian network root nodes are all placed in the best and worst
states to obtain two SLIs and solve for the values of the unknowns a and b
as shown in Eq.2. Then, the BN inference results in the original state are sub-
stituted into Eq.1 to calculate the probability of CFM occurrence as shown in
Table 2. {

lgHEPmin = aSLI1 + b
lgHEPmax = aSLI2 + b

(1)
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Fig. 5. Bayesian network structure at different phases.

lgHEP = aSLI + b (2)

Table 2. CFM occurrence probability.

Phase I probability Phase D-1 probability Phase D-2 probability Phase A probability
I1 2.420e-04 D1 8.962e-05 D13 2.982e-02 A1 3.401e-04
I2 2.038e-04 D2 7.598e-05 D14 2.326e-02 A5 4.634e-04
I3 1.903e-04 D3 1.098e-04 D15 2.557e-02 A7 4.184e-04

D4 8.360e-03 A8 1.851e-04
D5 6.946e-03
D7 1.462e-03
D8 2.487e-03
D9 8.089e-03

(3) Event tree inference. The probability of occurrence of various CFM is
obtained, so that the cognitive behaviors decomposed in the HEF layer can be
mapped with CFM as shown in Table 3. Since the task is a tandem task, all
behaviors must succeed in order for the task to succeed, so the human reliability
of the home signal fault scenario is 0.93265 by event tree inference as shown
in Equation 3, and the causative actions with the highest probability of failure
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are fault diagnosis, confirming the results of troubleshooting, and registering the
traveling equipment register.

Table 3. CFM occurrence probability.

Behavior number Possible CFM Failure probability Success Probability Corrected Probability
1 I1\I2\I3 6.3610e-04 0.99936 0.99936
2 D13\D14\D15 0.07865 0.92135 0.96067
3 D1\D2\D3 2.7540e-04 0.99972 0.99976
4 A1\A5\A8 9.8860e-04 0.99901 0.99950
5 A1\A5\A7\A8 0.00141 0.99859 0.99866
6 I1\I2\I3 6.3610e-04 0.99936 0.99936
7 A1\A5 8.0350e-04 0.99920 0.99960
8 D7\D8 0.00395 0.99605 0.99625
9 I2 2.0380e-04 0.99980 0.99981
10 D7\D8\D9 0.01204 0.98796 0.99398
11 A1\A5\A8 9.8860e-04 0.99901 0.99950
12 D4\D5 0.01531 0.98469 0.98546
13 A1\A5 8.0350e-04 0.99920 0.99960
14 A1\A8 5.2520e-04 0.99947 0.99974

P (S) = P (HFE1)× P (HFE2)× · · · × P (HFE14) = 0.93265 (3)

5 Conclusion

In this paper, a PHOENIX model-based HRA method is proposed to realize
the macro level of dispatcher’s error behavior, gradually refine to the possible
CFM, and then obtain the influential PSF, and reduce the component of expert
judgment in model quantification to make the analysis results objective. The
design of a human factors data quantification method based on physiological
signals achieves hierarchical identification of stress, attention and workload with
average accuracies of 76.8%, 81.2% and 79.6%, which further solving the problem
of over-reliance on expert experience. It is also applied to the example analysis to
obtain the human factor reliability of the travel dispatcher in this scenario, and
gives the highest probability of failure behavior, which provides an improvement
direction for the dispatching emergency handling protocol.
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