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Abstract—Recently, there has been a surge of research papers
investigating reinforcement learning (RL) algorithms for solving
temporal logic (TL) tasks. However, these algorithms are built
upon the assumption of a labeling function which can map raw
observations into symbols of subgoals in completing the TL task.
In many practical applications, however, this labeling function
often is not readily available. In this work, we propose an online
RL algorithm, referred to as GSTLO, that takes non-symbolic
raw input observations from the collected trajectories and learn
to ground the subgoal symbols of TL tasks. In other words,
it learns to label important states that are associated with the
subgoals in the TL task. Specifically, to associate an important
state to one of the subgoals in the TL formula, the RL agent
actively explores the environment by collecting trajectories and
gradually reconstructs a finite state machine (FSM) of the TL task
composed by the discovered important states. Then, by comparing
the reconstructed FSM and the ground truth FSM extracted from
the task formula, the mapping from the important states to
subgoal symbols is obtained, i.e. resulting in the labeling function.
In order to discover these important states, GSTLO formulates
a contrastive learning objective based on the first-occupancy
representations (FR) of collected trajectories. To facilitate the
exploration, the first-occupancy feature (FF) of important states
is also learned, driving the agent to visit any selected subgoal and
complete unseen tasks without further training. The proposed
GSTLO algorithm is evaluated on three environments, showing
significant improvement over baseline methods.

Index Terms—Reinforcement learning, symbol grounding,
temporal logic, exploration

I. INTRODUCTION

Reinforcement learning (RL) algorithms have achieved many
successes in recent breakthroughs like human-level video game
playing from raw sensory input [22] and mastering complex
board games [29]. Different from regular tasks solved by RL
algorithms, the temporal logic (TL) task consists of multiple
temporally extended subgoals in specified orders and can be
transformed into a finite state machine (FSM) [1]. TL tasks
have wide applications in the real-world scenarios. For example,
consider a service robot on the factory floor which is tasked
to fetch a set of components but in different orders depending
on the product being assembled. As shown in Figure 1(a),
the task of the robot is to fetch lever first and then either
wheel or gear, expressed as l;(w∨g) in the TL language. The
FSM transformed from the task formula is shown in Figure
1(b). Recently, there have been many works proposing specific
RL algorithms for solving TL tasks. However, all of them
assume the availability of a labeling function which maps raw
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Fig. 1. (a) TL task Example. The robot is at (0,0) initially. (b) Corresponding
FSM for the TL task: l;(g∨w). Letters "l", "g" and "w" are short for lever,
gear and wheel, respectively.

observations into symbols of subgoals (e.g., indicating state
that contains lever, wheel or gear in this example) for the task
completion. In this work, assuming that this labeling function is
not available, we propose a framework for grounding subgoal
symbols of TL tasks via an online RL algorithm based on
non-symbolic observations. By grounding subgoal symbols
of TL tasks, we mean that the agent will learn how to align
the non-symbolic observation (image in this example) to the
important states corresponding to the subgoals in the TL task
(in this example, states having l, w and g) such that the agent
will know when it arrived at any of those states.

In particular, a lot of RL algorithms have been proposed
to solve TL tasks in the form of reward machine (RM) [15],
[32], [34] and linear temporal logic formulas (LTL) [11], [12],
[2], [16]. All these papers assume the availability of such a
labeling function which maps and aligns the environmental
raw observation into a Boolean interpretation over a set of
predefined (subgoal) symbols. However, in many real-world
applications, the sequences of agent’s observations are often
not symbolic but appear ’rendered’ in raw data such as images,
videos, words and audio, whose symbolic representation is not
known. Hence, a labeling function that can enable grounding
of subgoal symbols of the TL task is not available. Thus, it
is necessary to develop RL algorithms learning to solve TL
tasks without assuming such a labeling function. For instance,
a real-world service robot (in Figure 1) must acquire the ability
to address the specified TL task solely through image-based
observations, by exploiting user’s episodic feedback on behavior
trajectories. This is because obtaining step-by-step feedback
from users for every accomplishment of intermediate subgoal
symbols in the TL task is prohibitively costly. In this case,
by using episodic feedbacks as sparse rewards, a naive idea



for solving this problem is to adopt the POMDP algorithms
which use recurrent neural networks (RNN) to build the policy
and value function [14], [9], [17].However, due to the lack of
the labeling function, the temporal structure of TL task cannot
be leveraged by the agent. Hence, such a naive algorithm can
suffer from poor learning efficiency and cannot solve complex
tasks with long-time horizon.

In this paper, we propose a novel framework for Grounding
Subgoals of Temporal Logic tasks in Oline reinforcement
learning, short for GSTLO. In order to solve TL tasks based
on non-symbolic observations without using labeling function,
the proposed framework grounds subgoals of the TL task by
discovering important states corresponding to subgoals and
learning their temporal relationships via online RL. We say
a state is important if the state is correspond to one of the
subgoals in the TL task formula. Completing the TL task can
be decomposed into stages of achieving different subgoals,
same as traveling from the initial to final state over the FSM
of the task [1]. In every stage, only the first visit to the
designated subgoal is meaningful and makes progress towards
the task completion. Inspired by this fact, for discovering
important states of subgoals, our GSTLO framework first
computes the first-occupancy representation (FR) [23] of states
in collected trajectories which measures the expected duration
until states of subgoals are reached for the first time and
then formulates an FR-based contrastive learning objective
to discover important states. Since the TL task containing
temporally extended subgoals may have long time horizon
to complete, in order to learn the temporal relations of
subgoals efficiently, the GSTLO actively collects trajectories
and progressively reconstructs the finite state machine (FSM)
of the task composed by important states discovered by the FR-
based contrastive learning. Once the reconstruction is complete,
the agent compares the reconstructed FSM with the ground
truth FSM transformed from the task formula (composed by
subgoal symbols). By this comparison, the agent can learn the
labeling function that maps from the important states to subgoal
symbols. In order to facilitate the trajectory collection, the first-
occupancy features (FF) of discovered important states is also
trained, which can drive the agent to reach any discovered
important state for the first time without further learning and
also help the agent to zero-shot generalize to other unseen TL
tasks consisting of the same subgoal symbols.

We evaluate GSTLO in three environments, including Letter
world, Room, and MiniHack [27]. In these environments, the
agent needs to visit different objects in the right temporal
orders specified by the task formula. Our evaluations show that
GSTLO can outperform baselines on grounding subgoals and
efficiency of solving TL tasks. The generalizability of GSTLO
is also empirically verified. Ablation study on components of
GSTLO framework is conducted as well.

II. RELATED WORKS

Recently linear temporal logic (LTL) formulas have been
widely used in Reinforcement Learning (RL) to specify tempo-
ral logic tasks [20]. Assuming that the LTL task specification

is known, some authors develop RL algorithms by compiling
the LTL specification into an automaton and leveraging the
temporal abstractions provided by the automaton during the task
execution [3], [5], [2]. In some other papers, based on known
methods for automata induction, authors focus on learning
the task machine from traces of symbolic observations and
rewards or labels received from the environment [7], [35], [26].
However, all these papers are based on symbolic observation
of the agent and do not consider the problem of discovering
latent symbols in the traces. Therefore, they are applicable
only in environments with symbolic states or non-symbolic
environments where a labeling function mapping between the
non-symbolic state and a symbolic interpretation is available,
also called labeled MDP [12].

However, in many real-world applications the environmental
state or observation is not symbolic and the labeling function
is not always known a priori. Some papers assume to have an
imperfect labeling function, where the predicted symbols can
be erroneous or uncertain [19], [13]. They develop robust
RL algorithms which are adaptable to mistakes made by
the labeling function. But these papers do not address the
problem of learning the labeling function to ground symbols of
subgoals. A recent paper studies the problem of grounding LTLf
formulas in image sequences [33]. However, their method is
only applicable to offline problems with static dataset and does
not consider the generalizability to other LTL tasks. In addition,
authors in [21] propose an algorithm for learning rational
subgoals based on dynamic programming. Their approach is
based on the availability of the state transition model, which
is not feasible in general real-world applications.

III. PRELIMINARIES

A. Reinforcement Learning

Reinforcement learning (RL) is a framework for learning
the strategy of selecting actions in an environment in order to
maximize the collected rewards over time [30]. The problems
addressed by RL can be formalized as Markov decision
processes (MDP). The environmental MDP, with which the
agent is interacting for any tasks, is defined as a tuple M =
⟨S,A, T , R, γ,S0⟩, where S is a finite set of environment
states, A is a finite set of agent actions, T : S×A×S → [0, 1]
is a probabilistic transition function, R : S×A → [Rmin, Rmax]
is a reward function with Rmin, Rmax ∈ R and γ ∈ [0, 1) is a
discount factor. Note that S0 is the set of initial states where the
agent starts in every episode, and S0 : s0 ∼ S0 is a distribution
of initial states.

In this work, we equip the environment MDP with a finite
set of pre-defined propositions P and a finite set of pre-defined
symbols of TL task subgoals G ⊂ 2P , where each symbol
g ∈ G is described by one or multiple propositions in P . We
define a labeling function L : S → G that maps a raw state
to a subgoal symbol of the TL task. The output of labeling
function is the symbolic observation of an environmental state.
We define important states as the states which contain subgoal
symbols, so the output of L with a non-important state as input
is empty. For example shown in Figure 1, for the state when
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Fig. 2. Examples of TL formulas and their corresponding FSMs. The initial
node is v0 and the accepting (terminal) node is vT .

the robot is at (0,0), the output of L is empty. However, for
the state when the robot is at (0,3), the state is an important
state and thus the output of L is "l" for lever. However, the
labeling function is not available in our work and the agent has
to learn the labeling function and solve temporal logic tasks
based on non-symbolic observations.

B. Temporal Logic Specification

The temporal logic tasks used in this work is described
by a formal language T L together with three operators.
Syntactically, all subgoal symbols in G are in T L, and
∀φ1, φ2 ∈ T L, the expressions (φ1;φ2), (φ1 ∨ φ2) and
(φ1 ∧ φ2) are all in T L, representing "φ1 then φ2", "φ1 or
φ2" and "φ1 and φ2", respectively. Formally, a trajectory of
states τ = (s1, . . . , sn) satisfies a task description φ, written
as τ |= φ, whenever one of the following holds:

• If φ is a single subgoal g ∈ G, then the first state of τ
must not satisfy g, and instead the last state must satisfy
g, which implies that τ has at least 2 states

• If φ = (φ1;φ2), then ∃0 < j < n such that
(s1, . . . , sj) |= φ1 and (sj , . . . , sn) |= φ2, i.e., task φ1

should be finished before φ2

• If φ = (φ1 ∨φ2), then τ |= φ1 or τ |= φ2, i.e., the agent
should either finish φ1 or φ2

• If φ = (φ1 ∧ φ2), then τ |= (φ1;φ2) or τ |= (φ2;φ1),
i.e., the agent should finish both φ1 and φ2 in any order

Note that the language T L for specifying tasks here covers
LTLf [6] which is a finite fragment of LTL without using
always operator □.

Every task specification φ ∈ T L can be represented by a
non-deterministic finite-state machine (FSM) [21], representing
the temporal orderings and branching structures. Each FSM
Mφ of task φ is a tuple (Vφ, Eφ, Iφ, Fφ) which denote subgoal
nodes, edges, the set of initial nodes and the set of accepting
(terminal) nodes, respectively. Every node , excluding those
in Iφ and Fφ, corresponds to a subgoal symbol in the task
specification, and each edge represents a possible transition by
completing a subgoal.

There exists a deterministic algorithm for transforming any
specification in T L to a unique FSM [21]. In this work, we only
consider the FSMs which do not contain any loops. We assume
that in any FSM there is only a single initial and accepting
state. If the FSM constructed by transforming the specifications
has multiple initial or accepting nodes, we introduce a super
initial node v0 or accepting node vF to unify them. Several
examples of task formulas and transformed FSMs are shown
in Figure 2.

C. First-occupancy Representation

In this work, we use first-occupancy representation (FR) for
both subgoal grounding and task generalization. FR measures
the duration until a policy is expected to reach states for the
first time, which emphasizes the first occupancy.
Definition 1.[23] For an MDP with finite S , the first-occupancy
representation (FR) for a policy π Fπ ∈ [0, 1]|S|×|S| is given
by

Fπ(s, s′) := Eπ

[ ∞∑
k=0

γk
1(st+k = s′, s′ ̸∈ {st:t+k})

∣∣∣∣st = s

]
(1)

where {st:t+k} = {st, st+1, . . . , st+k−1} and {st:t+0} = ∅.
The above indicator function 1 equals 1 only when s′ first
occurs at time t+k since time t. So Fπ(s, s′) gives the expected
discount at the time the policy first reaches s′ starting from s.
It can be shown that there is also a recursive relationship for
FR:

F
π
(s, s

′
) = Est+1∼pπ(·|s)

[
1(st = s

′
)+γ(1−1(st = s

′
))F

π
(st+1, s

′
)
∣∣st = s

]
(2)

To compute an empirical FR based on a given trajectory τ of
states, the Monte Carlo FR in τ is defined as below:

F
MC

(s, s
′
; τ) :=

T∑
t=1

1(st = s) ·
T−t∑
k=0

γ
k
1(st+k = s

′
, s

′ ̸∈ {st:t+k}) (3)

where the length of τ is denoted as T and the t-th state in
τ is denoted as st. When the state space is impractically
large or infinite, e.g., non-symbolic, we learn a contrastive
representation of states to measure the similarity of two sates,
which is used to compute the indicator function in (3).

In order to fast transfer to multiple tasks and realize
generalization, we need to define a base feature function of
states, i.e., ϕ(·) : S → RD, so that a linear combination of base
features can predict an immediate reward for a specific task, i.e.,
r(s) = wTϕ(s) for some w ∈ RD which is a characteristic
of the specific task. Similar as successor feature (SF) [18], we
can define a first-occupancy feature (FF) representation Fπ to
achieve a general policy evaluation and improvement [23]:

Fπ
d (s) := Eπ

[ ∞∑
k=0

γ
k
1(ϕd(st+k) ≥ θd, {ϕd(s

t′ ) < θd}
t′=t:t+k

)

∣∣∣∣st = s

]
= 1(ϕd(st) ≥ θd) + γ(1 − 1(ϕd(st) ≥ θd))Est+1∼pπ [Fπ

d (st+1)] (4)

where the first line is the formal definition and second line
is the recursive definition, θd is a threshold, and pπ is the
state distribution under policy π. If realized by deep neural
networks, ϕ(·) can also handle image-based observation where
the state space is impractically large.

IV. METHODOLOGY

In this work, we propose the GSTLO framework to solve
TL tasks based on non-symbolic observations by grounding
subgoals of the TL task and then zero-shot generalize the agent
to unseen tasks. In the rest of this section, we will first have
a general introduction to the GSTLO framework, and then
present every component of GSTLO with details.
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A. Framework

Grounding subgoals of TL task is essentially to learn the
labeling function L : S → G which is the mapping from non-
symbolic states in S to subgoal symbols in G. As formally
defined in Section III-A, whenever they constitutes an important
state, otherwise map it to empty symbol. Since the TL task may
consist of multiple temporally extended subgoals and have long
time-horizon to complete, grounding all the subgoals together
via offline supervised learning is difficult and infeasible in
general cases. Therefore, the GSTLO framework discovers
important states corresponding to symbols of subgoals and
progressively reconstructs the FSM (denoted as M̂φ) composed
by important states via the online RL algorithm. Starting
from a single initial node v0, M̂φ is gradually expanded
by adding nodes represented by discovered important states.
Once M̂φ becomes structurally same as the ground truth FSM
Mφ extracted from the task formula, by comparing M̂φ and
Mφ, the mapping from important states to the symbols of
subgoals can be discovered, which naturally results in the
labeling function.

Specifically, in each episode k of GSTLO framework, given
the TL task formula φ and the FSM of the task formula
Mφ, the agent collects a trajectory τk by actively interacting
with the environment and receives a binary label lk for the
task completion at the end of every episode. The binary label
lk is 1 whenever the trajectory successfully completes the
task φ. A trajectory τ is a sequence of state-action pairs, i.e.,
τ = (s1, a1, . . . , sT ) with T indicating the last time step. Based
on binary labels, the collected trajectories can be classified as
positive (lk = 1) trajectories or negative (lk = 0) trajectories,
all of which are stored into positive buffer (BP ) and negative
buffer (BN ), respectively.

We define the set ŜI as an ordered set of discovered
important states indicating where subgoals potentially are in
the state space, i.e., ŜI ⊂ S . For the k-th state in ŜI , i.e., ŝk,
k is the index for indicating learned subgoal and ŝk is the
important state associated with the learned subgoal k. Only
newly discovered important state not included in ŜI will be

added to ŜI , creating an index indicating a newly learned
subgoal.

The GSTLO framework consists of exploration part and
training part. The diagram of GSTLO is shown in Figure 3.
In the exploration part, the agent actively collects trajectories
from the environment, and expand the reconstructed FSM by
composing important states discovered in the training part.
The training part is to discover important states, train the
first-occupancy feature (FF) of important states, and train the
exploration policy. The FF is trained to enable the agent to
generalize to visit any important state in the future without
further learning. The exploration policy is used to collect
trajectories for subgoal grounding. The detailed algorithm is
presented in Appendix D.

B. Exploration

The target of agent’s exploration is to actively collect trajec-
tories to reconstruct the FSM M̂φ composed by discovered
important states, which must have the same structure as the
task FSM Mφ if every important state is discovered correctly.

In M̂φ, except initial and terminal nodes v0 and vT , each
node vn of M̂φ has the attribute of ŝkvn

indicating the kvn -th
important state in ŜI . The nodes of M̂φ are categorized into
frontier nodes in Vf and other nodes in V/Vf . The frontier
node is defined as the node whose next important states for
completing task φ are not fully discovered, meaning that the
out-going edges of a frontier node are not fully constructed
yet. Initially, only the initial node is the frontier node of M̂φ,
i.e., Vf = {v0}. With reconstructed FSMs in Figure 4 and 5
as examples, the dashed nodes are in the frontier set Vf .

In order to reconstruct the FSM M̂φ efficiently, the agent
selects a working node vw from the frontier set Vf and collects
trajectories conditioned on the node vw, focusing on discovering
next important states to visit after reaching the important state
on node vw (i.e., ŝkvw

) of the FSM of the task. Specifically,
in each episode, guided by the FF of important states Fϑ, the
agent first sequentially visits important states of nodes along
the path from v0 to vw on M̂φ. Then, after reaching ŝkvw

of
node vw, the agent uses an exploration policy πexp to continue
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Fig. 4. Collecting a trajectory conditioned on vw in one episode. The red
node is the working node vw . The dashed nodes are in the frontier set. Blue
path: The first half of the trajectory is collected by FF of important states Fϑ,
visiting ŝ1 and ŝ2. Red path: The second half is collected by applying the
exploration policy πexp till the end of the episode.

collecting the trajectory τ until the end of the episode. This
collected trajectory going through important states of node vw
and nodes before vw on M̂φ is called a trajectory conditioned
on vw. An example of collecting trajectory is shown in Figure
4. Based on these collected trajectories conditioned on vw, the
agent discovers important states next to vw by using contrastive
learning which is introduced with details in Section IV-C1.

When the important states next to that on vw are fully
discovered, the working node vw will be in the status of fully
"discovered". The condition of a working node vw becoming
fully "discovered" is that collecting K more trajectories
conditioned on vw cannot make the agent discover more
important states next to vw. Then, the agent will expand M̂φ

and select a new working node from Vf . Specifically, the node
vw will be removed from the frontier set Vf . Every important
state discovered next to node vw and its index in ŜI are used
to build a new node connected with vw. These new nodes
are also new frontier nodes added to Vf . After that, a new
working node vw is randomly selected from Vf by the agent.
This is the process how M̂φ is expanded. An example of the
expansion of M̂φ is presented in Figure 5. The number K in
the condition of "fully discovered" is empirically selected and
specific to the environment, which is usually small.

C. Training

Based on trajectories collected in the exploration component
of the framework, as shown in Figure 3, the training module is
responsible of discovering importance states, training the first-
occupancy feature (FF) of learned subgoals and the exploration
policy. The concepts of Monte Carlo FR (MCFR) and FF
are defined in Section III-C. The FF of important states is
introduced in the Appendix A.

1) Discovering Important States: State Representation.
Since the state space considered in this work is non-symbolic
and impractically large, the first step of discovering important
states is to learn a compressed representation of state which
can distinguish different states from each other efficiently. We
propose to learn a representation function fθ(·) : S → Rd by
contrastive unsupervised learning [25], mapping an input state
into a d-dimensional vector. Specifically, the representation
function fθ is trained by minimizing the InfoNCE loss [25],
with states drawn from both positive and negative buffers.

Contrastive Learning. Building on top of the state represen-
tation fθ, we first define L̃ω : Rd → [0, 1] as the importance
function. Any state s with value of L̃ω(fθ(s)) close to 1 after

training is regarded as an important state. In GSTLO, the agent
discovers important states by formulating the return of each
trajectory in terms of L̃ω and comparing the returns of positive
and negative trajectories. Specifically, it is to train Lω with
a contrastive learning objective formulated by the MCFR of
positive and negative trajectories.

As discussed above, in each training iteration the agent only
discovers important states next to the working node vw on M̂φ.
For any trajectory conditioned on node vw, starting from the
important state ŝkvw

of node vw, the agent computes the MCFR
to formulate the trajectory’s return. Since the MCFR in (3) is
expensive to compute directly, the agent needs several steps to
pre-process the collected trajectories. Specifically, discovering
important states based on contrastive learning consists of the
following three steps:

1) Selecting Trajectories: We randomly select positive and
negative trajectories conditioned on the current working
node vw from buffers BP and BN . Then, for every
selected positive (negative) trajectory, we discard the
part before reaching ŝkvw

and store the rest into the set
DP (DN ).

2) Computing MCFR: Note that the first state of every
τ ∈ DP (DN ) is always ŝkvw

. Computing MCFR
defined in (3) is realized by a pre-processing function
for any trajectory τ ∈ DP (DN ), which consists of two
steps: 1) In order to compute the outer Σ in (3), any τ
is decomposed into N(ŝkvw

; τ) segments {τ ′i}, where
N(s; τ) is the number of occurrence s in τ and every
segment τ ′i starts with i-th occurrence of ŝkvw

and ends
at one-step before the i+ 1-th occurrence of ŝkvw

in τ
or the end of τ ; 2) For any segment τ ′i , computing the
inner Σ in (3) needs to remove repetitive states from τ ′i ,
producing τ̃ ′i , where the similarity of states is evaluated
by the cosine similarity of state representations fθ. Define
this two-step pre-processing above as a general function
preFR, i.e., {τ̃ ′i}N(s;τ) := preFR(τ, s) with s replacing the
state ŝkvw

above. Therefore, computing the MCFR of
τ can be simplified as the sum over each pre-processed
segment τ̃ ′i :

FMC(s, s′; τ) =
∑

τ̃ ′
i∈preFR(τ ;s)

FMC(s, s′; τ̃ ′
i)

=
∑

τ̃ ′
i∈preFR(τ ;s)

len(τ̃ ′
i)∑

t′=1

γt′
1(st′ = s′) (6)

where the function len(τ) gives the length of trajectory
τ . For every τ ∈ DP (DN ), its pre-processed segments
{τ̃ ′i} are stored into the set D̃P (D̃N ).

3) Contrastive Objective: Since the indicator 1 in (6) is
still intractable to compute across non-symbolic states,
we replace it by the state representation fθ. Then, the
return for formulating the contrastive objective can be
written as

∑
st∈τ̃ γ

tL̃ω(fθ(st)) for any τ̃ ∈ DP ∪ DN .
Therefore, based on the pre-processed datasets D̃P and
D̃N , the contrastive learning objective for discovering
important states next to vw is expressed as in (5), where
the set D̃P (D̃N ) is obtained by preFR. Any state s′

with importance value higher than a threshold κ, i.e.,
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ŝ1

ŝ3
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Lcontrast(ω) :=
∑

τ̃0∼D̃P ,τ̃1∼D̃N

exp

(∑len(τ̃0)
t=1 γtL̃ω(fθ(τ̃0[t]))

)
exp

(∑len(τ̃0)
t=1 γtL̃ω(fθ(τ̃0[t]))

)
+ exp

(∑len(τ̃1)
t=1 γtL̃ω(fθ(τ̃1[t]))

) (5)
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L̃ω(fθ(s
′)) ≥ κ, is chosen as an important state next to

vw. Then, if state s′ does not exist in the set ŜI , s′ will
be added into ŜI with a new index |ŜI | + 1 assigned
and a newly learned subgoal |Ŝ|+ 1 is also created.

2) Exploration Policy: The exploration policy πexp is re-
alized by a GRU-based policy model. Each action is history
dependent and drawn from the action distribution at the output
of the policy model. The action selection of πexp is conditioned
on both current state and a hidden state summarizing previous
states and actions. The policy πexp is trained by the recurrent
PPO algorithm [8], [24] which extends the classical PPO [28]
into POMDP domain. The reward for training πexp is just
the binary label of task satisfaction given at the end of the
trajectory. This sparse and weak reward signal cannot make the
agent directly solve the task, but can encourage the agent to
visit states relatively closer to subgoals, improving the sample
efficiency of subgoal grounding.

V. EXPERIMENTS

In this section, we first introduce the basic settings of
experiments, including environments and baselines. Then, we
present the experimental results and analysis. In this work,
the proposed framework is evaluated in three environments,
including Letter, Room and MiniHack, as shown in Figure
6. The details of environments are introduced in Appendix
B. Implementation details and other results are included in
Appendix.

A. Baselines

Baseline-1. Contrastive learning has been widely used to
learn important states or subgoals for solving a designated

task or maximizing the rewards in previous papers [36],
[4]However, these papers did not consider the temporal ordering
of reaching detected subgoals. By mimicking the methods
of these papers, the first baseline directly compares positive
and negative trajectories by extracting subgoals which can
differentiate positive trajectories from negative ones. The
contrastive objective is same as (5) except that the pre-
processing function for computing FR of trajectories is omitted,
so that FR is discarded in Baseline-1. The state representation
fθ and importance function L̃ω are learned same as those in
GSTLO. This baseline is designed to show the effect of FR in
GSTLO.
Baseline-2. Recently authors in [33] propose a neural archi-
tecture consisting of a trainable convolutional neural network
(CNN) and a non-trainable finite state automaton (FSA) which
is a sub-class of FSM. Here the CNN predicts symbols given the
input image and the FSA, which is derived from the LTLf task
formula, describes the automaton state transitions and their
conditions. In Baseline-2, subgoals are represented by pre-
defined symbols and they are grounded by training the neural
architecture to predict the binary label (positive or negative) of
input trajectory. The neural architecture are trained whenever
K more trajectories are collected by the exploration policy
πexp. In baseline-2, the processes of computing FR and learning
FF of learned subgoals are discarded, and no FSM or FSA
is reconstructed, since the neural architecture is designed to
ground all the subgoals together.

B. Results

We conduct three sets of experiments to compare the
performance of GSTLO and baselines from different aspects,
including the accuracy of grounding subgoals, the success
rate of solving TL tasks and the generalizability to other TL
tasks unseen in the training. More results are included in the
Appendix C.

The accuracy of grounding subgoals is defined as the ratio
of subgoals in G whose corresponding states are correctly
discovered in the state space S. In every environment, the
performance is the average of 6 randomly generated tasks. The
performance comparison of accuracy versus the environmental
samples is shown in Figure 7. For all the evaluations in this
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Fig. 7. Comparison of accuracy of learned subgoals (discovered important states).
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Fig. 8. Comparison of success rate of solving the given task.
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Fig. 9. Comparison of generalizability across different number of subgoals and task lengths. In MiniHack environment, the number of subgoal is fixed to be 6.

section, the map in the letter environment has the width of
m = 9 with k = 7 different letters (subgoals), and the map
in the room environment has the width of 11 with 5 subgoals.
Every data point is the average of 5 random seeds. In addition,
we compare the GSTLO framework with baselines on the
success rate of completing TL tasks, as shown in Figure 8.
The tasks evaluated here are all training tasks, and every curve
is the average of 5 random seeds with standard deviation
shown in the shadow. Finally, the generalizability of GSTLO is
compared with baselines in Figure 9. The metric for comparing
generalizability is the success rate of completing 10 randomly
generated tasks unseen in the training which are composed by
same subgoals in G.

We can see that GSTLO outperforms baselines in all three
experiments. In our method, the progressive reconstruction
of FSM based on the FR of trajectories grounds temporally
extended subgoals one-by-one, transforming the non-Markovian
problem into a Markovian one. Instead of grounding all the
subgoals at once, in each training iteration, it only focuses on
discovering important states of subgoals next to a previously
grounded subgoal. Based on the FF of discovered important
states of grounded subgoals, the agent can visit any grounded
subgoal on FSM efficiently without further training. This can
make the agent actively collect trajectories based on the current
progress of subgoal grounding. Additionally, it can also help
the agent generalize to any unseen tasks composed by same

subgoals grounded in the training.
Baseline-1 performs the worst, since it ignores the non-

Markovian property of solving temporal logic (TL) tasks in
the non-symbolic state space. This method treats every subgoal
equally and ignore their temporal orders, where the importance
function can be distracted by redundant visits to important states
of subgoal. So, it cannot ground many subgoals correctly. In
baseline-2, the non-trainable FSA derived from the task formula
is non-differentiable, which can make the CNN part difficult to
be trained. Besides, since TL tasks can have long time-horizon
to complete, some subgoals may be visited by few or even
no trajectories, especially in the early learning stage. This can
make the training data imbalanced and subgoals which are
never or rarely visited can not be correctly grounded. However,
the active collection of trajectories in GSTLO resolves this
problem.

VI. CONCLUSION

In this work, we propose a framework, short for GSTLO,
for grounding the subgoal symbols and solving the TL task
based on non-symbolic observations. By discovering important
states based on contrastive learning, the agent progressively
reconstructs the FSM composed by important states. By
comparing the reconstructed FSM and the ground truth FSM
extracted from the task formula, the agent can learn the labeling
function and ground subgoal symbols.
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Fig. 10. Environments.

APPENDIX

A. FF of Important States

In order to make the agent to traverse over M̂φ efficiently, the agent has to be able to reach any discovered important state
(ŝi ∈ ŜI ) in a zero-shot manner. The option framework [31] provides us a solution, where the agent needs to train a specific
option for reaching every subgoal. However, this can consume a lot of environmental samples and be wasteful if two subgoals
are close to each other. In this work, we propose to learn a first-occupancy feature (FF) Fϑ of important states which can
provide the agent a unified solution for visiting any discovered important state for the first time without further training.

According to the definition in Section III-C, the base feature function ϕ of FF can be formulated as the achievement of
important states, i.e., ϕ(·) : S → R|G| where d-th feature ϕd(s) is computed by the cosine similarity between fθ(s) and fθ(ŝd)
(ŝd is the d-th important state in ŜI ), and |G| is the number of total subgoals. So FF is defined as Fϑ : S×A → R|G|. Therefore,
the d-th FF (Fϑ,d) is defined to be the duration until the agent is expected to reach ŝd for the first time by starting from a
state-action pair (s, a). The FF here is defined with respect to the exploration policy πexp which is omitted in the notation.

Given any transition tuple (st, at, st+1), the d-th element of Fϑ is trained to predict the target value defined as below,

F target
d (st, at, st+1) = 1(ϕd(st) ≥ κ) + γ(1− 1(ϕd(st) ≥ κ))max

a′∈A
Fϑ̄,d(st+1, a

′) (7)

where Fϑ̄ is the non-trainable target model of Fϑ whose parameter ϑ̄ is a delayed version of ϑ and copied from ϑ periodically.
When training Fϑ, due to the definition of FF, trajectories collected from the environment need to be pre-processed by

decomposing into overlapping sub-trajectories and removing repetitive state-action pairs in every sub-trajectory. Specifically, a
batch of trajectories Tm are first sampled from BP ∪BN . For every sampled trajectory τ , ∀t = 1, . . . , len(τ)−1, a sub-trajectory
τt can be formed by keeping the segment of τ starting from time step t till the end, i.e., τt := (st, at, . . . , slen(τ)), and a
non-repetitive sub-trajectory τ̃t is obtained by removing repetitive state-action pairs in τt. Then, we store all the non-repetitive
sub-trajectories obtained from every trajectory of Tm into the set K which is the dataset for training Fϑ. Therefore, the training
objective of FF Fϑ can be written as below:

LFF(ϑ) = E(si,ai,si+1)∼τ̃t,τ̃t∼K[(Fϑ(si, ai)−F target(si, ai, si+1))
2] (8)

where Fϑ is realized by a neural network model with |G| output heads, and the d-th output of Fϑ is trained to predict F target
d

defined in (7). Note that since the agent can only be trained to reach important states ŝ ∈ ŜI , only the first |ŜI | output heads
of Fϑ are trained to predict the targets. When |ŜI | becomes same as |G|, the important states for all the subgoals are learned
and Fϑ is expected to guide the agent to reach the important state of every subgoal.

When the action space A is discrete, the policy of reaching ŝd in state s is to greedily select the action a which maximizes
Fϑ,d(s, a). In this work, we only consider discrete action space. The proposed approach can be easily extended to the continuous
action space. For any index of learned subgoal d ∈ [1, |Ŝu|], by using Fϑ,d as critic, the agent needs to train a policy model
conditioned on d by the soft actor-critic (SAC) algorithm [10].

B. Environments

In this work, we evaluate the performance of the GSTLO framework in three environments, including letter world, room and
MiniHack [27]. The first two are designed by authors. The third one has observations with higher dimensions. The observations
of states are image-based in all the three environments, so simple tabular RL algorithms cannot solve any tasks in these
environments. Since the labeling function is not available, the agent does not know the positions of letters or objects from state
observations and their association with subgoal symbols in the TL task.
Letter World. This environment is a n× n grid game shown in Figure 10(a), replacing objects by letters. Out of the n2 grid
cells, m grids are associated propositions (letters). An example layout is shown in Figure 10(a) with n = 7,m = 7. At each
step the agent can move along the cardinal directions (up, down, left and right). The agent is given the task specification
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Fig. 11. Ablation study on using FF of learned subgoals.
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Fig. 12. Ablation study on the exploration policy in GSTLO.

and is assumed to observe the full grid (and letters) from an egocentric point of view. But positions of these letters and their
association with subgoal symbols in the TL task are unknown to the agent. The agent must visit these letters’ locations in the
right order to satisfy the task formula.
Room. This environment is also a grid-world game, but its observation is divided into four rooms as shown in Figure 10(b).
There are multiple letters allocated in different positions. The agent is randomly placed into one of these rooms. Each room is
connected to its neighbors by corridors. Two randomly selected corridors are blocked by locks. The agent can open a lock by
using a key corresponding to that specific lock (having the same color). These (green and yellow) keys are placed in positions
which the agent can reach. This environment is an upgrade of Letter World with obstacles and dependencies between objects
(keys and locks) added. Every task formula is a TL formula in terms of object’s letters (not including keys and locks). The
agent must visit these letters in certain way to satisfy the TL formula.
MiniHack. MiniHack is a powerful sandbox for designing custom environments [27] derived from the NetHack game. The
agent there can navigate in the map to visit landmarks, pick up weapons, use tools and fight against monsters. Our experiments
only consider navigation tasks which are customized to be simpler than original environments. An example of the screenshot is
shown in Figure 10(c). The layout of the map and items are initialized by a description file which is written by the user. In our
experiments, the map is a 10×10 grid. The observation to the agent is an image, where each grid of the map is described by
16×16 pixels. The action space is customized to be small, including movement towards 4 directions, kick, and eat actions. The
objects include comestible items, including apple, orange, meat and pancake, and the agent can take them by the eat action.
Other objects are stone and gray rock, which can only be interacted with by using kick action. The task formula is defined in
terms of these 6 objects. The agent needs to visit and interact with right objects in the right order.

C. Ablation Studies

In the proposed GSTLO framework, the agent uses FF of learned subgoals to visit discovered important states corresponding
to different subgoals, which is motivated by improving sample efficiency. In order to verify the advantage of using FF here,
compared with GSTLO, we evaluate a modified framework where FF is replaced by options and every option is learned to
achieve a different subgoal. In evaluations of this section, the comparisons are conducted in letter and room environments,
where the maps in letter-1 and letter-2 environments have the sizes of 7× 7 and 11× 11, respectively, and the map in room
environment has the size of 11× 11. The evaluation metric is the accuracy of learned subgoals. As shown in Figure 11, we can
see that GSTLO which uses FF of learned subgoals achieves higher accuracy of grounded subgoals, showing its advantage of
sample efficiency.

In addition, we also conduct the ablation study on the exploration policy πexp. As introduced in Section IV-C2, πexp is
built by a GRU-based network and trained by binary episodic rewards of completing the given task. We compare this design
choice of πexp with a random policy, where the agent will use a uniformly random selection of actions to finish the rest of
episode after reaching the working node vw on the reconstructed FSM. The other parts of GSTLO framework are not changed.
The comparison is shown in Figure 11. The exploration policy πexp in GSTLO achieves higher sample efficiency. This is



because πexp in GSTLO is trained by the rewards of successfully completing the given task and hence the collected trajectories
contain more states closer to important states of subgoals, but the trajectories collected by random policy may cover state space
uniformly.

D. Algorithms

Algorithm 1 Grounding subgoals via online RL

1: The given task φ; the set of subgoal symbols G; task FSM Mφ; the reconstructed FSM M̂φ; the working node vw; state
representation function fθ; set of discovered important states ŜI ; first-occupancy features (FF) of discovered important states
Fϑ; the exploration policy πexp; the importance function for detecting important states L̃ω; the pre-processing function for
computing MCFR preFR; the positive and negative buffers BP and BN ; training period T ; hyper-parameter K for updating
working node vw;

2: Initialize M̂φ and set working node vw at v0;
3: for p = 1, 2, . . . do
4: % Collect a trajectory τ
5: Initialize the environment;
6: On M̂φ, obtain discovered important states along the path from v0 to the working node vw and store them as

ŝ = [ŝ1, . . .];
7: for ŝi ∈ ŝ do
8: Guide the agent to reach ŝi by using FF to select every action, i.e., at = argmaxa∈A Fϑ,i(st, a) where the index i

denotes the index of discovered important state in ŜI ;
9: end for

10: Use the exploration policy πexp to finish the rest of this episode;
11: Store the collected trajectory τ into BP or BN according to the label of task completion;
12: % Training part (conducted periodically)
13: if p mod T == 0 then
14: % Discovering important states
15: Update the state representation fθ with NCE loss;
16: Select trajectories from BP and BN which go through states in ŝ;
17: Compute MCFR of every trajectory by using function preFR;
18: Formulate contrastive learning objective in (5) and train the importance function L̃ω;
19: if a new important state ŝn is discovered by trained L̃ω then
20: Add ŝn into ŜI and create a new index of learned subgoal accordingly;
21: end if
22: % Training FF of discovered important states
23: Sample transition tuples from BP and BN

24: Compute target values for FF in (7);
25: Train Fϑ with the objective in (8);
26: % Training the exploration policy
27: Sample trajectories from BP and BN

28: Use PPO to train πexp with labels of task completion as rewards
29: end if
30: if no new important states is discovered for K iterations then
31: % Update the reconstructed FSM M̂φ

32: The working node vw is fully discovered and removed from the frontier Vf ;
33: Expand M̂φ by adding new nodes to vw with new important states discovered during which the working node is

vw, and these new nodes are also added to the frontier set Vf ;
34: A new working node is randomly selected from Vf ;
35: end if
36: end for

E. Model Architecture

We build neural network architectures for state representation function fθ, importance function L̃ω , FF of important states Fϑ

and the exploration policy πexp. Since the observation of every environment is non-symbolic and image-based, in the models of
fθ,Fϑ and πexp, we use different convolutional neural network (CNN) modules to pre-process the input image and produce



an embedding vector for the downstream processing. The size of the CNN module is determined by the observation space
of the environment. In letter/room domain with map size of m×m, we used a 3-layer convolutional neural network (CNN)
which have 16, 32 and 64 channels with stride of 1, respectively, and the kernel size is chosen as l ∈ {2, 3, 4} where m is
dividable by l. In MiniHack environment, the CNN module is the same as the classical CNN for deep RL proposed in [22],
where the first convolutional layer has 32 channels with kernel size of 8 and stride of 4, the second layer has 64 channels with
the kernel size of 4 and stride of 2 and the third layer has 64 channels with the kernel size of 3 and stride of 1. The CNN
module produces an embedding vector with the size of 512.

Regarding fθ, the state representation has 64 dimensions in letter/room environments and has 256 dimensions in the MiniHack
environment. The importance function L̃ω has three fully connected layers with 64 neurons in each layer. Regarding FF Fϑ,
following the CNN module introduced above, it has three fully connected layers with 64 neurons in first two layers, where
the final layer has the same size of number of subgoals |G|, producing the predicted FF of important states corresponding to
subgoals.

The exploration policy πexp is a GRU-based policy, whose architecture for CNN module is introduced above. In πexp, the
hidden dimension of GRU module is 64 for letter/room environments and 256 for the MiniHack environment. The outputs of
πexp consist of action and predicted value, which are conditioned on both the hidden state and the embedding vector of input
image for the current state.

In Algorithm 1, the training period T is 5 for every environment, and the period K for updating the working node vw is 20
for every environment. The hyperparameters of the PPO algorithm for training the exploration policy πpi is presented in Table I.

TABLE I
HYPERPARAMETERS OF PPO

Hyperparameter Value
Env. steps per update 1024

Minibatch size 256
Discount 0.995

Satisfaction Reward RF 10
Optimizer Adam

Learning rate 3× 10−4

GAE-λ 0.95
Entropy coefficient 0.01

Value loss coefficient 0.5
Gradient clipping 1.0
PPO clipping (ϵ) 0.2
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