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Abstract. Lock-freedom offers significant advantages in terms of algo-
rithm design, performance and scalability. A fundamental building block
in software development is the usage of hash map data structures. This
work extends a previous lock-free hash map to support a new simpli-
fied design that is able to take advantage of most state-of-the-art safe
memory reclamation methods, thus outperforming the previous design.

1 Introduction

Lock-freedom is an important technique that is known to offer significant ad-
vantages in terms of algorithm design, performance and scalability, therefore
improving the overall throughput of concurrent data structures. Hash maps are
a very common and efficient data structure used to organize information that
must be accessed frequently. Hash tries are a tree-based data structure with
nearly ideal characteristics for the implementation of hash maps [2], which al-
lows to efficiently solve the problems of setting the size of the initial hash table
and of dynamically resizing it in order to deal with hash collisions.

In this work, we focus on simplifying a sophisticated implementation of a
lock-free trie-based hash map, named Lock-Free Hash Tries (LFHT) [1]. An im-
portant disadvantage of the LFHT data structure is that it is incompatible with
most state-of-the-art safe memory reclamation (SMR) methods [6]. In order to
simplify LFHT’s design, we redesigned the internal representation of leaf nodes
so that collisions on hash buckets do not form a linked list, but are instead
stored in specialized arrays. This design simplification avoids the previous dis-
advantage, allowing the new design to be compatible with most SMR methods.
In particular, experimental results show that the new design is able to effectively
take advantage of the Optimistic Access method [3,7], arguably one of the most
performant SMR methods, outperforming the previous LFHT design.
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2 Simplified Lock-Free Hash Tries (SLFHT) Design

The original LFHT design has two kinds of nodes: hash nodes and leaf nodes.
The leaf nodes store key/value pairs and the hash nodes implement a hierarchy
of hash levels, each node with a fixed size bucket array of 2w entries. To map a
key/value pair (k,v) into this hierarchy, a hash value h is computed for k and
then chunks of w bits from h are used to index the appropriate hash node, i.e.,
for each hash level Hi, the ith group of w bits of h are used to index the entry in
the appropriate bucket array of Hi. To deal with collisions, the leaf nodes form
a linked list in the respective bucket entry until a threshold is met and, in such
case, an expansion operation updates the nodes in the linked list to a new hash
level Hi+1, i.e., instead of growing a single monolithic hash table, the hash trie
settles for a hierarchy of small hash tables of fixed size 2w.

The key idea behind the new SLFHT design is to replace these collision chains
with a specialized array of leaf nodes with a header that specifies the number
of nodes in the array, followed by the nodes that collide in the corresponding
bucket entry sequentially in memory. We call these arrays of leaf nodes as leaf
arrays. The insertion procedure, instead of adding a node to the chain, replaces
the entire leaf array with a new one containing all the previous leaf nodes plus
the new node. Similarly, the removal procedure replaces the entire leaf array with
a new one that contains all the previous nodes except the one being removed.
Figure 1 shows an example of the removal of the nodes K1 and K2 from a hash
level Hi. We show the initial state in Fig. 1(a). Then, in Fig. 1(b), we remove K2

by replacing the leaf array containing K1 and K2 with a new leaf array that only
contains K1. Next, in Fig. 1(c), we remove K1 by emptying the corresponding
bucket entry Bk as there are no nodes left to keep in it.
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Fig. 1: Removal of nodes in a hash level using leaf arrays

3 Safe Memory Reclamation

Safe memory reclamation (SMR) on lock-free data structures is a much harder
problem to solve, compared to their lock-based counterparts, since exclusive
access to any region of the data structure can not be expected without violating
the lock-free properties. To reclaim the memory of a leaf array on the SLFHT
design, an SMR method needs to be used to ensure that no thread possesses an
old reference to it, at the consequence of triggering an use after free bug. The
choice of the SMR method is therefore of greater importance. We implemented
two different SMR methods for the SLFHT design. We chose the Hazard Pointers
(HP) method [5], as it is the most commonly used one and tends to achieve good
performance in data structures with low depth with tight memory bounds. As a
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second option, we chose the Optimistic Access (OA) method that was developed
by Cohen and Petrank [3], and then further improved by Moreno and Rocha [7].
The OA method is one of the most efficient memory reclamation methods while
being robust and simple to implement.

4 Performance Analysis

Our experimental environment was a machine with 2 x AMD Opteron™ Pro-
cessor 6274 with 16 cores each and a total of 32 GiB of DDR3 memory. The
machine was running Ubuntu 22.04 with kernel 5.15.0-91 and all designs were
compiled with GCC version 13.2.1 (with -O3).

For the benchmarks, we used multiple artificial scenarios with varying ratios
of insert, search and remove operations (keys were pre-inserted for the search and
remove operations) and with different configurations. We ran configurations with
24 and 28 bucket entries per hash node combined with an expansion threshold
on 3 and 5 nodes. All scenarios execute a total of 107 operations with uniformly
randomized keys. Each scenario was ran 5 times. The results that follows are
shown in throughput (operations per second).

For the performance analysis, we evaluate SLFHT against LFHT and the
Concurrent Hash Map design (CHM) of Intel-TBB library version 2021.5.0. The
scenarios in Fig. 2 and Fig. 3 specify the design and the memory reclamation
method in use, e.g., LFHT-HHL means the LFHT design with the HHL memory
reclamation method. The HHL (Hazard Hash and Level) method is the origi-
nal memory reclamation method implemented for LFHT [6], the HP (Hazard
Pointers) and OA (Optimistic Access) are the two SMR methods discussed for
SLFHT, and NR are the versions without memory reclamation support. Since
the SLFHT-OA version requires the usage of a compatible memory allocator in
order to be able to release memory to the memory allocator/operating system [7],
we used the LRMalloc memory allocator [4] for all versions.

Figure 2 shows SLFHT-OA and SLFHT-HP outperforming or closely match-
ing the SLFHT-NR (no reclamation) version, this is likely due to the effective
use of the allocator thread caches achieved with reclamation, as the number of
allocations and frees are closely matched with memory reclamation. Figure 3
shows what is probably the closest to a real world scenario, with 90% searches,
5% inserts and 5% removes, and we can still see a clear performance advantage
for the SLFHT-OA version compared to all other methods that reclaim memory,
overrunning also the CHM design.

5 Conclusions

We have redesigned the LFHT data structure in order to make it compatible with
most SMR methods. Its design simplicity makes it more desirable and reliable
for adoption in real world applications. Experimental results show that the new
SLFHT design achieves significant performance gains when compared against
the old LFHT design and the CHM design supported by Intel.
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(a) 24 bucket entries and threshold 3
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(b) 28 bucket entries and threshold 5

Fig. 2: Throughput for the 50% Inserts and 50% Removes scenario
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(a) 24 bucket entries and threshold 3
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Fig. 3: Throughput for the 90% Searches, 5% Inserts and 5% Removes scenario
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