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Abstract. Recently, blockchain time series data has been widely studied 

throughout the communities of machine learning and data mining. However, 

Blockchain time series data dynamic class maintenance is still challenging. Ex-

isting works on blockchain time series data classification have shown serious 

accuracy and class maintenance limitations. Therefore, this paper proposes a 

novel framework called Improved Dynamic Random Forest (IDRF). The pro-

posed framework includes two components as follows: initial classification and 

class maintenance. For classification, the proposed approach generates an initial 

set of classes. When new blockchain data arrive, we further proposed an incre-

mental classification approach for maintaining the existing classes dynamically. 

Experiments on a real world dataset called "Bitcoin Heist Ransom Ware Ad-

dress " verify the efficiency and effectiveness of the proposed blockchain time 

series data classification and maintenance approaches in terms of accuracy, ex-

ecution time and  RMSE.  

 

Keywords: Blockchain, Classification,  Dynamic Random Forest,  Time series 

data, Security  

1 Introduction 

A blockchain is a distributed database shared among a computer network's nodes [2]. 

They are most recognized for their critical function in cryptocurrency systems for 

keeping a secure and decentralized record of transactions, although their applications 

are not restricted to Bitcoin [12]. Emerging technologies such as big data and block-

chain are becoming commonplace. These technologies alter how businesses operate 

[11]. Recent Trends on Sophisticated Flooding Attacks and Detection Methods Based 

on Multi-s Sensors Fusion Data for Cloud Computing Systems. Fusion: Practice and 

Applications [1]. Blockchain data analysis is a process that entails interpreting, cate-

gorizing, and monitoring blockchain transaction data to provide users with essential 

insights and aid in risk assessment [18]. Blockchain analytics has become the most 

promising data science application with these analytical capabilities. It is not very 

easy to analyze real-time data. However, blockchain technology enables businesses to 

analyze data in real-time, which aids in detecting abnormalities at an early stage. Col-

lecting important insights and patterns from massive databases is known as data min-
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ing. The process of obtaining insights from data stored on a blockchain network is 

known as blockchain data mining [17]. It has grown in importance in the crypto eco-

system because analyzing blockchain data may reveal significant information, such as 

transaction volumes and market patterns, allowing firms and individuals to make 

more educated investment decisions [5]. Detecting patterns in trade activity and fore-

casting market developments.  

Time series analysis is a method of analyzing a set of data points gathered over a 

period of time [8]. Time series classification analyses several labelled classes of time 

series data and then predicts or classifies the class to which a new data set belongs 

using supervised machine learning[9]. There has been little work on classification 

approaches in a dynamic environment.  Several studies have suggested a classification 

model for classifying data[7]. These models could be more efficient for classifying 

dynamic data because they require a long execution time to finalize the classification 

process and give low accuracy with high RMSE. This gives a limitation which does 

not apply to real web blockchain data [15]. Therefore, we introduce a dynamic classi-

fication approach for classifying and maintaining the blockchain time series data clas-

sification. 

 

1.1      Contributions 

 
–We propose the fastest random forest classification for time series blockchain data.  

– We propose a new incremental maintenance approach, including insertion and up-

dating operations. 

– We validate the proposed classification approaches with experiments on a real-

world dataset and demonstrate their efficiency and effectiveness.  

 

1.2  Paper Organization 

The rest of the paper is organized as follows:  The related work is presented in Sec-

tion 2.  which is followed by the proposed solution in Section 3. Section 4 presents 

the experimental results, and finally, Section 5 concludes the paper. 

2  Related Work 

This section highlights the proposed studies on Time Series Data Classification 

(TSC). TSC problems are becoming prevalent in statistics and machine learning [10]. 

Much research addresses some problems associated with time series data classifica-

tion . Pfisterer et al, 2019 [13] Suggested Practical data analysis approaches employ 

additive models and the capability of combining practical basis representations with 

machine learning methods such as SVMs or classification trees. Functional Data 

Analysis (FDA) is a closely related field that relates to a set of challenges. Data anal-

ysis is constantly indexed over a particular region. Both domains aim to handle analo-

gous issues while employing diverse methodologies; for example, classification or 
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regression tasks involving functional variables are a good illustration. The primary 

objective of this study is to provide non-specialist practitioners with a comprehensive 

evaluation of the most suitable method(s) to use for analyzing diverse time series data 

sets. This will be achieved through the execution of various analyses on a broad range 

of data sets, followed by a meticulous examination of the empirical outcomes. In ad-

dition, the authors provide the R software framework for doing functional data analy-

sis in the context of supervised learning. This framework integrates machine learning 

algorithms and several linear statistical approaches. This makes it simple to combine 

such techniques with machine-learning toolkits. 

 Similarly, Zhou and Bian, 2019 [19] present an approach for identifying text 

emotion in Chinese literature based on BiGRU-Attention. Instead of a bidirectional 

extended short-term memory network (biLSTM), the method constructs a hidden 

layer with a bidirectional gated recurrent unit (biGRU). Then, it adds an attention 

model to input the outcome of each time point in the hidden layer to the fully con-

nected layer, yielding a probability vector. The weights applied to each hidden layer 

result using the probability vector are then added to produce the result vector. The 

experimental results demonstrate that the model mentioned in this paper is more accu-

rate and effective in text classification. 

Cabello et al., 2020 [6] The proposal of STSF (Supervised Time Series Forest 

TSC) emerged as a means to address the question of whether all instances are used in 

the same context. The findings provided by STSF are presented in a manner that is 

easily comprehensible, while also improving the efficiency of categorization through 

the analysis of a subset of the original time series. This improved efficiency is 

achieved by leveraging the tree-based structure of STSF. The STSF methodology 

employs a top-down approach to identify pertinent subseries within three distinct time 

series representations. This process is conducted prior to the training of any tree clas-

sifier. The determination of subseries relevance is based on feature ranking metrics. 

The results obtained from experiments conducted on extensive real-world datasets 

demonstrate that the STSF method attains comparable levels of accuracy to state-of-

the-art TSC techniques. Moreover, the STSF method exhibits significantly higher 

efficiency, enabling the prolonged utilization of TSC. 

 However, these studies ignore the incremental updates. As a result, these meth-

ods are impractical in dynamic environments. Furthermore, the proposed TSC algo-

rithms are inefficient due to the high computing costs. Finally, these methods need to 

calculate the number of sensitive parameters to complete the classification process. 

3 CLASSIFICATION APPROACHES  

This section explains the technical details of the classification approaches and pro-

posed approach for blockchain time series data classification. Section 3.1 discusses 

the baseline approach (Random Forest). Section 3.2 discusses the Dynamic Random 

Forest (DRF), and finally, the proposed Improved  Dynamic Random Forest (IDRF) 

is discussed in Section 3.3.   
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3.1 Baseline Approach : Random Forest Tree 

A Random Forest (RF) Algorithm is a supervised machine-learning method widely 

used in Machine Learning for Classification and Regression applications. The more 

trees in a Random Forest algorithm, the greater its accuracy and problem-solving 

capability.  

  Random Forest is a classifier that uses the average of many decision trees on dif-

ferent subsets of a given dataset to increase its predicting performance [16]. An em-

pirical study of automated privacy requirements classification in issue reports. Auto-

mated Software Engineering, It is built on the idea of ensemble learning, which inte-

grates numerous classifiers to solve a complicated issue and enhance the model's per-

formance. The Random Forest Algorithm is explained in detail in the following steps: 

Step 1: Choose random samples from a data or training set.  

Step 2: This algorithm will generate a decision tree for each training set.  

Step 3: The choice tree will be averaged for voting. 

Step 4: Finally, choose the prediction result with the most votes as the final fore-

cast result. 

Each tree has distinct traits, variations, and qualities that distinguish it from other 

trees. Not all trees are created equal. Immune to the curse of dimensionality: Because 

a tree is a conceptual construct, it does not need to be evaluated for features. As a 

result, the feature space is decreased. Parallelization: Because each tree is built inde-

pendently from diverse data and characteristics, we can fully use the CPU to build 

random forests. Splitting the training and testing: We do not need to separate the data 

for train and testing in a Random Forest since The decision tree's ability to perceive 

the input is limited to only 30%. Stability: The result is determined by the Bagging 

technique, wherein it is determined by means of a majority vote or average. Hyper-

parameters are used in random forests to improve model performance and predictive 

power or speed up the model. To improve predictive power, the following hyper-

parameters are used: 

n_ estimators: The number of trees the algorithm constructed before averaging the 

products. 

Max_features: The amount of features used by random forest before contemplating 

splitting a node. 

Mini_sample_leaf: Counts the number of leaves needed to separate an internal 

node. 

To boost the model's speed, the following hyper-parameters are used: 

N_jobs: Tells the engine how many processors it can utilize. If the value is 1, only 

one processor can be used; if the value is -1, there is no limit. 

Random state: Controls the sample's unpredictability. If the model has a defined 

value of random state and has been given the same hyper-parameters and training 

data, it will always generate the same outcomes [14].  

 

Definition 1. " A random forest is defined as a classifier containing of a group of 

tree-structured classifiers {h(x, Θk), k = 1, ..., L}, where {Θk} are random vectors 
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that are distributed individually, with each tree h(x, Θk) casts a unit vote for the most 

common class at input x [3]". 

 

  
Data : D={d1,d2,…,dn}, Precondition: A training set S := (x1, y1), . . . ,(xn, yn), fea-

tures F, No. of  trees in forest B 

 Results : C={c1,c2,..cn} 

 function Random_Forest(S , F) 

 H ← ∅ ; 

        for i ∈ 1, . . . , B do 

       S (i)   ← A bootstrap sample from S; 

  hi ← Randomized Tree Learn(S (i) , F); 

          H ← H ∪ {hi}; 
        end for 

      return H 

 end function 

function Randomized Tree Learn(S , F) At each node:  

 f  very small subset of F; 

 Split on best feature in f; 

 return The learned tree; 

end function 

 

 Algorithm 1: Baseline Approach 

 

Algorithm description: Algorithm 1 presents the steps of classification of blockchain 

time series data using a baseline (Random Forest) algorithm. In lines 1-2, we prepare 

the training and testing data and create the function random forest with two variables, 

S and F. In lines 3-4, we create an indicator which refers to a sub-tree with 0 value. In 

lines 5-6, we make a loop from 1 to the number of trees created (B). In lines 7-8, we 

assign strap elements from the training set (S). In lines 9-10, we create a function for 

a sub-new tree of the learning set and increment the new sub-tree. In lines 11-12, we 

assign a feature and choose the best subset of features by splitting it. Finally, we re-

turn the best-learned tree and close the function in lines 13-14. 

3.2  Dynamic Random Forest (DRF) 

Dynamic Random Forest (DRF) is an adaptive tree-based classification approach. 

This approach is proposed by Bernard et al., 2012[4]. The key concept is to The ob-

jective is to perform direct tree induction in a manner that maximizes the dependence 

of each tree on the present trees in the ensemble. The achievement of this task is faci l-

itated by the implementation of resampling strategies on the training data[20]. These 

approaches involve the application of boosting methods and the integration of other 

randomization procedures often utilized in traditional Random Forest (RF) systems. 

Regarding accuracy, the DRF outperforms the typical static RF induction approach 

significantly. The Dynamic Random Forest (DRF) encompasses a series of three pri-

mary procedures: the resampling of training data, the integration of boosting methods, 
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and the incorporation of supplementary randomization mechanisms commonly em-

ployed in conventional Random Forest (RF) approaches. The mechanism of DRF is to 

prevent the introduction of trees that might reduce the performance of the forest by 

forcing the algorithm to create only trees that match the already produced ensemble. 

The equation of DRF is explained in the following. 

 

   (   )  
 

  oob 
    ∑  ( i( i)  ∈  oob

                                  (1) 

 

Where I (.) is the indicator function; x represents an input data point, and y represents 

its actual class; hi(x) is a similar formulation. for h(x, Θi), which represents the i -th 

classifier output; and hoob stands for the collection of x out-of-bag trees, i.e. the trees 

for which x is an out-of-bag instance. 

 

Data : D={d1,d2,…,dn} ,D new={d new _1,d new _2,…,d new _n } , T is a 

training set (xi , yi ) ,N is a training instances in T ,M the feature number, M is 

the feature number, L is the forest tree number  

Results: C={c1,c2,..cn} ,C new ={c new_1, c new_ 2,…, c new_ n }  

for all xi ∈  T  do  

Dl (xi) ← 1 / N;  

end for  

    for l  from  1 to  L do  

       Tl← a bootstrap sample; 

       Tl ← Tl weighted with Dl;  

        tree ← Random Tree(Tl); 

        forest ← forest S tree;  

        Z ← 0;  

            for all xi ∈ T do  

                  if  ooBTrees ( xi )  ≠ ∅  then  

         D l +1( xi ) ← W(c(xi , yi));  

       else  

         D l +1 ( xi ) ← Dl ( xi ) ; 

        end if  

       Z ← Z + Dl+1( xi ) ; 

end for  

        for all xi ∈ T do  

          Dl+1( xi ) ← Dl+1( xi ) / Z , 

        end for  

end for  

return forest 

 

 

Algorithm 2: Dynamic Random Forest (DRF) 

  

Algorithm description: Algorithm 2 presents the steps of classification of blockchain 

time series data using the Dynamic Random Forest (DRF) algorithm. In lines 1-2, 



 Contribution Title (shortened if too long) 7 

prepare the training and testing data and create the function random forest with four 

variables N, M, L, and W. In lines 3-4-5, assign an instance for each element in the 

training set. In line 6, make a loop from 1 to the number of trees created (L). In line 7, 

taking a sample training instance randomly from tree. In line 8, put the new training 

instances with a weighted random tree. In lines 9-10, create a new random tree with 

features. In line 11, make an indicator with 0 value. In lines 12-17, for each element 

in the training set, check the value not equal to 0; if it is true, the new element is re-

placed with a new weighted value. In lines 18-19, adjust the Z value with the new tree 

input. In lines 20-21, creating a new tree with new features. However, the DRF ap-

proach involves only insertion operations to update the generated classes. Therefore, 

there is a need to improve the DRF approach to be able to classify web data and main-

tain the generated classes frequently. 

 

3.3  Proposed Improved Dynamic Random Forest (IDRF) 

Figure 1 shows the proposed framework called" Improved Dynamic Random Forest 

(IDRF)". 

 

 
 Fig. 1. IDRF framework 

Improved Dynamic Random Forest (IDRF) approach for blockchain time series data 

classification. It is based on a sequential technique that generates an ensemble of 

random trees by making each one reliant on the one before. The adaptive resampling 

process of boosting inspired this dynamic component of the DRF method. The DRF 

method combines the same concept with the randomization techniques used in 

"classical" RF induction algorithms. 

 

The first phase involves four main stages that are stated as follows: 
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Pre-processing: Data pre-processing converts data into a format that can be han-

dled more readily and efficiently in data mining, machine learning, and other data 

science operations. The approaches are often utilized in the early phases. With many 

dimensions or features per observation, principal component analysis (PCA) is used 

to analyze massive datasets, improve data interpretation while retaining the most in-

formation, and enable multidimensional data visualization. Formally, PCA is a statis-

tical method for lowering a dataset's dimensionality.  

 

 Training data: training data is an essential step in time series data classification to 

train the IDRF approach to get more accurate predictions. 

  

Constructing Decision Tree: A decision tree is generated on a full dataset utiliz-

ing all the attributes of interest. It picks random observations and particular features to 

build numerous decision trees and then averages the results. For classification prob-

lems, the random forest output is the class chosen by the majority of trees. 

Prediction result: The best possible result is obtained by selecting the majority of 

the best value. In this stage, we use many decision trees to get less over-fitting, higher 

accuracy, and approximate missing values. 

 

The second phase involves three main stages that are stated as follows: 

 

Insertion new blockchain data: The first stage in the updating the class is data in-

sertion. New incoming data will be added to the framework to be processed incremen-

tally as shown in figure 1. 

 

Updating decision trees: new decision trees are built. Increasing the number of 

trees will improve the performance of the IDRF approach. With incremental updating, 

historical data instances do not need to be reprocessed to update existing classes. This 

might be helpful in cases where the initial data was too big to handle. Therefore, the 

features of the data change over time, or the complete data is not accessible when the 

tree is updated. 

 

Prediction results: The best result is reached by choosing the majority of the best 

value. At this level, we reduce over-fitting, increasing accuracy and estimating miss-

ing data. 

 
 
Data : D={d1,d2,…,dn}, D new={d new _1,d new _2,…,d new _n } , T represents  training set 

( xi , yi ) ,N represents number of training instances in T , M numbers of features , L numbers 

of trees in the forest to be built ,W(c(x,y)) it’s a weighting function inversely proportional to 

c(x, y)  
Results: C={c1,c2,..cn}, C new ={c new_1, c new_ 2,…, c new_ n }   

from sklearn.decomposition import PCA 

pca = PCA(n_components = 2); 
X_train = pca.fit_transform(X_train()); 
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X_test = pca.transform(X_test); 
explained_variance = pca.explained_variance_ratio; 

    for all xi ∈ T do  
 for l from 1to L do  

   Tl← a bootstrap sample; 

               tree ← Random Tree(Tl) ; 
   forest ← forest S tree ; 

   Dl ( xi ) ← l / N ; 

   Z ← 0 ; 

    for all xi ∈ T do  

       if OoBTrees( xi ) ≠ ∅  then  
         D l+1(xi) ←W(c(xi , yi);  
      else  

         D l+1(xi) ← Dl(xi) ; 

      end if  
    Z   ← Z  +  Dl+1(xi)  ; 

   end for  

     for all  xi ∈ T do  
       D l+1( xi ) ←  D l+1( xi ) / Z; 

       Update  D l+1( xi );   
     end for  

 end for  

 return forest 

Algorithm 3:  Improved Dynamic Random Forest (IDRF) 
 

 
Algorithm description: Algorithm 3 presents the steps of classification of blockchain 

time series data using the proposed  Improved Dynamic Random Forest (DRF) algo-

rithm and, in lines 1-2, prepares the training and testing data. In lines 3-7, recall the 

PCA function for each element in the training and testing set. In lines 8-9, take a sam-

ple training instances randomly from a generated tree. In line 10, put the new training 

instances with a weighted random tree. In lines 11-12, create a new random tree with 

features. In line 13, make an indicator with 0 value. In lines 14-19, for each element in 

the training set, check that the value is not equal to 0; if it is true, the new element is 

replaced with a new weighted value. In lines 20-21, adjust the Z value with the new 

input of the tree (insertion). In lines 22-23, it creates a new tree with new features; in 

line 24, it updates the generated class incrementally.  

4 Experimental Results 

The experimental results of the proposed IDRF approach demonstrated in this section. 

Several evaluation aspects are conducted in this paper to verify the efficiency and 

effectiveness of the proposed classification approaches as well as compare it with 

traditional and existing classification approaches. The experiments are implemented 

in Python programming language and executed by a processor Intel(R) Core(TM) i5-

6300U CPU @ 2.40GHz. 
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4.1 Dataset Description 

We conducted experiments on a real dataset. We use the Bitcoin Heist Ransom Ware 

Address dataset. The format of the dataset is. (.csv) file and the total size is 224 MB. 

The dataset is classified into four subsets: Small, Medium, Large, and Very 

large.  The first subset contains records.  

It is available online at the following link: https://doi.org/10.24432/C5BG8V. 

The experimented dataset includes the whole Bitcoin transaction history from January 

2009 to December 2018. It collected daily network transactions and built the Bitcoin 

graph for 24 hours. The dataset includes ten attributes that are stated as follows: 

address, weight, count, looped  year, day, length,  income, neighbors, label 

4.2 Root Main Square Error (RMSE) 

The Root Main Square Error (RMSE) is one of the most prominent measures for 

evaluating the quality of model predictions. It is extremely helpful to have a single 

number to evaluate a model’s performance. It can be measured during training, cross-

validation, or monitoring after deployment. The equation of RMSE is described as 

follow: 
 
 

                                                                                       

       (2)                     

 

 here   is the number of data points, y(i) is the i-th measurement, and y  (i) is its 

corresponding prediction. 

 
Figure 2 shows the RMSE of the proposed classification approaches (RF, DRF, and 

IDRF). The IDRF has the lowest RMSE value (less prediction errors), whereas the RF 

has the most excellent RMSE value across all subsets. The findings show that the 

DRF has a lower RMSE value than the RF approach and is more significant than the 

IDRF approach (RF>DRF>IDRF), indicating that the IDRF is the most effective 

classification approach. 

 

 

  
Fig. 2. RMSE of the proposed classification approaches (RF, DRF, and IDRF) 

https://doi.org/10.24432/C5BG8V
https://doi.org/10.24432/C5BG8V
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4.3 Accuracy 

Classification accuracy is the ratio of accurate predictions to the total number of input 

samples. Figure 3 shows the accuracy of the proposed classification approaches, in-

cluding Random Forest (RF), Dynamic Random Forest (DRF), and Improved Dynam-

ic Random Forest (IDRF). We can observe that the IDRF has outperformed RF and 

DRF in all subsets of the experimented dataset. The main reason behind this perfor-

mance is using the Principal Component Analysis (PCA) with IDRF approach for 

preprocessing blockchain data. Obviously, it influences by increasing the data quality 

and reducing the computational cost. 

 

 

 

Fig. 3.  Accuracy of the proposed classification approaches 

 

4.4 Execution Time 

The execution time is an essential metric to measure the efficiency and the 

performance of. The length of time needed for a model to run depends on a variety of 

factors, including the size of the dataset and the complexity of the model. Figure 4 

shows the execution time of blockchain time series data classification using DRF and 

IDRF approaches. We observe that the IDRF requires less running time in comparison 

with the DRF approach in the entire subsets. Specifically, the IDRF maintains only 

frequently updated (active) classes to avoid unnecessary computations in both the 

insertion of new data and updating the existing classes. 
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Fig. 4. Execution time of blockchain time series data classification using DRF and IDRF 

approaches 
 

5 CONCLUSION 

 This paper introduces an effective framework for time series blockchain data 

classification. The proposed framework includes two main components: (1) initial 

classification and (2) class maintenance. For classification, we propose a fast and 

effective classification approach called Improved Dynamic Random Forest (IDRF) 

for classifying blockchain time series data. For the class maintenance, IDRF 

dynamically maintains the set of current classes by inserting new data and updating 

the existing classes. Verified experimentally, the proposed approaches outperformed 

other classification approaches regarding accuracy, Root Main Square Errors 

(RMSE), and processing time. The development in the classification and maintenance 

of time series blockchain data can improve the performance of blockchain 

applications. For future work, further improvements will be considered in the 

maintenance approach to be more effective in dynamic situations.  
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