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Piece by Piece: Assembling a Modular Reinforcement
Learning Environment for Tetris

Maximilian Weichart1 and Philipp Hartl1

Abstract: The game of Tetris is an open challenge in machine learning and especially Reinforcement
Learning (RL). Despite its popularity, contemporary environments for the game lack key qualities,
such as a clear documentation, an up-to-date codebase or game related features. This work introduces
Tetris Gymnasium, a modern RL environment built with Gymnasium, that aims to address these
problems by being modular, understandable and adjustable. To evaluate Tetris Gymnasium on these
qualities, a Deep Q Learning agent was trained and compared to a baseline environment, and it was
found that it fulfills all requirements of a feature-complete RL environment while being adjustable to
many different requirements. The source-code and documentation is available at on GitHub2 and can
be used for free under the MIT license.

Keywords: Tetris, Reinforcement Learning, Gymnasium, Library, Software Engineering

1 Introduction

Tetris is a game that is known around the world for its simple yet engaging design, and
at the same time, Reinforcement Learning (RL) has been an active area of research for
the last couple of years. A popular approach to advancing the field has been to develop
agents that can beat human expert agents in various games, in hopes of extrapolating
and generalizing the concepts learned from solving these problems and to applying them
to problems in the real world. To that end, the Atari game suite has been widely used
as a benchmark for RL algorithms. However, while significant progress has been made,
a few games, such as Pitfall, continue to pose substantial challenges [Ec19]. Tetris is
another such game that remains an unsolved problem in RL [LL20]. Its NP-hard nature
[As20], combined with stochastic elements, sparse rewards, and the need for exploration
and long-term planning, make it particularly challenging. Tetris’s intuitive game principle
and modest computational requirements render it a compelling setting for generating and
evaluating novel RL approaches in a particular difficult setting.

2 Related work

Due to Tetris’ popularity, there exist numerous RL environments for it, which can be
categorized into two types: Those which use an emulator to run the binaries of the original
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games[Ka24], and those which implement their own game engine and APIs for usage
[Co24; Ng24; Ru22]. Unfortunately, several of the existing projects are outdated, rendering
them incompatible with the current Python versions and libraries. There exist up-to-date
environments, but these often lack a clear documentation for their source code and on how
to use them [Bu24]. Furthermore, most of the environments, especially those which are
running the original game binaries via an emulator, lack key-game mechanics, such as the
hold-functionality (see Sect. 2.1), and are impractical to customize. The goal of this work
is to offer a comprehensive RL environment for the game of Tetris which solves the main
problems of existing approaches and serves as a go-to implementation for other researchers
to test their algorithms with. Based on Gymnasium [Br16; To24], which is the de facto
standard framework for creating and using RL environments, we introduce a modularized,
easily understandable and adjustable implementation of Tetris called Tetris Gymnasium.

2.1 Tetris concepts

Fig. 1: Matrix (1) Queue with random generator (2) Holder (3)

A game of Tetris mainly consists of three components which are displayed in Fig. 1. These
include the matrix ("board"), on which the Tetrominoes ("pieces") move, a queue which
displays the incoming Tetrominoes, and a hold-function, which allows the agent (player)
to swap out Tetrominoes during the game. The Tetrominoes can have different shapes
and colors, and the order in which they appear is determined by a random generator.
While playing the game, agents can score points by clearing lines (rows). The formula for
calculating the score varies from game to game, and many versions of Tetris include special
combos, such as those defined in the Tetris Design Guidelines3.

3 https://ia804609.us.archive.org/27/items/2009-tetris-variant-concepts_202201

https://ia804609.us.archive.org/27/items/2009-tetris-variant-concepts_202201


2.2 Reinforcement learning

By the definition of Sutton; Barto [SB18], RL can be expressed as a Markov Decision
Process (MDP) where an agent interacts with an environment, as depicted in Fig. 2. At each
iteration, the agent performs an action 𝑎𝑡 based on a state 𝑠𝑡 and subsequently receives a
new state 𝑠𝑡+1 and reward 𝑟𝑡+1 from the environment. The goal of the agent is to maximize
the cumulative rewards obtained over time.

Fig. 2: The RL-loop consisting of an agent interacting with an environment. This figure is adapted
from Sutton; Barto [SB18].

Tetris Gymnasium implements the environment from the RL-loop via a standardized API
based on Gymnasium, formalizing the game of Tetris and offering ways to adjust the
observations (the information available to the agent about a state), rewards and actions in a
modular way.

3 Implementation

The following sections will introduce the technical implementation of Tetris Gymnasium
and how it ensures its modularity, understandability and adjustability. In this context, Python
was used as the programming language, to enable compatibility with Gymnasium.

3.1 Tetromino and Matrix

A fundamental design decision in Tetris Gymnasium is to represent the Tetrominoes and
the matrix as NumPy arrays, making features of the game easily adjustable to different
requirements, e.g. new Tetrominoes or matrix dimensions. The Tetrominoes are therefore
represented as a 2-dimensional arrays, just like the playable matrix which a 2D-array is of
shape (ℎ, 𝑤) and can be adjusted in height ℎ and width 𝑤 size via parameters exposed by



the environment. Additionally, there exists a horizontal padding and a padding 𝑝 on the
bottom of the matrix, resulting in the matrix being of shape (ℎ + 𝑝, 𝑤 + 2𝑝). The padding
𝑝 is a design choice, which eliminates the need to handle index-out-of-range errors when
encountering edge cases of Tetrominoes moving over the edges of the matrix, resulting in
an more robust and generalizable game logic. Each of the values in the array indicates a
pixel of the game, which can be free space (= 0), padding(= 1), or a Tetromino(≥ 2).

3.2 Queue, Holder and Randomizer

As displayed in Fig. 1, the Tetris Design Guidelines define the components next queue, hold
queue and random generator, which are implemented as separate classes TetrominoQueue,
TetrominoHolder and Randomizer. The TetrominoQueue samples the upcoming Tetrominoes
via a Randomizer, which is sampling from a bag by default. The TetrominoHolder lets the
agent swap out the active Tetromino, resetting its position. All three components are used by
the environment and can be modified, e.g. by increasing the length of the queue or changing
the sampling algorithm of the randomizer, without affecting the rest of the game engine.

3.3 Environment and Game Engine

The Gymnasium environment API4 defines a set of methods and attributes that every
environment shall implement, which includes definitions for the observation and action
space as well as methods like step() and reset() to interact with the environment.

In Tetris Gymnasium, the Tetris-class implements the gymnasium.env interface, making the
environment compatible with Gymnasium. It also includes the Tetris game engine which is
composed of attributes such as data structures for the matrix and Tetrominoes, and methods
e.g. for collision-detection or moving Tetrominoes. Following the best practices introduced
by Gymnasium, the environment may be extended and modified using various pre-defined-
or custom-wrappers5, offering a modular way to adjust the environment.

3.4 Documentation

The presented library aims to be easily understandable for its users, including beginners,
and therefore offers three types of documentation. Firstly, the examples directory of the
project includes self-contained scripts that showcase potential use-cases for the library.
Secondly, the repository implements a collection of pre-commit-hooks similar to the official
Gymnasium code-base, configured with a linter, formatter and a docstring parser, which

4 https://gymnasium.farama.org/api/env/
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should lead to a homogeneous code-base. Thirdly, the docstrings are combined with optional
markdown files via Sphinx 6 to offer an extensive documentation on the web7.

4 Evaluation

To showcase its simple interoperability with standard RL algorithms and libraries, we
compared our implementation with the ALE/Tetris-v5 environment from the official
Gymnasium library for training a Deep Q Learning (DQN) agent [Mn13]. Both environments
have been set up in the same way using the dqn_atari.py8 script from the CleanRL project
[Hu21]. The only adjustments made to the script were specifying the environment-id and
lowering the number of time steps. The game-configuration for Tetris Gymnasium closely
resembles the one for ALE/Tetris-v5, including gravity, identical Tetrominoes and matrix
dimensions. Both the environments have been trained successfully, and the results were
logged9 in Weights and Biases.

While this evaluation does not focus on the quality of the resulting DQN-agents, it can be
seen that the agents improve in the game in both cases, validating that the environments are
functioning properly. Furthermore, this evaluation shows that while both Gymnasium-based
environments can be directly integrated and used in the training process, Tetris Gymnasium
offers additional options for customizing the game, where other environments don’t.
The documentation for Tetris Gymnasium also includes detailed information about these
individual components and configurations, making it more accessible and understandable
for end-users. This level of detail and customization is not present in ALE/Tetris-v5 or
other previously mentioned Tetris environments.

5 Conclusion

This paper introduces Tetris Gymnasium, a RL environment that aims to solve the limitations
of other Tetris environments by being modular, understandable and adjustable, eliminating
the need to spend significant time on implementing the game and APIs themselves. We have
briefly shown that the environment offers advantages over other solutions and can be easily
integrated into existing projects.

The development of Tetris Gymnasium is an ongoing process, and the current iteration of
the environment also has its limitations, such as the lack of advanced scoring mechanisms
(T-Spins), rendered frames not being upscaled, and the library not being published on the
Python Package Index yet. Furthermore, we also plan to further incorporate feedback from

6 https://www.sphinx-doc.org/en/master/

7 https://max-we.github.io/Tetris-Gymnasium/

8 https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/dqn_atari.py

9 Tetris Gymnasium: https://api.wandb.ai/links/go-apps-github/45n4shht, Baseline: https://api.wandb.
ai/links/go-apps-github/16c8bmlr

https://www.sphinx-doc.org/en/master/
https://max-we.github.io/Tetris-Gymnasium/
https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/dqn_atari.py
https://api.wandb.ai/links/go-apps-github/45n4shht
https://api.wandb.ai/links/go-apps-github/16c8bmlr
https://api.wandb.ai/links/go-apps-github/16c8bmlr


researchers using the library in their work and plan to evaluate the ease of use in more
detail. It would be interesting to implement the rules and mechanics of a multiagent-version
of Tetris, such as Tetr.io10 and to consider integrating Tetris Gymnasium into the official
Gymnasium library.
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