
EasyChair Preprint
№ 12721

Software Traceability Across SDLC: a
Comprehensive Survey

Nakul Sharma and Amar Buchade

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

March 27, 2024

UNDER REVIEW AT ADVANCES IN SYSTEM SCIENCE AND APPLICATIONS

Software Traceability Across SDLC: A Comprehensive

Survey

Nakul Sharma
1*

,

Amar Buchade

1,2

1)
Dept of Artificial Intelligence and Data Science, VIIT, Pune, India

E-mail: nakul777@gmail.com
2)

Dept of Artificial Intelligence and Data Science, VIIT, Pune, India

E-mail: amar.buchude@viit.ac.in

Abstract: Evidence-Based Software Engineering has aided a lot in Software Engineering

research. Evidence-based data collection, data synthesis, data analysis and its

recommendation has been a lighthouse to aid researches across different fields within SE

domain. Software traceability has been under investigation ever since the software projects

suffered from poor quality and lack of user satisfaction. This paper gives a review of

software traceability mechanism as it is implemented across the different phases in SDLC.

Several approaches have been proposed to implement software traceability across SDLC life

cycle. The insights mentioned can provide additional directions to perspective researchers.

Keywords: EBSE, Software Traceability, SDLC, Requirement Traceability, Traceability

1. INTRODUCTION

Software traceability is defined as a link between two more software artifacts existing against

each phase of SDLC as shown in Figure-1. SDLC phases produce software artifacts as each

phase gets completed. In each phase of SDLC, various intermediate artifacts also get created.

Fig. 2.1. Software Traceability for SDLC artifacts

Software traceability provides a medium to check linkages between different software

artifacts. Traceability can be conducted among artifacts which are produced as a result

* Corresponding author: nakul777@gmail.com

2

UNDER REVIEW AT ADVANCES IN SYSTEM SCIENCE AND APPLICATIONS

completion of certain task, processes of phases. Traceability offers means to congregate

different artifacts for various processes. Traceability can be between artifacts arising from

the same phase of SDLC or from different phases of SDLC. There are several advantages of

traceability. Traceability helps specific software developer in firing a query which aids in

seeing the effect of changes being introduced. Traceability aids various stakeholders in

carrying out their job profiles more effectively and proficiently. Traceability can aid software

developers in studying the structure of the large source code projects. Traceability also helps

in introducing changes to the software being developed. The list of stakeholders in software

traceability research is shown in Figure 2.

Fig. 2.2. Software Traceability Stakeholders

1.1 Background

Software Traceability has been under investigation ever since change management and

analysis of these changes were needed by the maintenance engineers. Changes to the

software projects tend to cost more time passes and changes introduced late in the software

create rippling effect on different source code. There are various information models,

automated ways of trace creation and its maintenance which have been conceptualized and

made industry ready by the researchers. However, as the external environment has evolved,

the methodologies and framework needed for conducting system trace also needs evolution.

A comprehensive survey can address various facets of research presented in the literature.

1.2. Industry Based Stakeholders

1. Software developer

2. Maintenance engineer

3. Software tester

4. System analysts

5. System designers

6. Researchers across different multidisciplinary areas.

Software developer can enhance their program understanding and program

comprehension by checking the traceability link as they exist between two or more software

 3

artifacts. Maintenance engineers are tasked with making changes, creating versions and

furthering software’s product line. Hence, it is imperative that software traceability is

conducted by maintenance engineers. Testing phase also involves tracing the bugs and errors

present in the program. The researchers within the ambit of software engineering are

stakeholders in software traceability research. The cross domain researchers specifically have

interest in software traceability research.

1.3. Academia Based Stakeholders

Academic based stakeholders include researchers and their students. Researchers also

collaborate with the industrial projects for the purpose of find linkages across software

artifacts. Academic researchers can also collaborate on short and long term agreements to

find traceability on large-scale software projects.

1.4 Traceability Categorization

Software traceability approaches are categorized as follows:-

1. Static

The static traceability achieves linkage between high ranked and lower ranked artifacts. It

makes use of contextual information and the source code in achieving this goal.

2. Dynamic

The dynamic traceability needs executable compiler for the purpose of running

previously defined scenarios for executing traceability in order to identify software systems.

3. Hybrid traceability

Several authors also propose combining both static and dynamic mediums for achieving

traceability. The hybrid traceability approach takes some aspects from static and dynamic

traceability.

2. LITERATURE REVIEW METHODOLOGY

The authors had aggregated papers from various databases by restricting it to years 2018

to 2023. The search strings passed were as follows:-

1. “software traceability” “survey”

2. “software” “traceability” “source code”

3. “software” “requirement” “traceability”

4. “software” “trace”

Using the citation available in Google scholar, more papers were downloaded. The papers

to be included and excluded were decided based on criteria’s. The inclusion and exclusion

criteria were applied to all the papers which were downloaded. In case any paper did not

have the keywords of “traceability” or “source code”, it was excluded from the list of papers.

In some of the instances, these terms were found in the references section of the paper; hence

they were also excluded from the list of papers to be studied. Table- 1 gives the list of papers

which were excluded and the reasons for removal.

Table 2.1 List of Papers Excluded from the current survey

Ref.

No.

Title of Research Paper Type of Research

(SLR/SMS/Survey/Research

Paper)

Reason for Removal

51 COMEX: A Tool for

Generating Customized

Source Code Representations

Research traceability

term not found in

paper
52 Selection of Digital Research traceability &

4

UNDER REVIEW AT ADVANCES IN SYSTEM SCIENCE AND APPLICATIONS

Watermarking Techniques

for Medical Image Security

source code term

not found in paper
53 Code smells and

refactoring A tertiary

systematic review of

challenges and observations

SLR trace,

traceability and

source code term

not found in paper
54 Identifying,

Categorizing and Mitigating

Threats to Validity in

Software Engineering

Secondary Studies

Survey traceability and

source code term

not found in paper

55 Grey Literature in

Software Engineering: A

Critical Review

Survey Traceability

term not found in

paper
56 A Novel Paper

Recommendation Method

Empowered by Knowledge

Graph: for Research

Beginners

Research software

Traceability term

not found in paper

57 Structural and Semantic

Similarity

Measurement of UML

Use Case Diagram

Research software

traceability term not

found in paper

58 SysML Modeling

Mistakes and Their Impacts

on

Requirements

Research Traceability

term not found in

paper

59 Design Methods And

Processes For Ml/Dl Models

Research Traceability

term not found in

research work
60 Finding Trends in

Software Research

Survey Paper related

to Topic Modeling

but did not have

trace, traceability

terms wrt source

code
61 A Survey on Deep

Learning for Software

Engineering

Survey No direct

reference to

traceability was

there

Table-2 gives the summary of literature which was surveyed including key findings and

the future scope of research work as provided by the authors.

Table 2.2 Literature Review Summarized
Ref.

No.

 Type of Research

(SLR/SMS/Survey/

Research Paper)

Key Findings/Contribution of the Paper Future Scope of Research Work Suggested

1 Survey 1. In Software Artifacts, Recovering

Traceability Links.

2. Traceability Direction and

Evaluation

3. Supports Change Impact Set

4. Different Traceability-based link

1. Automatic Traceability

applications for tools enhancement.

 2. Link recovery between

software's trace artifacts

3. Traceability systems which

accept other that textual inputs

 5

Recovery Methods

2 Research 1. Finding security tactics in source

code 2. Mapping security requirements

to source code 3.Tactic based

modules visualization and its related

dependencies

Not Mentioned

3 Survey The author proposed a feature

model for software traceability.

1. Traceability meta-model for

different traces. 2. Trace Data

Security 3. Trace types library and

semantics 4. Verification and

Validation of Testing. 5. Traceability

in general programming language
4 SLR Existing code based query

reformation approaches use weighting

the terms, relevance of the feedback

and data mining, to reformulate query

and for supporting code query search

in different contexts. Methodology

adopted for code search query

evaluation has lesser developer’s

involvement and number of queries

searched for internet-based code

search is small. Existing approach

towards query reformation have major

challenges and limitations, as a result

cannot be used by software

professionals directly. Statistically

there is a increase in the number of

publications related to automated

query reformation and searching of

source code recent years at top venues

of SE. Hence it is predicted that these

research areas will have greater

research interest in coming years.

There is considerable research in both

the local as well as internet based code

search. However, both these searches

lack generalizability, weak evaluation,

noise. There are some common best

practices for query reformulation

across closed and open source industry

community for code search.

Future work on code search

pertains to expanding queries to

accommodate more contexts in

keywords, designing the necessary

function for GA-based solutions, using

the structure from source code or NLP

for delivering better queries for code

search.

for adapting keyword based on

specific contexts, employing genetic

algorithms based solutions, supporting

algorithms of term weighting with the

contextual information, making use of

stackoverflow for the purpose of

complementing local code search,

employing developer’s cognitive

abilities to reduce query worsening,

using pseudo relevance feedback for

reducing noise and complementing

code retrieval, standardization of

query formulation.

5 Research A tool for change analysis.

Language which allows capturing

of traceability information and utilizes

this information for change analysis for

feature models.

Improving the change analysis

language for addressing complex

constructs and to address complicated

queries.

6

UNDER REVIEW AT ADVANCES IN SYSTEM SCIENCE AND APPLICATIONS

6 Research Traceability mechanism leading

the circular economy. Software

traceability has its relevance in this

context.

Close collaboration of different

actors is needed. There will be

resistance from different people for

adoption of change. But with the

potential benefits being told, it will be

possible to overcome these obstacles.

Testing traceability for different

industrial segment must be

encouraged.
7 Research Authors propose traceability

framework and tool that visualizes

requirement's traceability data. The

tool is effective to help increase user's

understanding of the data. The tool can

also be applied to complex artifacts.

The proposed tool can be

enhanced by filtering the search

technique and limiting the search only

for seeing the relationships, direction,

link number and properties.

8 Survey Authors provide an overall

framework for Machine Learning in SE

research. The evidence based SE has

more applicability of ML which are

evaluated empirically. SDLC's

relationship with ML tools, techniques

has been discussed. Some of the papers

related to requirement traceability

have been discussed.

Usage of ML's advanced

techniques in SE domain to find the

focused state of art work is the future

scope.

9 Research A methodology for evolving feature

model is proposed for changing

requirements using formal methods.

Experimental tool developed can

be optimized for the dynamic demand.

10 SLR The authors investigated issue-

based traceability based on problem,

artifact pair, techniques, evaluation

targets. The paper also discusses

various challenges in issue-based

requirement traceability.

Additional information can help in

generating better trace links which

can aid in increasing the accuracy and

the automation in traceability domain.

The Issue centric traceability should

be conducted to link issue based

traceability study to other artifacts.

Accuracy and reliability of the trace

link must be investigated further. Open

source dataset must be encouraged for

better understanding of issue-based

traceability.
11 Research Authors proposed methodology

generates rationale for tracing links.

The proposed methodology consisted of

NLP pipeline, data mining techniques

for more generalized usage across the

domains.

The proposed work can be

generalized to include more domains.

12 Research The authors claim that software is

more than just source code. A

taxonomy of artifacts categorization is

provided

Future scope proposed by authors

is more detailed taxonomy of the

artifacts. A definition of software for

practitioners is also part of future-

 7

work.

13 Research Data constraints in eight java

systems were studied. Different types of

constraints were identified

Constraint Implementation

Patterns (CIP) can be studied for

different programming languages.

Best practices can be evolved once the

relationship between constraint types

and CIP is clear. CIPs and automated

detectors can help in extracting

business rules and recovering the

traceability links
14 Research Authors propose recovering

traceability links between diverse

software's documentation to source

code

A mechanism of filtering out noisy

traceability links must be evolved by

understanding which principle the

document focuses on. Cross

validation of traceability links and

APIs in different documents should be

encouraged.
15 Research Authors use close relationships

existing between the artifacts to

enhance traceability in IR

-

16 Research Authors utilize network science

properties & ML for recovering trace

links in semantics. Some interesting

patterns were found when trace link

data was modeled as network structure.

Future scope includes assessing

how custom link labels also get linked

to meaningful semantic association.

Network based metrics can be

combined with prediction techniques

which use data. Network science

properties can be used along with ML

techniques to enhance traceability

mechanism of different paper.
17 SMS Many enhancement techniques have

been proposed which support software

traceability link. Open source data sets

are more preferred than closed source

data sets. Overall quality of research

work is good but needs more practical

industrial setting.

Traditional ML models are applied

more to RT. As both ML and DL get

mature, they can apply to Requirement

Traceability. ML based techniques

when combined makes the accuracy of

linked recognition related to features

better. Suitable feature selection

technique is needed to improve

performance.
18 Research Authors define what all artifacts are

produced while developing free

projects. Authors also propose an

approach using ML to identify and

classify software artifacts.

Authors planned to create gitHub

plugin for the purpose of identifying

and visualizing artifacts which are

missing and which are present. IR

based approaches were also to be

applied for feature extraction
19 Survey Authors conducted a study to

identify how artifacts like IBM digital

can trace links from the requirement.

In order to accomplish this, the

taxonomies must be linked to artifact

A semi automation of trace links

can be carried out with the help of

NLP. Maintainability of trace links

across products-lifeline can be

studied.

8

UNDER REVIEW AT ADVANCES IN SYSTEM SCIENCE AND APPLICATIONS

which is a challenging task.

20 Research Authors justify the need of breaking

the code segment describe its

associated benefits towards software

evolution.

Authors state that best practices

are not followed by practitioners while

defining dependencies. Libraries also

conform to semantic versioning when

conducting break of code. When a

tool related to software evolution is

developed, it is more accurate,

applicable for conducting development

in pull environment.

21 Research Authors analyzed the existing data-

sets related to software traceability.

The study articulates several attributes

related to datasets. A software metric

named 'Dataset Diversity Ratio' is also

proposed

The proposed work provides future

directions for making evaluation and

practicality of Software Traceability

research. The information about data

sets can help serve needs of different

researchers
22 SMS The authors studied the goal of

existing approaches in achieving

software traceability and what methods

are used for evaluation. Authors found

out primarily requirement artifacts are

most used for conducting software

traceability. The existing proposed

techniques deal with novel techniques

to achieve traceability. These

techniques further aid in software

maintenance and correctness.

Future researchers should state to

which software artifact their approach

applies to. The various traceability

approaches must be measured against

standard benchmarks and techniques.

The overall cost and performance

measures of their techniques in

addition to the accuracy and benefits

associated with the traces. There

should be empirical evidence

suggesting relation between

traceability and the quality attributes.

Future studies are likely to provide

more concrete high quality evidences
23 Research The authors propose a tool

NLTrace which apply transfer learning

techniques on real world software

traceability data-sets.

Author's claim that for reaching to

industries acceptable level, F2 and

MAP scores must have higher level of

accuracy. Tracing task can be made

better by using different sources data

in multiple transfer learning policies
24 Research The authors proposed a unified

approach towards extracting keywords

from source code, its associated

documentation and test data. The

authors introduce concept similarity

for this purpose.

The future work involves studying

the traceability from the semantics for

artifacts of the software. The current

corpus could be expanded to include

various domains, languages and

categories.
25 Research The authors proposed NLP pipeline

for providing a visual explanation for

trace links. The domain related

concepts were extracted and mined

including concept-related sentences.

The authors work can be expanded

to include more domains.

 9

26 SLR The author examines the problems

of traceability links evaluation and

provides guidelines for evaluating

traceability techniques with its

benchmark and properties.

The future work entails defining in

clear terms the properties of metrics

related to software traceability

selected for benchmarking.

27 Research The authors examine that feature

traces are independent of the

developer's memory. This condition

influences the overall program

comprehension of the source code.

Author's provide an experimental

design, challenges in implementing the

methodology and null results.

The design of studies conducted for

developer's memory need

improvement. Developer's memory

can also be analyzed to indicate how

they forget different knowledge based

concepts. This can enable to improve

automation of techniques needed for

identifying experts. Newer hypothesis

can be proposed to check if program

comprehension and feature traces go

hand in hand. Mapping different

stakeholder’s knowledge features to

information of traces. Solving the

feature traceability by providing

feature annotation and ML based

automation techniques.
28 Research The authors propose a traceability

recovery mechanism between test cases

and the bug reports. The authors utilize

LSA, LDA, BM25 and word vector for

their work. Author’s results indicated

mild increase in the evaluation scores

of precision & recall for all the

traceability recovery techniques.

Authors also recognize the basic NLP

techniques are needed for the

achieving better traceability of textual

artifacts.

The current work can be expanded

by including glossary of thesaurus for

exploring traceability between bugs

and test cases. Other data sets related

to textual artifacts can be studied. The

other traceability related algorithms,

recovery techniques, can also be

studied.

29 Research The author's proposed a visual

traceability related trace-map which

showed inter-relations between

different artifacts. The proposed

framework provided both filtered and

unfiltered view of the relationship.

The proposed work could be

enhanced by increasing the level of

abstraction for better program

comprehension and for analyzing

change impact tasks better. IR engine

was proposed to be replaced by deep

learning techniques to get better

accuracy.
30 Survey Authors found that irrespective of

the project type and the means of

development, the traceability costs wrt

effort, time and money are main

reasons preventing traceability

adoption. Traceability is mainly done

manually. Similar needs also need

proper prioritization.

A follow-up study could be

conducted for the purpose of checking

and validating authors work. Another

study can be done to check the

software's practitioner’s current

traceability conditions and their needs

in different environments and

situations. Additional work can be

conducted on specific methods,

processes phases of SDLC or different

environments. Software traceability

10

UNDER REVIEW AT ADVANCES IN SYSTEM SCIENCE AND APPLICATIONS

can be made focus of specific subtype

of traceability applicability.

Demographic conditions can also be

included based on the datasets

available. Empirically more data is

needed for software traceability to

grow at a much larger and greater

pace.

31 SMS Authors conducted a study of

different tools and approaches which

are used for labeling source code

elements. Taxonomy was proposed in

terms of source, target, presentation

and persistence.

 it is necessary to filter the meta-

data from the source code. In addition,

how metadata evolves with changing

source code also needs to be

investigated. The meta data when

combined with the source code can

provide interesting information for the

readers.
32 Research The authors conducted a study to

determine how intermediate artifacts

can aid in increasing trace link’s

accuracy while considering the path

from source entity, target entity and

intermediate artifacts.

The future scope involves making

use of deep learning based tracing

algorithm. The intermediate artifacts

could be used in graph based networks

as well.

33 Research The authors replaced call

recommender with Boolean Matrix-

Factorization and found several

additional information in terms of

discovering object usage and

identifying corner cases that was not

found out previously. The authors also

use event streaming mining algorithm

which learnt different code

representations without using any prior

domain knowledge. The resultant

patterns were evaluated in terms of

precision and recall. The results on

both these metrics were better than the

previous results.

The future work entailed

combining data from multiple sources

and adding different data sampling

techniques, preprocessing the data to

reflect the varied environments,

automatic feature selection, providing

support to the API patterns wrt quality

and generalizability, providing a

frequency threshold for different

mining conditions, studying impact of

new API usage in development

process, learning from different code

elements, providing parallel ML

algorithms to source code input,

creating newer applications based on

API usage
34 Research The authors created an Eclipse-

based plugin for maintaining traces

across similarly structured abstraction

(horizontally) in complex systems.

Traceability links included files such as

html, source code, configuration files

etc.

Not Mentioned

 11

35 Research The authors propose a semantic

distance measurement for determining

traceability between the software

artifacts. Semantic distance metric is a

relative metric on the scale of 0 to 100.

The proposed metrics accuracy was

observed by seeing the ranking order

and score results. This accuracy was

consistent with the changing scenarios.

The scalability of the implemented tool

was also acceptable.

The future scope of the work

included making qualitative metrics

better. The human factors reduce the

overall accuracy of the tool and need

to be considered.

36 Research Authors propose a SysML model

which allows interaction of SysML

models within Virtual Reality (VR)

environment. It also provides a facility

to test tracing in VR environment.

Future work from this paper is

creating models within VR, combining

SysML tools with simulations,

supporting stronger and more detailed

verification system for evaluating

usability of various stakeholders.
37 SMS Authors identified a roadmap 44

major studies. The domain of result’s

specifications was from both software

as well as automotive. FSM is mainly

used while testing SPL. Behavioral and

scenario based models are most used.

In order to do evaluation, the case

studies & experiments are used in

Model-Based Testing (MBT) solutions.

MBT based solutions don’t have strong

traceability solutions. Authors also

propose to conduct user-models

artifacts, tools, variability

management, and traceability.

The proposed roadmap is useful

for practitioners and future

researchers to conduct traceability

based MBT

38 Research Authors state that in any SE tasks,

the proposed methodology can be

applied. The quality of query

submitted by the developers was

determined by the authors. Queries

quality was checked through

automation. The proposed Text

Retrieval (TR) when applied for

concept location determined the list of

retrieved code elements which were

related to change request. The

proposed TR technique when applied to

traceability link identified artifact

which were difficult to trace due to low

quality.

Quality assessment of the query

reduces effort and time. It identifies

software artifact which is difficult to

trace.

12

UNDER REVIEW AT ADVANCES IN SYSTEM SCIENCE AND APPLICATIONS

39 Research Authors present a methodology to

improve precision and recall, which

are the basic evaluation criteria’s as

well. In addition to the existing data

sources in IR, some new data sources

are also included for creating trace

links. Interaction logs of developer's

and the existing links between the

artifacts are used to create the trace

links. A hierarchical specification

between source code & requirement

specification was developed.

The proposed methodology could

be integrated into Eclipse as a plugin

for integration.

40 SMS 1. The IR models are utilized to

recover traceable links between two or

more artifacts. Developers have made

a design decisions which affect the

traceability in that same IR models

produce different result. 2. Different

software artifacts traceability link

focus on requirements and source code

with no extension to remaining phases

of SDLC.3. IR based traceability were

conducted on less than 500 artifacts.

Future study of the enhancement

strategies reported could be done. A

separate investigation on the patterns

in which the contexts are applied

could be carried out. Another future

work is to map different dimensions

according to other frameworks related

to CoEST research topics

41 Research 1. A review of different

characteristics based

datasets employed for software

traceability are recorded.

2. A framework to evaluate the

datasets employed for software

traceability.

3. The results of study are used to

generate datasets for three baseline

approaches related to training data.

The proposed approach could be

enhanced to include different software

metrics related to data quality and

sampling techniques. NLP based

techniques could be used to enhance

the proposed technique. The link

between domain knowledge of the

person creating the query and quality

of queries generated can be

investigated.
42 SLR +

Research

Author summarized the limitations

of existing techniques in the SLR.

Author's proposed graphs for weighing

terms by using dynamic and source

code based document structures.

The future work included applying

Keyword based searching algorithms

to IR related bug localization. Genetic

algorithms can also be applied for IR-

based bug localization algorithm.

Introducing context in term and

improving the term weighting

algorithms. Improving the pseudo-

relevance feedback.
43 In the context of ML application to

SE, simple-neural networks are most

used. ML applications also include

developing recommendation system for

helping managers make better

informed decisions.

Author suggests creating a

feedback loop for improving

requirement traceability. In order to

have better reliability of the results

and to have better prediction

accuracy, more experimentation is

needed along with larger data sets.

The authors also suggested Ml based

solution of complex system integration

problem.

 13

44 SMS The author’s claim that traceability

practices, impact software maintenance

& software evolution. The studies also

revealed that the proof of traceability’s

impact on maintenance and evolution

is strong enough. Traceability link

establishment and maintenance is

costly. Authors also identified several

barriers to apply traceability to the

software maintenance.

More effective methods are

required to measure rate benefit ratio

using traceability for maintenance and

software evolution.

45 SLR The authors analyzed the existing

Feature Location Techniques (FLT)

needed in software maintenance

techniques and found only 27% of the

techniques as reproducible. Since it is

difficult to reproduce majority of the

research in FLT, the comparison of

these proposed methodology in FLTs is

not possible.

The authors indicate the strong

need of standardizing empirical

research in FLTs. The standards must

be made for the FLTs in order to allow

comparison.

46 Research Author's evaluate the effect of word

based similarity measures on ArDoCo

tool.

The other complex strategies for

evaluation of ArDoCo tool could be

used.
47 Research Author's propose a graph-based

trace link recovery approach which

gave precision value of 40% and lag of

50%.

Authors state that knowledge based

representation can provide

explanations and filter better results in

trace link recovery
48 Research The statistical data which

represents links between software

artifacts was duplicated in the given

context. The statistical model can help

study relatedness of the software

artifacts using the artifact's properties.

The mathematical properties of the

artifacts could be studied for making

traceability more automated.

49 Research Author contributes a data set on re-

engineering variant rich systems. The

developer's memory and knowledge

needs can be enhanced by providing

suitable documentation techniques. The

feature traces impact developer's

program understanding.

A Decision Support System could

be developed for the re-engineering

variant rich systems. New tools from

different sources could be developed

to elicitate required information for

enhancing developer's memory. A

management framework for feature

traces could be developed. A real

world recommendation system could

be developed for different

stakeholders. The current work could

also be replicated for more conditions

and different contexts.

14

UNDER REVIEW AT ADVANCES IN SYSTEM SCIENCE AND APPLICATIONS

50 Research Whenever traceability link need to

be found out between software

artifacts, the corresponding

personnel’s who have worked on these

artifacts should be consulted. The

organizational structure must be known

beforehand and traceability

information may get affected by such a

structure. In complex project, the

different information regarding the

same artifact may be present at

different locations. In order to combine

such type of information needs

awareness of the company’s norms and

regulations. A fully automated solution

may not be possible. Hence, human

intervention may be needed for

introducing traceability.

Interoperability between the systems

are needed for forming traceability

links.

The authors would conduct

traceability study for their industrial

partners.

3. DISCUSSION ON LITERATURE REVIEW

3.1 SLR/SMS/Survey

Among the literature, there are some SLRs, SMS and surveys which have focused on

software traceability in different aspects along with the specific categories. There are SLRs

focusing on the role of automatic traceability link in change impact analysis who investigate

the literature according to traceability approaches, impact analysis sets, degree of evaluation,

trace direction and methodology used for recovering traceability link. The SLR provide

further directions of integrating deep learning and machine learning for automating

traceability[1].

Some of survey focus on extracting feature model from the traceability approaches. The

paper proposes traceability framework that can aid in industrial implementation of

traceability mechanism. The feature model can be expanded to inculcate AI in Software

Engineering domain, with its implications being seen in requirements, testing and source

code [3].

Another SLR was conducted to access automated query reformulations for source code

search. The author’s focused on surveying the existing literature using different approaches

used in this context. The SLR dives deep into term weighting, relevance feedback, semantic

relations, thesaurus lookup, data mining which are the approaches used in query formulation.

The survey provides various future directions for enhancing query reformulation on source

code search [4].

There have been SLR’s on the specified topic of Issue-Based Requirement Traceability. The

authors discuss for each related literature the questions of problems, artifact pairs, techniques

and evaluation targets. There were 40 papers specific to I-RT which was analyzed. The

authors also presented future scope and direction arising out of the literature review [10].

 15

There have been systematic mapping studies conducted on applying ML techniques to

requirement-based traceability. The author identified 26 literatures as primary studies which

had ML’s applicability for RE based traceability. The author’s opine applying multiple ML

techniques to improve accuracy in feature related traceability recognition. The appropriate

feature selection approach is necessary for improving performance of models [17].

There are different surveys conducted in context of requirement-based traceability and its

associated benefits. The authors survey all the existing literature on software traceability for

requirements. The authors conclude that it is new to consider traceability knowledge

organizational structure to aid in requirement traceability. However, certain concerns related

to the taxonomic enabled trace-links must be addressed for faster industry adoption [19].

3.2 Software Requirement

Traceability for software requirements have been done visually as well. The tools use data

visualization technique to represent relationship between artifacts and requirements. The

graphical representation developed can be traversed using impact analysis method. The tool

developed helps in better understand the requirements [7].

The author employs the close relationships existing between different requirements level

documents for conducting traceability. The authors use IR techniques and the relationship

between documents to create trace links. The methodology proposed is evaluated using

public datasets and standard evaluation metrics of precision and recall are used for scoring

[15].

The author studies various attributes of data-sets for software traceability. A new metric

related to data-set has also being proposed. A host of research directions are also provided in

this research related to data-set based research [21].

3.3 Source code

Authors study the implementation of data constraints in java programming language. The

author’s manually identified four types of data constraints. The implementation patterns

within the source code were then identified [13].

3.4 Change Impact analysis

Software testing based traceability approach helps achieving security control in source

code. The security controls use principle of security by design. The author’s proposed

methodology showed that source codes having security design principles could be easily

identified [2].

Another research on improving traceability management and change impact analysis is to

create specific domain specific languages for feature modeling. The traceability related

information is collected and uses model-based approach for its storage [5].

3.5 Software Product Line (SPL)

Authors create evolving feature model for SPL which change as the feature models

changes. The author’s proposed model is effective is useful in predicting evolving nature of

SPL in line with the requirements [9].

16

UNDER REVIEW AT ADVANCES IN SYSTEM SCIENCE AND APPLICATIONS

The benefits of breaking the code are show-cased by the authors. In order to undertake

breaking of code, first an assessment of the break must however, be carried out. The best

practices can prevent the problems associated with breaking of code. the syntactic breaking

code and their effect on versioning of the software is also studied [20].

3.6 Software Maintenance

Software maintenance engineer and worker make use of traceability for change

management. The trace links between the artifacts can be seen visually by the authors. This

is achieved by using NLP pipeline including identifying domain-specific concepts, getting a

corpus of sentences related concepts, mining concept explanations and their usage examples.

The proposed methodology also identifies relationship between concepts for concept

explanation [11].

The software traceability between source code and related documentation is explored as

exploratory research as well. The author’s take as case study Lucene project and collect

documents pertaining to different Bug report, mail lists, stack overflow Q& A documents

and blogs. The author’s then frame research questions [14].

The network science and machine learning models are also used in analyzing the

semantic trace links. The authors herein utilize the network science concepts along with ML

models for pattern identification. The trace links hence generated are useful for change and

issue management [16].

The open-source codes can be studied as they are freely downloadable. The different

granularities existing within the open source projects are studied by the authors. The author’s

propose ML-based techniques for software artifact identification [18].

3.7 General Literature Incorporating Traceability

Traceability framework has also been employed beyond software engineering domains.

The traceability mechanism is being employed for the betterment of the circuit economy.

Traceability is helping in attaining larger goals in assert industry as well. The meaning or

interpretation may vary but underlining concept remains the same [6].

Machine learning applications to SDLC is studied as a survey. The author’s found

application of ML in finding software traces in requirements engineering. The applicability

of ML is also accomplishes software traceability at artifacts level [8].

Traceability is also discussed in a limited way while describing what constitutes software.

The author’s categorized software into as different artifacts of 19 concrete categories. The

author’s concluded that source code itself consists of different types of code, different data

associated with the source code and its associated documentation. The utility of this research

related to software artifacts is that before software traceability can be carried out, it is

essential to determine what constitute software [12].

 17

Ref. No. Type of Research

(SLR/SMS/Survey

/Research Paper)

SDLC Phase addressed Sub-area/Processes of SDLC addressed

1 SMS Software Change

Management, Software

Maintenance

change impact analysis,

Change Management

2 Research Software Testing Security Testing
3 Survey Analysis Traceability
4 SLR Software Maintenance Search-Based Software

Engineering, Reverse

Engineering
5 Research Software Maintenance Software product lines
6 Research Information Lifecycle

Management

sustainability, digitization,

circular economy, build assert

industry, digital threading

7 Research Requirement Analysis Requirement traceability,

Traceability visualization,

Visual framework
8 Survey Across SDLC Not applicable

9 Research Software Maintenance Software product lines
10 SLR Analysis, Software

Maintenance

Requirement traceability

11 Research Software Maintenance Traceability

12 Research Software Maintenance Software Organization
13 Research coding design patterns

traceability

14 Research Across SDLC Traceability
15 Research Analysis Traceability

16 Research Software Maintenance Change management,

issue management

17 SMS Analysis, Software

Maintenance

Requirement Traceability

18 Research Software Maintenance Software Organization,

Software Notation, Software

libraries

19 Survey Analysis Requirement Traceability,

Trace Link

20 Research Software Maintenance Software Evolution,

Software Product Line,

Backward compatibility

21 Research Analysis Requirement Traceability

22 SMS Across SDLC Requirement Traceability

18

UNDER REVIEW AT ADVANCES IN SYSTEM SCIENCE AND APPLICATIONS

23 Research Analysis Requirement Traceability

24 Research Coding Software Traceability

25 Research Software Maintenance Software Traceability

26 SLR Across SDLC Software Traceability,

Traceability Metrics,

Evaluation, Benchmarking

27 Research Coding program comprehension,

feature orientation, software

traceability

28 Research Software Testing Software Traceability,

Traceability Metrics

29 Research Across SDLC Visualization, Software

Traceability

30 Survey Project Management Software Traceability
31 SMS Coding, Software

Maintenance

Software Traceability

32 Research Coding, Software

Maintenance

Software Traceability

33 Research Coding Software Traceability
34 Research Coding Software Traceability
35 Research Software Testing Defect detection, Issue

detection

36 Research Software Testing Requirement Traceability

37 SMS Software Testing Software product lines

38 Research Software Maintenance Software Traceability

39 Research Analysis, Coding Software Traceability
40 SMS Across SDLC Software Traceability,

Information Traceability

41 Research Software Testing, Software

Maintenance

Software Traceability

42 SLR +

Research

Software Testing Software Traceability

43 Research Software Maintenance Software Traceability
44 SMS Software Maintenance Software Evolution

45 SLR Software Maintenance Requirement traceability,

Feature location

46 Research Software Maintenance change impact analysis,

software traceability
47 Research Software Maintenance Software traceability
48 Research Software Maintenance Software Traceability

 19

49 Research Software Maintenance Re-engineering, Software

Product Line

50 Research Software Testing Software Traceability

4. OBSERVATIONS FROM LITERATURE REVIEW

4.1 Segregation of Literature
The literature was first divided based on inclusion and exclusion criteria. The included

papers were further classified according to the specific research focus they had addressed.

There were research based literature as well as survey based literature.

Some of literature was also categorized in terms of providing future directions. These papers

are torch-bearer for research which provides many research directions.

4.2 Software Traceability across SDLC
Source code is created at the coding stage of SDLC. There have been researches conducted

to point out the forward as well backward traceability of source code artifacts. However,

little work has been done to conduct a single traceability running across the different phases

of SDLC. There are following challenges in this process:-

1. Lack of Standardized Format

Although formal specification have been evolved, still large amount of documents are still in

textual format. As the SDLC phase changes the software artifact’s and its corresponding

documentation format also changes.

2. Lack of Interdisciplinary Vision in Software Evolution and SE Processes

The traditional software evolution and SE processes are constantly evolving. The

requirements are no longer restricted to a particular skill-set of a domain and its

corresponding development. The interdisciplinary vision is difficult to achieve due to the

varied reasons associated with education and industrial norms. The Interdisciplinary vision

is different from integration of multiple areas of research.

3. Lack of Integration with Multidisciplinary Areas of Research

Software Traceability already encompasses multiple areas of research as shown below:-

1. Software requirement

2. Software Product line

3. Software Maintenance

4. Software Configuration Management

5. Software Testing

Software Traceability can be integrated further with latest Continuous Integration (CI) and

Continuous Deployment (CD) to create better vision for the new prospective software

maintainers.

There is a need to develop following which will enhance integration prospects:-

1. Coding

2. Testing

3. Delivery and Maintenance

Once the software is ready after testing, it is delivered onsite. Onsite software needs constant

maintenance due to constant changes in the environment wherein the software is deployed.

The software maintenance engineer is tasked with introducing changes to software. There are

four different models of software maintenance:-

1. Quick-Fix Model

2. Iterative-enhancement Model

3. Reuse-oriented Model

20

UNDER REVIEW AT ADVANCES IN SYSTEM SCIENCE AND APPLICATIONS

All of these models can be used along with traceability to see effect of changes being

introduced in the software.

5. CONCLUSION AND FUTURE SCOPE

Traceability is also outside the scope of software engineering as it is being employed to

achieve greater digital transformation sustainability and agility. It is essential part of

developing a circular economy. The traceability approaches for non-IT domains can be

integrated with the IT domain as it object trails across its production lifecycle.

There are also attempts to provide a visual framework for software requirement traceability

[7]. These visual frameworks can be extended to provide integration of views across

different phases of SDLC. The traceability approach can also be extended beyond software

to include activities, processes, products to check conformance of different standards and

rules.

References
1. Aung, T. W. W., Huo, H., & Sui, Y. (2020, July). A literature review of automatic

traceability links recovery for software change impact analysis. In Proceedings of the 28th

International Conference on Program Comprehension (pp. 14-24).

2. Okutan, A., Shokri, A., Koscinski, V., Fazelinia, M., & Mirakhorli, M. (2023). A Novel

Approach to Identify Security Controls in Source Code. arXiv preprint arXiv:2307.05605.

3. Batot, E. R., Gérard, S., & Cabot, J. (2022, March). A survey-driven feature model for

software traceability approaches. In International Conference on Fundamental Approaches to

Software Engineering (pp. 23-48). Cham: Springer International Publishing.

4. Rahman, M. M., & Roy, C. K. (2021). A Systematic Review of Automated Query

Reformulations in Source Code Search. ACM Transactions on Software Engineering and

Methodology.

5. Kahraman, G., & Cleophas, L. (2022, September). A tool for modeling and analysis of

relationships among feature model views. In Proceedings of the 26th ACM International

Systems and Software Product Line Conference-Volume B (pp. 103-109).

6. Davari, S., Jaberi, M., Yousfi, A., & Poirier, E. (2023). A Traceability Framework to

Enable Circularity in the Built Environment. Sustainability, 15(10), 8278.

7. Madaki, A. A., & Zainon, W. M. N. W. (2022). A visual framework for software

requirements traceability. Bulletin of Electrical Engineering and Informatics, 11(1), 426-434.

8. Ren, J., Liu, L., Zhang, P., & Zhou, W. (2019). A Method of Automatically Evolving

Feature Models of Software Product Lines. IEEE Access, 7, 39253-39272.

9. Lyu, Y., Cho, H., Jung, P., & Lee, S. (2023). A Systematic Literature Review of Issue-

Based Requirement Traceability. IEEE Access.

10. Liu, Y., Lin, J., Anuyah, O., Metoyer, R., & Cleland-Huang, J. (2022, May). Generating

and visualizing trace link explanations. In Proceedings of the 44th International Conference

on Software Engineering (pp. 1033-1044).

11. Pfeiffer, R. H. (2020, June). What constitutes software? An empirical, descriptive study

of artifacts. In Proceedings of the 17th International Conference on Mining Software

Repositories (pp. 481-491).

12. Florez, J. M., Moreno, L., Zhang, Z., Wei, S., & Marcus, A. (2022). An empirical study

of data constraint implementations in Java. Empirical Software Engineering, 27(5), 119.

13. Zou, Y., Cao, Y., & Xie, B. (2018, September). An Exploratory Study on Codes in

Heterogeneous Software Documents. In Proceedings of the 10th Asia-Pacific Symposium on

Internetware (pp. 1-6).

 21

14. Wang, H., Shen, G., Huang, Z., Yu, Y., & Chen, K. (2021). Analyzing close relations

between target artifacts for improving IR-based requirement traceability recovery. Frontiers

of Information Technology & Electronic Engineering, 22(7), 957-968.

15. Nicholson, A. (2019). Analyzing semantic trace links using network science and machine

learning. McGill University (Canada).

16. Wang, H., Shen, G., Huang, Z., Yu, Y., & Chen, K. (2021). Analyzing close relations

between target artifacts for improving IR-based requirement traceability recovery. Frontiers

of Information Technology & Electronic Engineering, 22(7), 957-968.

17. Li, X., Wang, B., Wan, H., Deng, Y., & Wang, Z. Applications of Machine Learning in

Requirements Traceability: A Systematic Mapping Study.

18. Ma, Y., Fakhoury, S., Christensen, M., Arnaoudova, V., Zogaan, W., & Mirakhorli, M.

(2018, May). Automatic classification of software artifacts in open-source applications. In

Proceedings of the 15th International Conference on Mining Software Repositories (pp. 414-

425).

19. Abdeena, W., Unterkalmsteinera, M., Chirtogloub, A., Schimanskib, C. P., Golib, H., &

Wnuka, K. (2022). Taxonomic Trace Links-Rethinking Traceability and its Benefits.

20. Venegas, L. M. O. (2023). Break the Code?: Breaking Changes and Their Impact on

Software Evolution.

21. Sharma, P. (2017). Datasets Used in Fifteen Years of Automated Requirements

Traceability Research. Rochester Institute of Technology.

22. Charalampidou, S., Ampatzoglou, A., Karountzos, E., & Avgeriou, P. (2021). Empirical

studies on software traceability: A mapping study. Journal of Software: Evolution and

Process, 33(2), e2294.

23. Lin, J., Poudel, A., Yu, W., Zeng, Q., Jiang, M., & Cleland-Huang, J. (2022). Enhancing

automated software traceability by transfer learning from open-world data. arXiv preprint

arXiv:2207.01084.

24. Pauzi, Z., & Capiluppi, A. (2021). Extracting and comparing concepts emerging from

software code, documentation and tests. In 20th Belgium-Netherlands Software Evolution

Workshop, BENEVOL 2021 (pp. Code-176287). CEUR Workshop Proceedings.

25. Theunissen, Theo, Uwe van Heesch, and Paris Avgeriou. "A mapping study on

documentation in Continuous Software Development." Information and software technology

142 (2022): 106733.

26. Shin, Y., Hayes, J. H., & Cleland-Huang, J. (2015, May). Guidelines for benchmarking

automated software traceability techniques. In 2015 IEEE/ACM 8th International

Symposium on Software and Systems Traceability (pp. 61-67). IEEE.

27. Krüger, J., Çalıklı, G., Berger, T., & Leich, T. (2021, March). How explicit feature traces

did not impact developers’ memory. In 2021 IEEE International Conference on Software

Analysis, Evolution and Reengineering (SANER) (pp. 610-613). IEEE.

28. Santos, L. R. J., Gadelha, G., Ramalho, F., & Massoni, T. (2020, October). Improving

traceability recovery between bug reports and manual test cases. In Proceedings of the

XXXIV Brazilian Symposium on Software Engineering (pp. 293-302).

29. Aung, T. W. W., Huo, H., & Sui, Y. (2019, September). Interactive traceability links

visualization using hierarchical trace map. In 2019 IEEE International Conference on

Software Maintenance and Evolution (ICSME) (pp. 367-369). IEEE.

30. Hu, J. Y. (2019). Investigating the perceived value of software traceability in practice

(Master's thesis).

31. Sulír, M., & Porubän, J. (2017, September). Labeling source code with metadata: A

survey and taxonomy. In 2017 Federated Conference on Computer Science and Information

Systems (FedCSIS) (pp. 721-729). IEEE.

32. Rodriguez, A. D., Cleland-Huang, J., & Falessi, D. (2021, September). Leveraging

Intermediate Artifacts to Improve Automated Trace Link Retrieval. In 2021 IEEE

22

UNDER REVIEW AT ADVANCES IN SYSTEM SCIENCE AND APPLICATIONS

International Conference on Software Maintenance and Evolution (ICSME) (pp. 81-92).

IEEE.

33. Cergani, E. (2020). Machine Learning as a Mean to Uncover Latent Knowledge from

Source Code.

34. Lozano, A., Noguera, C., & Jonckers, V. (2016, March). Managing traceability links with

matraca. In 2016 IEEE 23rd International Conference on Software Analysis, Evolution, and

Reengineering (SANER) (Vol. 1, pp. 665-668). IEEE.

35. Nasser, M. (2017). Measuring Semantic Distances between Software Artifacts to

Consolidate Issues from the Development and the Field. LU-CS-EX 2017-09.

36. Oberhauser, R. (2023). VR-SysML+ Traceability: Immersive Requirements Traceability

and Test Traceability with SysML to Support Verification and Validation in Virtual Reality.

International Journal on Advances in Software Volume 16, Number 1 & 2, 2023.

37. Petry, K. L., OliveiraJr, E., & Zorzo, A. F. (2020). Model-based testing of software

product lines: Mapping study and research roadmap. Journal of Systems and Software, 167,

110608.

38. Mills, C., Bavota, G., Haiduc, S., Oliveto, R., Marcus, A., & Lucia, A. D. (2017).

Predicting query quality for applications of text retrieval to software engineering tasks. ACM

Transactions on Software Engineering and Methodology (TOSEM), 26(1), 1-45.

39. Hübner, P. (2016). Quality Improvements for Trace Links between Source Code and

Requirements. In REFSQ Workshops.

40. Borg, M., Runeson, P., & Ardö, A. (2014). Recovering from a decade: a systematic

mapping of information retrieval approaches to software traceability. Empirical Software

Engineering, 19, 1565-1616.

41. Zogaan, W. A. (2019). Towards an Intelligent System for Software Traceability Datasets

Generation. Rochester Institute of Technology.

42. Rahman, M. M. (2019). Supporting Source Code Search with Context-Aware and

Semantics-Driven Query Reformulation (Doctoral dissertation, University of Saskatchewan).

43. Shafiq, S. (2022). Supporting the Triaging Process in Software Development/eingereicht

von Saad Shafiq.

44. Tian, F., Wang, T., Liang, P., Wang, C., Khan, A. A., & Babar, M. A. (2021). The impact

of traceability on software maintenance and evolution: A mapping study. Journal of

Software: Evolution and Process, 33(10), e2374.

45. Razzaq, A., Wasala, A., Exton, C., & Buckley, J. (2018). The state of empirical

evaluation in static feature location. ACM Transactions on Software Engineering and

Methodology (TOSEM), 28(1), 1-58.

46. Werber, K. (2022). Assessing Word Similarity Metrics for Traceability Link Recovery

(Doctoral dissertation, Karlsruher Institut für Technologie (KIT)).

47. Mills, C., Escobar-Avila, J., Bhattacharya, A., Kondyukov, G., Chakraborty, S., &

Haiduc, S. (2019, September). Tracing with less data: active learning for classification-based

traceability link recovery. In 2019 IEEE International Conference on Software Maintenance

and Evolution (ICSME) (pp. 103-113). IEEE.

48. Mills, C., Escobar-Avila, J., Bhattacharya, A., Kondyukov, G., Chakraborty, S., &

Haiduc, S. (2019, September). Tracing with less data: active learning for classification-based

traceability link recovery. In 2019 IEEE International Conference on Software Maintenance

and Evolution (ICSME) (pp. 103-113). IEEE.

49. Krüger, J. (2021). Understanding the re-engineering of variant-rich systems: an empirical

work on economics, knowledge, traceability, and practices.

50. Fucci, D., Alégroth, E., & Axelsson, T. (2022). When traceability goes awry: An

industrial experience report. Journal of Systems and Software, 192, 111389.

51. Rasekh, Amir Hossein, Amir Hossein Arshia, Seyed Mostafa Fakhrahmad, and

Mohammad Hadi Sadreddini. "Mining and discovery of hidden relationships between

 23

software source codes and related textual documents." Digital Scholarship in the Humanities

33, no. 3 (2018): 651-669.

52. Ahmad, Masood, Mohd Nadeem, Mohd Islam, Saquib Ali, and Alka Agrawal1and Raees

Ahmad. "Selection of Digital Watermarking Techniques for Medical Image Security by

Using the Fuzzy Analytical Hierarchy Process." Recent Advances in Computer Science and

Communications 16 (2023): 1-7.

53. Lacerda, Guilherme, Fabio Petrillo, Marcelo Pimenta, and Yann Gaël Guéhéneuc. "Code

smells and refactoring: A tertiary systematic review of challenges and observations." Journal

of Systems and Software 167 (2020): 110610.

54. Ampatzoglou, Apostolos, Stamatia Bibi, Paris Avgeriou, Marijn Verbeek, and Alexander

Chatzigeorgiou. "Identifying, categorizing and mitigating threats to validity in software

engineering secondary studies." Information and Software Technology 106 (2019): 201-230.

55. Kamei, Fernando, Igor Wiese, Crescencio Lima, Ivanilton Polato, Vilmar Nepomuceno,

Waldemar Ferreira, Márcio Ribeiro et al. "Grey literature in software engineering: A critical

review." Information and Software Technology 138 (2021): 106609.

56. Ampatzoglou, Apostolos, Stamatia Bibi, Paris Avgeriou, Marijn Verbeek, and Alexander

Chatzigeorgiou. "Identifying, categorizing and mitigating threats to validity in software

engineering secondary studies." Information and Software Technology 106 (2019): 201-230.

57. Siahaan, Daniel, and Yenny Desnelita. "Structural and semantic similarity measurement

of UML sequence diagrams." In 2017 11th International Conference on Information &

Communication Technology and System (ICTS), pp. 227-234. IEEE, 2017.

58. Alenazi, Mounifah, Nan Niu, and Juha Savolainen. "SysML modeling mistakes and their

impacts on requirements." In 2019 IEEE 27th International Requirements Engineering

Conference Workshops (REW), pp. 14-23. IEEE, 2019.

59. John, Meenu Mary. "Design Methods and Processes for ML/DL models." PhD diss.,

Malmö universitet, 2021.

60. Mathew, George, Amritanshu Agrawal, and Tim Menzies. "Finding trends in software

research." IEEE Transactions on Software Engineering (2018).

61. Yang, Yanming, Xin Xia, David Lo, and John Grundy. "A survey on deep learning for

software engineering." ACM Computing Surveys (CSUR) 54, no. 10s (2022): 1-73.

