
EasyChair Preprint
№ 7230

Joint Optimization Scheme of Multi-Service
Replication and Request Offloading in Mobile
Edge Computing

Chenxi Li, Guanghui Li, Shihong Hu, Chenglong Dai and Dong Li

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

December 17, 2021

Joint Optimization Scheme of Multi-service
Replication and Request Offloading in Mobile

Edge Computing

Chenxi Li, Guanghui Li*, Shihong Hu, Chenglong Dai, and Dong Li

School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi,
Jiangsu 214122, China

corresponging author: ghli@jiangnan.edu.cn

Abstract. To meet the ever-increasing service quality requirements of
end-users and enable delay-sensitive applications to be completed within
a tolerable time, Mobile Edge Computing (MEC) offloads the request
of users to the edge servers that are closer to the end equipment. How-
ever, deploying a single service replication in an appropriate edge node
is difficult to deal with all requests of users for multiple services. In ad-
dition, after the service replication is deployed at the edge node, a cor-
responding user request offloading scheme is also required. Considering
the heterogeneity of edge servers, this paper studies the joint optimiza-
tion problem of multi-service replication and request offloading. Firstly,
we present an edge computing architecture with multi-service replica-
tion, and define the multi-service replication and request offloading as
a joint optimization problem. Secondly, a multi-service replication algo-
rithm called Multireplicas Greedy Best (MGB) is proposed to solve the
joint optimization problem. Finally, the simulation experiments are car-
ried out. The experimental results show that the proposed algorithm can
effectively reduce the overall delay compared with the random strategy,
the nearest node offloading strategy, the particle swarm algorithm, and
the greedy algorithm.

Keywords: Mobile Edge Computing · Service Replication· Request Of-
floading· Multi-objective Optimization.

1 Introduction

In recent years, Internet of Things (IoT) technology has developed rapidly[1,2].
Statistics show that there are about 30 billion IoT devices in the world by 2021.
Furthermore, it is estimated that by 2025, mobile IoT devices will grow to 75
billion[3]. Many time-sensitive applications on IoT devices require fast and safe
services, such as video surveillance, traffic flow mapping, personalized multi-
media, and data sharing. These requirements usually need interactive behavior
with high Quality of Service(QoS)[4], but most of the embedded processors and
storage capacity of IoT devices have limited resources and cannot be used for
large-scale computing, storage, and communication[5]. The traditional method is

2 C. Li et al.

to upload all the requirements to the cloud server data center for processing. As a
typical example, Mobile Cloud Computing (MCC) was introduced as a solution.
MCC is a resource scheduling framework using a resource-sharing model, which
can solve the problem of insufficient resources used by IoT devices, especially
those applications that require a lot of computing resources.

Supporting mobile applications through public Wi-Fi networks has received
significant research attention. The 5th Generation (5G) Mobile Communication
Technology and mobile IoT devices (i.e., mobile phones, tablets) have promoted
delay-sensitive services such as AR/VR, healthcare, intelligent transportation,
and location positioning[4]. However, MCC is not enough to support the commu-
nication and computing of IoT devices in 5G. Therefore, Mobile Edge Computing
(MEC) has been attached to great importance in recent years. The core idea of
MEC is to offload some requests to edge servers instead of offloading them to
the cloud server for processing. In the MEC architecture, computing and storage
resources are usually deployed at the edge of the network, and edge servers are
deployed in the wireless access network. The edge nodes can be any computing
resource of the network to offload the user requests. In this case, the offloading
request from the user equipment to each service replication can be served by the
nearest edge server first, thereby avoiding long-distance network transmission.

A challenging problem in the MEC system is the scarcity of resources. Com-
pared with cloud servers, the resources of edge nodes are limited. Therefore, it
is an unworkable scheme to run large-scale applications on a single edge node in
MEC. Moubayed et al.[6] proposed an effective way to solve this problem, allow-
ing users to run their application requests on multiple edge nodes. The essential
issues that need to be resolved are to find the optimal replication location of the
service on multiple nodes and find the location where users request to offload.

In the field of cloud computing, Thai et al.[7] proposed some service repli-
cation strategies, which tended to place service replications on the cloud. Com-
pared with cloud servers, edge nodes are more widely distributed in the network
topology, and the storage capacity of edge nodes is more limited. Therefore,
the strategies proposed by Thai cannot be applied directly. Many studies have
discussed service replication placement strategies. Naas et al.[8] proposed some
service placement strategies in the edge computing environment. However, these
strategies only focused on placing a single service replication to the appropri-
ate edge node. When there are multiple data consumers from different locations
requesting the same service, a single service replication cannot meet the la-
tency requirements of all consumers. Multi-service replication was mentioned by
the work in[9], the authors investigated multi-service replication as a stochastic
game, but they ignored the user-requested offloading problem.

To reduce user request latency under the framework of MEC, researchers have
done a lot of work. It can be roughly divided into two categories: One category is
to optimize the scheme of service replications. For example, Naas constructed the
replication problem as a Generalized Assignment Problem (GAP)[8], which used
edge node location information to reduce the total delay. The second category
is to find the optimal edge nodes to offload user requests.

Joint Optimization Scheme of ... 3

There is a big difference between a single-user scenario and a multi-user sce-
nario in reality. Making an optimal offloading decision under the condition of
considering the resource allocation of edge nodes is a complex problem. How-
ever, they ignored the impact of edge node resource allocation on computation
offloading.

The multi-service placement problem has been proven to be NP-hard, and
use CPLEX MILP solver to find out the best replication placement will take a
lot of time [8]. Therefore, to effectively solve the problem, we propose a joint op-
timization scheme of multi-service replication and request offloading mechanism
based on an enhanced greedy algorithm. This mechanism realizes the optimal
allocation of edge node resources, and makes an offloading calculation decision.

Our main contributions of this study are highlighted as follows:

(1) Considering the diversity of user requests and the heterogeneity of edge
nodes in MEC, we model the multi-replication service placement problem as
a joint optimization problem of edge node service replication and user request
offloading.

(2) With the primary goal of minimizing total delay and algorithm execution
time, we propose a heuristic algorithm Multireplicas Greedy Best (MGB) based
on an enhanced greedy strategy.

(3) We evaluate the performance of the proposed algorithm by simulation
experiments. The results show that MGB outperforms the baselines in terms of
the reduction of total delay and execution time.

2 Multi-Edge Computing System Model

The edge computing architecture proposed in this paper is shown in Fig.1. The
system consists of a remote cloud server, multiple edge nodes, and IoT devices.

Multi-replica edge computing architecture is a hierarchical structure. From
the bottom to the top, IoT devices encompass wireless end-users objects such
as sensors, robots, smartphones, and cameras, which are in the bottom layer.
These devices generate continuous and periodic service requests, which need to
be processed and stored in edge nodes or cloud servers. The middle layer above
the IoT device layer is the edge network layer. This layer is divided into two
parts: signal receiving and request processing. Edge nodes maintain computa-
tion services for users via various virtualization techniques (e.g., containers and
virtual machines). Due to the heterogeneity of edge nodes, the network condi-
tions and resources of edge nodes may be different. The request processing part
represents the physical infrastructure for processing the request, which contains
the physical machines called MEC nodes. Finally, there is a cloud layer com-
posed of cloud servers on top of the edge network layer. The cloud servers store
heterogeneous services and cover the geographic area where the edge nodes are
located. The edge nodes and IoT devices are connected via wireless networks.
Generally, services can be replicated at any edge node, and when an IoT device
generates a request, the request can be processed by the edge node.

4 C. Li et al.

data

Cloud
Network

Controller Service

DataResource

Management
Cloud

layer

Hardware

OS kernel

containers/virtual

machines

Hardware

OS kernel

containers/virtual

machines

Hardware

OS kernel

containers/virtual

machines

Hardware

OS kernel

containers/virtual

machines

User Request

Service Replication Service Replication

Edge

Network

layer

IOT

layer

Fig. 1. Multi-replica Edge Computing Architecture.

Heterogeneous edge nodes may include gateways(GW), Region Point of Pres-
ences (RPOPs), and Local Point of Presences (LPOPs), etc., denoted by C =
{C1, ..., Ck, ..., Cm}.In the rest of this paper, when referring to edge nodes, k
is used interchangeably with Ck to simplify the representation. The services
in the cloud server can be replicated on the edge node, which is marked as
S = {S1, ..., Si, ..., Sn}, and i will be used interchangeably with Si later when
referring to the service replication. IoT devices generate service requests, and
these services will be processed on edge nodes. The generated user requests are
denoted as R = {R1, ..., Rj , ...Rq}, and we use j interchangeably when referring
to request Rj . The service data block for service replication and user request is
denoted by datai, which is the unit block for data transmission.

The overall delay consists of the following three parts:

(1) Vik : The delay required for the service replication i to be replicated on
the edge node k. The edge nodes are usually heterogeneous, making the speed
at which they download the service replication from the cloud server different.
Therefore, the heterogeneity of edge nodes must be considered to calculate the
service replication time. It can be formulated as follows:

Joint Optimization Scheme of ... 5

Vik =
datai
δ

· tdik (1)

Here, tdik is the delay required for the edge node k to download the unit data
block of type i request from the cloud server, datai is the size of the replication
i transferred between cloud and edge, δ is the unit data block to be transmitted.

(2) Xik : The delay required to run the service i on the edge node k. Because
the edge node is heterogeneous, the delay of processing unit data on the edge
node is different, represented by tuk. λ is the impact ratio of data block size
to the service operation, which can be a given positive constant between [0,1]
according to the actual situation. The relationship between them is given as
follows:

Xik =
λdatai

δ
· tuk (2)

(3) Tijk : The delay required of the service i to offload the user request j at
the edge node k through wireless communication. The delay is proportional to
the total amount of data requested datai, and the delay is inversely proportional
to the wireless communication transmission rate wjk from the user request j to
the edge node k.

Tijk =
λdatai
wjk

(3)

The wireless communication transmission rate wjk can be represented by a
wireless transmission model based on Shannon–Hartley theorem[11], which is
shown in formula (4), where d represents the distance from the terminal device
to the edge, v indicates the path loss exponent, and P represents the current
device transmit power, h denotes the channel fading coefficient and ω0 represents
the Gaussian white noise power. Based on Shannon’s theorem, when a request
is offloaded to an edge node with bandwidth B, the transmission rate can be
expressed as:

wjk = B log2

(
1 +

P |h|2

ω0dϑjk

)
(4)

Therefore, the overall delay cost consists of the time required for the service
replication i to be replicated on the edge node k, the time required to run the
request i on the edge node k, and the user j to request service i at the edge
node k through the wireless communication link. It is worth noting that the
more service copies that are replicated on edge nodes, the more time it takes to
store services, and the time for users to request services may decrease; on the
contrary, if fewer service copies are replicated on edge nodes, the storage service
time will be reduced, but at the same time the user request service time may
increase.

There are multiple replication edge nodes in the edge computing architecture,
and there may be multiple options when the service is replicated. We set a

6 C. Li et al.

decision variable pik. Assuming that service i is stored in the cloud server, and
the data block is transferred to the edge node k during service replication. In
order to indicate the replicate state of service i on edge node k, the decision
variable pik is assigned binary value: when the service i is replicated on the edge
node k, pik = 1; otherwise, it is 0.

Furthermore, to indicate whether the user request j is offload to service i,
the decision variable qij is defined as follows: when qij = 1, it means that the
user j is to request the service i, and 0 otherwise.

Similarly, the decision variable rjk represents the situation that the request
j is processed on the edge node k. rjk = 1 means that the request j is processed
on the edge node k; otherwise, it is 0. Only when there is a service replication on
the edge node k, the request j can be processed on the edge node k. In addition,
for each user, the request only needs to flow to one edge node, so the following
condition should be satisfied:

K∑
k=1

rjk = 1 (5)

Based on the above discussion, we modle the joint optimization problem of
service replication and user request offloading as follows:

Minimize

K∑
k=1

pik · Vik +

J∑
j=1

I∑
i=1

K∑
k=1

qij · rjk · (Xik + Tijk) (6)

s.t.

I∑
i=1

dataipik ≤ stork,∀k = 1, 2, 3... (7)

K∑
k=1

rjk = 1 (8)

pik = 0,∀i,∀k : datai > stork, i = 1, 2, 3. . . , k = 1, 2, 3. . . (9)

The objective of this function is to find the optimal service replication and
user request offloading plan to minimize overall delay. The constraint (7) ensures
that the service replication stored on the edge node must be smaller than the
storage capacity stork of the edge node. Constraint (8) can guarantee that each
request is completely offloaded to an edge node. Constraint (9) indicates that
when the storage capacity of the service replication is greater than the storage
capacity of the edge node, no replication will perform at the current node.

Joint Optimization Scheme of ... 7

3 Joint Optimization Algorithm of Service Replication
and User Request Offloading

Service replication and user request offloading is a complex multi-objective opti-
mization problem, which involves a trade-off between two conflicting objectives.
This paper attempts to find an effective solution for this problem based on an
enhanced greedy strategy. This strategy is more efficient and can reduce the
total delay cost of service replication significantly.

The data transmission process of service replication and user request is shown
in Fig.1. Before services are replicated, the cloud server stores services which can
handle various user requests. In order to ensure that each user request can be
offloaded to edge nodes, the number of service replications should exceed the
number of user requests. At the same time, due to the limited storage capacity
of the edge node, it is necessary to determine whether the remaining storage
capacity of the edge node can accommodate a new one before replicating. We
traverse all edge nodes and create the array of ready-to-use service replication
solutions as ai.

After determining the location of the service replication at the edge node, the
user request needs to be offloaded to the edge node. The request generated by
IoT devices can be offloaded to the edge node through wireless communication.
In order to find the optimal edge node to offload the user request, an original
idea is offloaded the request to the closest edge node of this user. However,
there are two problems. One is that the nearest edge node may not replicate the
service; the other is that the computing capability of the edge node closest to the
user is uncertain. So it is necessary for each edge node to determine whether the
service can handle the offloading request and consider each edge node computing
capability.

We design a joint optimization algorithm for service replication and user
request offloading based on an enhanced greedy strategy in order to improve
efficiency while maintaining the quality of the solution. Algorithm 1 is the pro-
posed service replication algorithm. The first line of the algorithm traverses all
replication schemes and records all replication schemes as AL = {a1, a2, ..., an}.
Lines 2-12 iteratively calculate the delay time of each service replication scheme.
Before all the replicate schemes are traversed, the service delay time calculation
will be repeated. In each iteration, the user request offloading time is updated to
minimize total user request time according to Algorithm 2. Lines 6-8 determine
whether the current replicate plan exceeds the upper limit of the edge node stor-
age capacity. If it exceeds, no service replication will be performed. Finally, we
find the optimal replicate edge nodes.

After the algorithm determines the replicate location of all services, it also
needs to determine user request offloads to which edge node. This paper sets a
heuristic rule: all IoT users need to consider the current requesting users and the
remaining unallocated edge node users. We design an algorithm based on an en-
hanced greedy strategy called Multireplicas Greedy Best (MGB). The algorithm
runs in two stages: In the first stage, it determines the best replication location
among the edge nodes and finds the minimum replicate cost of the service on

8 C. Li et al.

the edge node. In the second stage, the algorithm considers which edge node to
offload the users request.

Algorithm 1 Optimal Multi-service Replication

Require: Set of edge nodes C, Service data size DATA, Edge node storage capacity
stor

Ensure: Optimal strategy of replication and overall delay
1: Enumerate all replication strategies AL = {a1, a2, ..., an}
2: for all ai ∈ AL do
3: for all k ∈ C do
4: Calculate the replicate delay Vik through Formula (1)
5: Call the Optimal Request Offloading algorithm
6: if

∑I

i
dataipik > stork then

7: The service can not replicate on edge nodes, so offload the user request to
the cloud server

8: end if
9: end for
10: Calculate the replication delay for all edge nodes V =

∑K

k
Vik

11: According to Formula (6) calculate the minimum overall delay
12: end for
13: Find the optimal multi-service replication strategy with the minimum overall delay

for all replications.

Algorithm 2 is the user request offloading algorithm. The input is the service
replication strategy of Algorithm 1, and the overall delay of all user requests is
output. Line 1 of the algorithm initializes the minimum offloading delay. Lines 2-7
describe the request offloading that takes into account the cost of communication
between users and edges. According to formulas (2) and (3), the edge nodes are
arranged according to the offloading delay and the service running delay. Line 8
indicates the offloading delay and the service running delay in an arrangement.
To choose among candidate replications the best node to offload the request,
lines 9-21 describe a feasible offloading solution for all user requests. To find these
solution, we first use greedy algorithm. However, the smallest offloading delay of
the user request for offloading may not be globally optimal in overall delay. So
we proposed MGB, which takes into account the smallest offloading delay node
and the second smallest offloading delay node. In MGB, we calculate the overall
delay of the smallest offloading delay node and the second smallest offloading
delay node. If the overall delay offloading at the second smallest offloading delay
node which is less than overall delay of the smallest offloading delay node, the
edge node with the second smallest delay will be offloaded.

Joint Optimization Scheme of ... 9

Algorithm 2 Optimal Request Offloading

Require: Replication strategies ai, Replication delay V , IoT user request R
Ensure: minimum offloading delay of all user request
1: Initialize minDelay = MaxV alue
2: Traverse all user requests R = {R1, ..., Rj , ..., Rq}
3: for all Rj ∈ R do
4: Determine whether there is a replication store in node, and offloading the service

when the edge node has a replication
5: According to Formulas (2), (3) calculate the offloading delay and the service

running delay Xik and Tijk

6: Calculate retOffloadingDelay[j] =
∑K

k=1

∑I

i=1
Xik + Tijk

7: end for
8: Arrange the retOffloadingDelay in order
9: for all Rj ∈ R do
10: Offloading the request Rj on edge node with the smallest delay in arrangement

retOffloadingDelay
11: Calculate OverallDelay = X + V +K
12: if OverallDealy < minDelay then
13: Take the current delay minDelay = OverallDealy
14: Remove the edge node from the replicated edge node list
15: else
16: Offloading the request on edge node with the second smallest delay in ar-

rangement retOffloadingDelay
17: Calculate OverallDelay = X + V +K
18: Take the delay minDelay = OverallDealy
19: Remove the edge node from the replicated edge node list
20: end if
21: end for
22: Find the optimal request offloading strategy with the minimum overall delay for

all requests

10 C. Li et al.

4 Simulation and Performance Evaluation

To verify the effectiveness of the MGB strategy, we conducted simulation ex-
periments. We compare the performance of the proposed algorithm with the
random algorithm, greedy algorithm, nearest edge node offloading algorithm,
and particle swarm algorithm.

4.1 Experimental Settings

The simulation experiments are conducted on an Intel 3.7 GHz Core i5 system
with 8 GB RAM. The simulation scenario includes a set of IoT devices, edge
nodes, and a cloud server infrastructure (as shown in Fig.1). The edge node
is composed of heterogeneous devices such as GW, RPOP, and LPOP. Like
literature [12]. This article sets the storage capacity of GW to 16GB, LPOP
storage capacity is set to 32GB, the storage capacity of RPOP is set to 128GB,
and the size of the cloud service center (Cloud Service, CS) is set to 128TB. As
shown in Table 1:

Table 1. The storage capacity of Nodes.

DataHost GW LPOP RPOP CS

Storage capacity 16GB 32GB 128GB 128TB

To verify the effectiveness of the multi-service replication strategy, a wireless
transmission model based on Shannon–Hartley theorem is used. To meet the
needs of real users, this article uses 5G wireless transmission parameters as the
wireless communication link. The channel bandwidth is denoted by B, assuming
that there is no significant change in an edge-computing architecture, which is
3GHZ. The transmit power is denoted by P , which is uniformly distributed in
the range of 100mW-320mW. Two different fading coefficients h are considered,
which are 1.0 and 1.1, respectively. In the same channel, the Gaussian white
noise power w conforms to the normal distribution. The consumption coefficient
v is fixed to 1 in the experiment. As shown in table 2:

Table 2. Parameters of Wireless Communication Link.

Notation Description Value

B wireless bandwidth 2MHz

P transmission power 1mW-3.2mW

h channel fading coefficient 1.0 and 1.1

w white Gaussian noise power Normal distribution X −N(0, 50)

v path loss exponent 1

At the same time, we set the communication delay among different edge
nodes as shown in Table 3.

Joint Optimization Scheme of ... 11

Table 3. Delay of Different Wireless Communication Links.

Channel Type IOT-GW IOT-LPOP IOT-RPOP IOT-CS GW-CS LPOP-CS RPOP-CS

Latency(ms) 5 10 20 100 5 10 20

4.2 Performance Index

The purpose of service replication and user request offloading in the edge com-
puting architecture is to provide users a better experience when they request.
Therefore, this experiment mainly evaluates two important indices for time-
sensitive applications, namely, the overall delay of the edge replication and the
execution time of MGB.

(1) Overall delay: This article defines the delay cost as the sum of the time
required for the service copy to be replicated on the edge node, the time required
to run the request on the edge node, and the time required for the user to request
service at the edge node through the wireless communication link.

(2) Execution time: The execution time refers to the time from the simulation
data generation to the completion of the service replication and user request
offloading.

We compare the MGB algorithm with the following four baselines:

– Random algorithm: The replications are placed randomly in all edge nodes,
and the user requests are offloaded randomly to all edge nods [13].

– The nearest edge node offload: This strategy offloads user requests to the
edge node which is closest to the user, regardless of the service replication
delay and edge node computing power [11].

– Greedy algorithm: Greedy algorithm is a classic heuristic algorithm, which
can effectively solve the NP-hard problem [14]. This strategy finds the best
offloading edge node for each user request as far as possible unless there is
no available edge node.

– Particle swarm algorithm: Particle swarm algorithm (PSO) uses particle
swarm optimization to perform user request offloading [15]. The algorithm
finds the optimal solution by simulating the migration activities of natural
bird groups. Each bird group represents a candidate solution to the optimiza-
tion problem. The parameter settings in PSO have a great influence on the
performance of the algorithm. Considering the execution time of the algo-
rithm and the quality of the solution, we set 100 as the number of iterations
and 0.5 as the maximum particle speed later in the experiment.

4.3 Experimental Results and Baselines

The total delay of various algorithms are shown in Fig. 2 when the number of
service replication is 6, 8, 10, and 20, respectively. The x-axis is the number of
offloading requests on the replicate service node, and the y-axis is the total delay
between the service replication and the request offloading.

12 C. Li et al.

(a) Repliaction=6 (b) Repliaction=8

(c) Repliaction=10 (d) Repliaction=20

Fig. 2. Overall Delay under Different Number of Replications.

For each algorithm, we run ten times to get the average value of the overall
delay time. It was found that when replication is 20, the MGB algorithm reduced
the delay by 41.6% compared with random replication for service offloading. In
addition, the MGB algorithm is reduced by 11.45%, which is 6.5% less than the
particle swarm algorithm, and 1.9% less than the naive greedy algorithm. This is
because the random algorithm does not consider the geographical distribution of
user requests, the delay of offloading, and the processing capabilities of different
edge nodes for services replication, so the delay is relatively high, and the nearest
edge node offloading algorithm only considers the distance between the user
request from the edge node. The PSO algorithm is a better solution, but the
PSO algorithm has too many parameters, which makes it difficult to adjust
those parameters quickly and effectively. The greedy algorithm can reach the
optimal solution in some cases, but in more cases, it may easy to fall into a
local optimal solution. In contrast, the MGB algorithm attempts to replicate
fewer services to edge nodes and uses an enhanced greedy algorithm to offload
user requests so as to avoid falling into a local optimum and greatly reduce the
delay time. Table 4 shows the overall delay reduction ratio of MGB vs. baselines.

Joint Optimization Scheme of ... 13

Where the second line represents the number of replications, and columns 2-5
give the delay reduction percentages compared with the baselines.

Table 4. Overall Delay Reduction Ratio MGB vs Baselines.

Baselines
Number of Replications

6 8 10 20

Random Algorithm 14.06% 23.84% 28.04% 41.60%

Nearest Node Offloading 10.13% 10.22% 13.64% 11.45%

PSO 6.68% 6.17% 7.43% 6.50%

Greedy Algorithm 4.54% 2.95% 2.53% 1.90%

Fig.3 shows the overall delay variation with the number of service replica-
tions. The x-axis is the number of user requests, and the y-axis is the overall delay
between service replication and request offloading. We use random algorithm to
replicate services and MGB algorithm to offload user requests. In Fig.3(a), we
plot the overall delay for user request J=6. As expected, the overall delay is
gradually decreasing until 9 service replications. However, after that point, the
overall delay increase gradually. This is because more service replications may
result in smaller user requests to offload, but too many service replications will
cause the replicate time to be too long, thereby increasing the overall delay. And
in Fig.3(b), the lowest latency is 14 service replications, when the user request
is 10. Therefore, it is necessary to comprehensively consider service replication
and user request offloading to reduce the overall delay time.

(a) User Request J=6 (a) User Request J=10

1500

1700

1900

2100

2300

2500

2700

2900

6 7 8 9 10 11 12 13 14 15 16 17 18 19

O
v
er

al
l

d
el

ay
 (

m
s)

1500

1700

1900

2100

2300

2500

2700

2900

3100

10 12 14 16 18 20 22 24 26 27 28 29

O
v
er

al
l

d
el

ay
 (

m
s)

Fig. 3. The Overall Delay Variation with the Number of Replications.

In Fig.4, the random algorithm, greedy algorithm and particle swarm algo-
rithm are selected as the baseline algorithm to compare the execution time with
the MGB algorithm. The x-axis is the number of service replications, and the
y-axis is the algorithm execution time. In the experimental setting, a total of
20 edge nodes have performed service replications. The results show that the
execution time of the random algorithm is the shortest. And the execution time

14 C. Li et al.

of the MGB algorithm is shorter, basically similar to the time of the random
algorithm and greedy algorithm. However, the particle swarm algorithm has the
longest execution time, especially when user requests is 20, the execution time
is one order of magnitude higher than MGB.

0

0.01

0.1

1

10

100

6 8 10 15 20

A
lg

o
ri

th
m

 e
x
ec

u
ti

o
n
 t

im
e

(m
s)

Number of requests

Random Algorithm Greedy Algorithm MGB PSO

Fig. 4. Comparison of Algorithm Execution Time.

5 Conclusion

In this paper, the service replication and user request offloading in the MEC
system is formalized as a joint optimization problem. Because the joint opti-
mization problem is an NP-hard problem, as the number of service replications
and user requests increase, the overhead of the optimization algorithm will in-
crease dramatically. In order to solve the problem efficiently, we proposed the
MGB algorithm and analyzed its performance. Our experiment compares the
MGB algorithm with baselines algorithm. The result shows that the MGB al-
gorithm has higher efficiency and can find a solution with lower overall delay
for the above mentioned joint optimization problem. In the future, we intend to
evaluate our algorithm in real scenarios. Also, we plan to develop multi-service
replication based mechanisms for capacity provisioning and resource planning in
edge computing systems.

Joint Optimization Scheme of ... 15

Acknowledgement

This work was supported by the National Natural Science Foundation of China
(No. 62072216)

References

1. Hu, S., Li, G.: Fault-Tolerant Clustering Topology Evolution Mechanism of Wireless
Sensor Networks. IEEE Access, 6, 28085-28096 (2018)

2. Chen, M., Wang, T., Ota, K., Dong, M., Liu, A.: Intelligent resource allocation
management for vehicles network: An A3C learning approach. Computer Commu-
nications, 151: 485-494 (2020)

3. Cisco Systems, http://https://www.cisco.com/c/zh cn.html. Last accessed 8 Aug.
2021

4. Wang, T., Cao, Z., Wang, S., et al.: Privacy-enhanced data collection based on
deep learning for Internet of vehicles. IEEE Transactions on Industrial Informatics,
16(10), 6663-6672 (2019)

5. Wang, T., Jia, W., Xing, G. et al.:Exploiting statistical mobility models for effi-
cient Wi-Fi deployment. IEEE Transactions on Vehicular Technology, 62(1), 360-
373 (2012)

6. Moubayed, A., Shami, A., Heidari, P., Larabi, A.,Brunner, R.: Edge-Enabled V2X
Service Placement for Intelligent Transportation Systems. IEEE Transactions on
Mobile Computing. 20(4), 1380-1392 (2021)

7. Thai, M., Lin, Y., Lai, Y., Chien, H.: Workload and Capacity Optimization for
Cloud-Edge Computing Systems with Vertical and Horizontal Offloading. IEEE
Transactions on Network and Service Management. 17(1), 227-238 (2020)

8. Naas, M. I., Parvedy, P. R., Boukhobza, J., Lemarchand, L.: iFogStor: an IoT data
placement strategy for fog infrastructure. In: Fog and Edge Computing (ICFEC),
pp. 97-104 (2017)

9. Liu, X., Yu, J., Feng, Z., Gao, Y.: Multi-agent reinforcement learning for resource
allocation in IoT networks with edge computing. China Communications. 17(9),
220-236 (2020)

10. Yu, X., Tang, L.: Competition and Cooperation between Edge and Remote Clouds:
A Stackelberg Game Approach. In: IEEE 4th International Conference on Computer
and Communications (ICCC), pp. 1919-1923 (2018)

11. Wang, Y., Sheng, M., Wang, X., Wang, L., Li, J.: Mobile-edge computing: Par-
tial computation offloading using dynamic voltage scaling. IEEE Transactions on
Communications. 64(10), 4268–4282 (2016)

12. Meye, P., Raipin, P., Tronel, F., Anceaume, E.: Toward a distributed storage sys-
tem leveraging the DSL infrastructure of an ISP. In: 11th Consumer Communica-
tions and Networking Conference (CCNC). pp. 533-534 (2014)

13. Chang, W., Wang, P.: An adaptable replication scheme in mobile online system for
mobile-edge cloud computing. In: IEEE Conference on Computer Communications
Workshops (INFOCOM WKSHPS). pp. 109-114 (2017)

14. Kiani, A., Ansari, N., Khreishah, A.: Hierarchical capacity provi- sioning for fog
computing. IEEE Transactions on Networking. 27(3), 962–971 (2019)

15. Lin, B., Zhu, F., Zhang, J., Chen, J., Chen, X., Xiong, N., Mauri, J. L.: A time-
driven data placement strategy for a scientific workflow combining edge comput-
ing and cloud computing. IEEE Transactions on Industrial Informatics. 15(7),
4254–4265 (2019)

