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Abstract. The advantages of using an optimization approach with superstructure in the 

synthesis of water networks in industrial plants are well known, among which we can mention: 

(1) capacity to assess a large number of structural and operational alternatives, 

simultaneously, (2) possibility of automation to a higher level the synthesis procedure and (3) 

ability to deal efficiently with many issues, such as process streams constraints, etc. However, 

this approach does not eliminate inherent nonlinearities and the transparence and visualization 

of the synthesis procedure is almost completely lost. This paper proposes a systematic way to 

link the methodology of the Water Sources Diagram (WSD) with a mathematical programming 

procedure for the maximization of water reuse in total site industrial plants. The results 

obtained show that the hybrid approach is extremely useful for the general understanding of 

the problem and for the determination of a better result. 

 

Keywords: Hybrid Approach, Water Sources Diagram, Water Networks.  

 

 

1. INTRODUCTION 

 

 With the development and expansion of the computer's processing power, it has become 

possible, especially over the last decade, to develop software that were previously unfeasible in 

view of the computational effort required to perform the calculations. Tasks which were 

performed only on clusters, started also, running on ordinary desktops (Stephanopoulos & 

Reklaitis, 2011). 

 

 As a result, both mathematical programming methods and graphical and heuristic based on 

algorithms, could be inserted in the industrial environment through the implementation of 

effective computational tools, with respect to the use, cost of implementation and the associated 

economic return (Ravnjak et al. 2004). However, the search for the global optimum and more 

efficient and robust techniques have somewhat slowed the development of applications with 

practical use in industry. An example of this can be noticed by the fact that the amount of 

software for the integration of water networks is much smaller in comparison to the available 

computer packages for the integration of heat exchangers networks (Klemeš, 2013). This can 
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be explained by a historical ramification between different methodologies that aim at the 

constant search for better and better results. 

 

 From the mid-1990s to the present day we have seen a predominance in the use of 

techniques based on Water Pinch methodology for the integration of water networks in industry. 

One explanation for this is the smaller capital investment needed (Hamaguchi & Park, 2009) 

and the fact that the type of techniques based on mathematical programming is considered as a 

"black box" because it provides the engineer with few perspectives on how the water reuse 

network is constructed (Yoo et al. 2006). Despite the greater use of water-based Pinch methods, 

mathematical programming approaches have shown better results when the process presents 

multiple contaminants (Mehrdadi et al. 2009). On the other hand, graphical and algorithmic-

heuristic methods tend to facilitate the understanding and decision making of process engineers 

(Karthick et al. 2010). Despite the divergences between these approaches, there seems to be a 

consensus that a computerized analysis guided by in-depth knowledge of the process can 

provide a broader spectrum of solutions and better insights about a potential reconfiguration of 

the water network (Jacob et al. 2002).  

  

 Thinking about the practicality and applicability of algorithmic-heuristic methods without 

neglecting the robustness and precision of mathematical programming strategies, the approach 

presented herein shows that combine both methods may be the way to get reliable results 

through a practical and understandable for both industry and academia. This paper propose the 

use of WSD method (Gomes et al. 2013) with a mathematical programming model to minimize 

the use of freshwater between units of the same industry or among different sites of an industrial 

hub. The procedure was automated by the implementation in a software package written in 

VBA/EXCEL which interfaces with GAMS optimization packages. 

 

2. THE TOTAL SITE WSD APPROACH 

 

 The Water Sources Diagram is probably one of the most promising algorithmic-heuristic 

procedures for the synthesis and optimization of water consumption in industrial processes. It 

meets the criteria of simplicity, industrial applicability, efficiency and economy, being one of 

the main tools in the management of industrial waters (E. E. da S. Calixto, 2011). The field of 

application of WSD is vast. It has been successfully employed in regeneration processes 

(Karthick et al., 2010), integration between water and thermal networks (Moreira e Silva, 2012), 

in the generation of wastewater treatment networks (Hungaro, 2005), Oil refineries (Ulson de 

Souza et al. 2009), in batch processes (Immich et al. 2007), in the pulp and paper industry 

(Francisco et al. 2014) and in the textile industry (Ulson de Souza et al. 2010). 

 

 Even providing good results in all these types of application, WSD algorithm has some 

issues when dealing with problems which have multiple contaminants in their process streams. 

In this case, WSD is unable to deal with multiples contaminants simultaneously, forcing the 

choice of one of them (the most restrictive one in terms of concentration), usually called the 

reference contaminant, to perform de calculations. For this reason, in some cases, the final 

network present violations in the maximum inlet and outlet concentrations of some 

contaminants of one or more operations. To eliminate this violation(s), a last step is required in 

the WSD procedure. It is carried out by increasing the freshwater consumption or by redirecting 

the outlet split stream that is upstream of the operation where the violation is observed. The 

other concept is related to the identification of the reference operation, i.e, the head operation 
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which requires the cleaner water from an external water source and distributes freshwater for 

the rest of operations in the process.  

 In this context, over the years some efforts have been made to circumvent and avoid most 

WSD algorithm issues. One of them is the one proposed by (Calixto et al. 2015) which is related 

with the decomposition of the macro problem in small ones called “blocks”. The WSD is 

applied to each block and then combinatorial analysis is performed to generate all the flowsheet 

possibilities and the operations which may belong to a given block. Some of these flowsheets 

will eventually present violations and other won’t. The one that has no violation and present 

the minimum freshwater consumption is chosen flowsheet.  

  

 The idea of block decomposition may be applied to a set of operations of the same plant, 

different plants of the same site or even different sites of the same industrial hub (e.g, water 

reuse between a petrochemical and a refinery industry). A is shown in Figure 1. 

 

 
Figure 1 - Decomposition Algorithm Flowsheet. Adapted from Calixto et al. (2015). 

 

For a given set of operations, units or even industry sites, the problem is decomposed 

based on a mathematical combination to generate all the flowsheets: 

𝐶𝑘
𝑛 = 𝐶𝐶 =

𝑛!

𝑘! (𝑛 − 𝑘)!
 (1) 
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Where,  

𝑘 = 𝑛𝑏 − 1 

𝑛 = 𝑁𝑜𝑝 − 𝑁𝑏 
(2) 

Where: 𝑁𝑜𝑝 is the total number of operations and 𝑁𝑏 is the number of blocks used to decompose 

the master problem. The generated flowsheets are arranged in terms of the lower freshwater 

consumption to become the candidate flowsheets and compose the final network. To identify 

all possible combinations of operations we can have inside each block a binomial coefficient is 

used (𝑛 +
𝑘

𝑛
− 1) (Feller, 1950). There is only one reference operation for each decomposed 

block. Therefore, as the reference operations are fixed in the block we nee to know the 

combinations of the other operations that are not reference. It is represented by the following 

binomial coefficient: 

𝑁𝑜𝑝𝑡 = (
𝑁𝑜𝑝 + 𝑁𝑏 − 𝑁𝑏 − 1

𝑁𝑜𝑝 − 𝑁𝑏
) = (

𝑁𝑜𝑝 − 1

𝑁𝑜𝑝 − 𝑁𝑏
) 

=
(𝑁𝑜𝑝 − 1)!

(𝑁𝑜𝑝 − 𝑁𝑏)! [(𝑁𝑜𝑝 − 1) − (𝑁𝑜𝑝 − 𝑁𝑏)]!
 

(3) 

    

 The relation between the number of blocks and the number of operations has an impact in 

the computational effort, which can lead to a combinatorial explosion. It is represented by 

following equation: 

𝑁𝐶𝐶
𝑡𝑜𝑡𝑎𝑙 = ∑ ∑ 𝐶𝐶𝑖,𝑗 = ∑ ∑

(𝑁𝑜𝑝 − 𝑁𝑏)!

(𝑛𝑏𝑖,𝑗
− 1) ! [(𝑁𝑜𝑝 − 𝑁𝑏) − (𝑛𝑏𝑖,𝑗

− 1)] !

𝑁𝑏

𝑖=1

𝑁𝑜𝑝𝑡

𝑗=1

𝑁𝑏

𝑖=1

𝑁𝑜𝑝𝑡

𝑗=1

 (4) 

  

where i represents the blocks going from 1 to Nb and j the options going from 1 to Nopt. It is 

worth noting that the number of blocks must not exceed the number of operations in a 

process 𝑁𝑏 ≤ 𝑁𝑜𝑝. 

 

3. MATHEMATICAL MODEL OF WATER NETWORKS SYSTEMS 

 

3.1. Water Balance through the water-using units 

 

 The nonlinear model used to describe the problem was initially proposed by Faria & 

Bagajewicz (2010) and it was later adapted in the work of Calixto (2016). It is represented by 

the following set of equations: 

 

∑ 𝐹𝑊𝑈𝑤,𝑢 +

𝑤

∑ 𝐹𝑈𝑈𝑢∗,𝑢 + ∑ 𝐹𝑅𝑈𝑟,𝑢

𝑟𝑢∗≠𝑢

= ∑ 𝐹𝑈𝑆𝑢,𝑠 + ∑ 𝐹𝑈𝑈𝑢,𝑢∗

𝑢∗≠𝑢𝑠

+ ∑ 𝐹𝑈𝑅𝑢,𝑟 ∀𝑢

𝑟

 
(5) 

 

where 𝐹𝑊𝑈𝑤,𝑢 is the freshwater flow rate from an external water source w and that is sent to a 

unit u, 𝐹𝑈𝑈𝑢∗,𝑢 is the flow rate between units u* and u, 𝐹𝑈𝑈𝑢,𝑢∗  is the flow rate between units 

u and u*, 𝐹𝑅𝑈𝑟,𝑢 is the flow rate from a regeneration process r to a unit u, 𝐹𝑈𝑆𝑢,𝑠 is the flow 
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rate from a unit u to a sink s and 𝐹𝑈𝑅𝑢,𝑟 is the flow rate from a unit u to a regeneration process 

r. 

3.2. Water balance through the regeneration units 

 

The water mass balance for the regeneration units are as follows: 

 

 

∑ 𝐹𝑊𝑅𝑤,𝑟 +

𝑤

∑ 𝐹𝑈𝑅𝑢,𝑟 + ∑ 𝐹𝑅𝑅𝑟∗,𝑟

𝑟∗≠𝑟𝑢

= ∑ 𝐹𝑅𝑈𝑟,𝑢 + ∑ 𝐹𝑅𝑅𝑟,𝑟∗

𝑟∗≠𝑟𝑢

+ ∑ 𝐹𝑅𝑆𝑟,𝑠 ∀𝑟

𝑠

 
(6) 

 

where 𝐹𝑊𝑅𝑤,𝑟 is the freshwater flow rate from an external source w that is sent to a 

regeneration process r, 𝐹𝑅𝑅𝑟∗,𝑟 is the flow rate from the regeneration process r* to a 

regeneration process r and 𝐹𝑅𝑆𝑟,𝑠 is the flow rate from a regeneration process r to a sink s. 

 

3.3. Contaminant balance through the water-using units 

 

 The contaminant mass balance in the water-using operations is represented by the 

following equations: 

 

 

∑(𝐶𝑊𝑤,𝑐𝐹𝑊𝑈𝑤,𝑢) +

𝑤

∑ (𝐹𝑈𝑈𝑢∗,𝑢,𝑐𝐶𝑢∗,𝑐
𝑜𝑢𝑡)

𝑢∗≠𝑢

 

+ ∑(𝐹𝑅𝑈𝑟,𝑢,𝑐𝐶𝑅𝑟,𝑐
𝑜𝑢𝑡) + Δ𝑀𝑢,𝑐 = ∑ (𝐹𝑈𝑈𝑢,𝑢∗,𝑐𝐶𝑢,𝑐

𝑜𝑢𝑡)

𝑢∗≠𝑢𝑟

 

+ ∑(𝐹𝑈𝑆𝑢,𝑠,𝑐𝐶𝑢,𝑐
𝑜𝑢𝑡) + ∑(𝐹𝑈𝑅𝑢,𝑟,𝑐𝐶𝑢,𝑐

𝑜𝑢𝑡)

𝑟

 ∀𝑢, 𝑐

𝑠

 

(7) 

  

where 𝐶𝑊𝑤,𝑐 concentration of contaminant c in the external water source w, Δ𝑀𝑢,𝑐 is the mass 

load of contaminant c from unit u, 𝐶𝑢,𝑐
𝑜𝑢𝑡 is the concentration of contaminant c at the outlet of 

unit u and 𝐶𝑅𝑟,𝑐
𝑜𝑢𝑡 is the concentration of contaminant c not treated at the outlet of the 

regeneration unit r.    

 

3.4. Maximum inlet concentrations at the water-using units 

 

The following equation represents the limiting concentrations at the water-using units. 

 

 

 

∑(𝐶𝑊𝑤,𝑐𝐹𝑊𝑈𝑤,𝑢) +

𝑤

∑ (𝐹𝑈𝑈𝑢∗,𝑢,𝑐𝐶𝑢∗,𝑐
𝑜𝑢𝑡)

𝑢∗≠𝑢

 

+ ∑(𝐹𝑅𝑈𝑟,𝑢,𝑐𝐶𝑅𝑟,𝑐
𝑜𝑢𝑡) ≤ 𝐶𝑢,𝑐

𝑖𝑛,𝑚𝑎𝑥

𝑟

 

× (∑ 𝐹𝑊𝑈𝑤,𝑢 + ∑ 𝐹𝑈𝑈𝑢∗,𝑢 +

𝑢∗≠𝑢

∑ 𝐹𝑅𝑈𝑟,𝑢

𝑟𝑤

) ∀𝑢, 𝑐 

(8) 

       

where: 𝐶𝑢,𝑐
𝑖𝑛,𝑚𝑎𝑥

 is the maximum allowed concentration of contaminant c at the inlet of unit u. 
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3.5. Maximum outlet concentrations at the water-using units 

 The maximum outlet concentration at the water-using units is guaranteed by the following 

expression: 

 

 𝐶𝑢∗,𝑐
𝑜𝑢𝑡 ≤ 𝐶𝑢,𝑐

𝑜𝑢𝑡,𝑚𝑎𝑥 ∀𝑢, 𝑐 (9) 
 

where 𝐶𝑢,𝑐
𝑜𝑢𝑡,𝑚𝑎𝑥

 is the maximum allowed concentration of contaminant c at the outlet of unit u. 

 

3.6. Flow rate through the regeneration process 

 

 The following equation represents de capacity of the regeneration process: 

 

 𝐹𝑅𝑟 = ∑ 𝐹𝑊𝑅𝑤,𝑟 + ∑ 𝐹𝑈𝑅𝑢,𝑟 +

𝑢

∑ 𝐹𝑅𝑅𝑟∗,𝑟

𝑟∗≠𝑟𝑤

 ∀𝑟 (10) 

 

where 𝐹𝑅𝑟 is the flow rate of the regeneration process r. 

 

3.7. Contaminant balance at the regeneration process 

 

The contaminant mass balance at the regeneration is represented by the following equations:  

 

 

𝐹𝑅𝑟,𝑐𝐶𝑅𝑟,𝑐
𝑖𝑛 = ∑(𝐹𝑊𝑅𝑤,𝑟𝐶𝑊𝑤,𝑐) +

𝑤

∑(𝐹𝑈𝑅𝑢,𝑟𝐶𝑢,𝑐
𝑜𝑢𝑡)

𝑢

+ ∑ (𝐹𝑅𝑅𝑟∗,𝑟𝐶𝑅𝑟∗,𝑐
𝑜𝑢𝑡)

𝑟∗≠𝑟

 ∀𝑟, 𝑐 
(11) 

 𝐶𝑅𝑟,𝑐
𝑜𝑢𝑡 = 𝐶𝑅𝑟,𝑐

𝑖𝑛 (1 − 𝑋𝐶𝑅𝑟,𝑐) + 𝐶𝑅𝐹𝑟,𝑐
𝑜𝑢𝑡𝑋𝐶𝑅𝑟,𝑐 (12) 

 

where 𝐶𝑅𝑟,𝑐
𝑖𝑛  is the concentration of contaminant c at the inlet of a regeneration process r, 

𝐶𝑅𝐹𝑟,𝑐
𝑜𝑢𝑡 is the outlet concentration of contaminant c at the regeneration process r e 𝑋𝐶𝑅𝑟,𝑐 is 

the binary parameter which indicates if contaminant c is treated by regeneration process r. It is 

considered that 𝐶𝑅𝐹𝑟,𝑐
𝑜𝑢𝑡(the concentration of the treated contaminant) is known and constant. 

 

3.8. Maximum concentration at the inlet of the regeneration processes 

 The limiting inlet concentration at a regeneration process is represented by the following 

equation:  

  

 𝐶𝑅𝑟,𝑐
𝑖𝑛 ≤ 𝐶𝑅𝑟,𝑐

𝑖𝑛,𝑚𝑎𝑥  ∀𝑟, 𝑐 (13) 

   

3.9.  Maximum allowed discharge concentration 

 

 All kinds of sinks impose the discharges limits. The following equation represents this 

constraint. 

 

∑(𝐹𝑈𝑆𝑢,𝑠,𝑐𝐶𝑢,𝑐
𝑜𝑢𝑡) + ∑(𝐹𝑅𝑆𝑟,𝑠,𝑐𝐶𝑅𝑟,𝑐

𝑜𝑢𝑡)

𝑟𝑢

  

≤ 𝐶𝑠,𝑐
𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒,𝑚𝑎𝑥

(∑ 𝐹𝑈𝑆𝑢,𝑠 +

𝑢

∑ 𝐹𝑅𝑆𝑟,𝑠

𝑟

) ∀𝑠, 𝑐 

(14) 
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where 𝐶𝑠,𝑐
𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒,𝑚𝑎𝑥

 is the maximum allowed discharge in the sink s.  

 

3.10. Objective Function 

 

 The objective functions consider the minimization of clean water consumption and 

of the total annual cost. 

      

Minimum freshwater consumption 

 𝑀𝑖𝑛 ∑ (∑ 𝐹𝑊𝑈𝑤,𝑢 +

𝑢

∑ 𝐹𝑊𝑅𝑤,𝑟

𝑟

)

𝑤

 (31) 

Minimum total annual cost 

 

 

𝑀𝑖𝑛 [𝑂𝑃 (∑ 𝛼𝑤 (∑ 𝐹𝑊𝑈𝑤,𝑢 +

𝑢

∑ 𝐹𝑊𝑅𝑤,𝑟

𝑟

)

𝑤

+ ∑ 𝑂𝑃𝑁𝑟𝐹𝑅𝑟

𝑟

) − 𝑎𝑓 𝐹𝐶𝐼] 

(32) 

where 𝑂𝑃𝑁𝑟 are the operation cost of the regeneration processes, OP is the hours of operation 

per year. The last term of the equation is the annualized capital cost, where FCI is the fixed 

capital cost and 𝑎𝑓is any factor for the annualization of the capital cost (it is usually 1/N, where 

N is the number of years of deprecation). The fixed capital of investment is calculated using the 

sum of the sum of the piping costs and the new regeneration units’ costs as follows:  

 

 

𝐹𝐶𝐼 = ∑ (∑ 𝑌𝑊𝑈𝑤,𝑢𝐶𝐶𝑊𝑈𝑤,𝑢 +

𝑤

∑ 𝑌𝑈𝑅𝑢,𝑟𝐶𝐶𝑈𝑅𝑢,𝑟

𝑟𝑢

+ ∑ 𝑌𝑈𝑈𝑢,𝑢∗𝐶𝐶𝑈𝑈𝑢,𝑢∗

𝑢∗≠𝑢

+ ∑ 𝑌𝑈𝑆𝑢,𝑠𝐶𝐶𝑈𝑆𝑢,𝑠

𝑠

) 

+ ∑ (∑ 𝑌𝑊𝑅𝑤,𝑟𝐶𝐶𝑊𝑅𝑤,𝑟 +

𝑤

∑ 𝑌𝑅𝑅𝑟,𝑟∗𝐶𝐶𝑅𝑅𝑟,𝑟∗ +

𝑟∗≠𝑟

∑ 𝑌𝑅𝑈𝑟,𝑢𝐶𝐶𝑅𝑈𝑟,𝑢

𝑢𝑟

+ ∑ 𝑌𝑅𝑆𝑟,𝑠𝐶𝐶𝑅𝑆𝑟,𝑠 +

𝑠

𝐶𝐶𝑅𝑟(𝐹𝑅𝑟)0,7) 

(33) 

 

that uses a set of capital costs parameters to assign cost to the connections 𝐶𝐶𝑊𝑈𝑤,𝑢, 𝐶𝐶𝑊𝑅𝑤,𝑟 

, 𝐶𝐶𝑈𝑈𝑢,𝑢∗ , 𝐶𝐶𝑈𝑆𝑢,𝑠, 𝐶𝐶𝑈𝑅𝑢,𝑟, 𝐶𝐶𝑅𝑈𝑟,𝑢, 𝐶𝐶𝑅𝑅𝑟,𝑟∗ and 𝐶𝐶𝑅𝑆𝑟,𝑠 and also to the regeneration 

process, 𝐶𝐶𝑅𝑟. 

 

4. CASE STUDY 

 

 To evaluate the both decomposition and mathematical programming approaches we used 

a case study proposed by Leewongtanawit & Kim (2008). The process contains ten units and 

four contaminants with two external water sources making available 0 ppm and 10 ppm. After 

applying the decomposition procedure, the resulting flowsheet is shown in Figure 2. The 

problem was decomposed in three blocks and the final flowsheet is a recomposition of the best 
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alternatives of operation distributed for each one. A total amount of 614,18 t/h of freshwater 

was obtained. 

To analyze the robustness of the mathematical programming model the equations 

presented herein were implemented in the same case study. GAMS/BARON optimization 

package was used. Figure 3 shows the resulting flowsheet.  
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Figure 2 - Final Flowsheet generated using the decomposition approach. 
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Figure 3 -Flowsheet for the water network generated by the optimization procedure. 

A total flow rate of 612,56 t/h was obtained. A difference of 15,15 % is observed 

when we compare with the decomposition procedure. 

 

5. CONCLUSIONS 

 

 This paper shows two robust procedures to get a minimum freshwater consumption for a 

water allocation problem. WSD procedure was successfully applied in the decomposition 

approach resulting in a consumption closer to that from mathematical programming. Both 

methodologies may be linked using the result from the decomposition approach as a initial 

guess for the optimization model. One of the disadvantages of the decomposition procedure is 

the fact that it is very time consuming if it is done “by hand”. For future work, we propose an 

automation of the procedure and a complete integration with the mathematical model.    
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