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Feedback Learning: Automating the Process of
Correcting and Completing the Extracted
Information

Abstract—In recent years, with the increasing usage of digital
media and advancements in deep learning architectures, most
of the paper-based documents have been revolutionized into
digital versions. These advancements have helped the state-of-the-
art Optical Character Recognition (OCR) and digital mailroom
technologies become progressively efficient. Commercially, there
already exists end to end systems which use OCR and digital
mailroom technologies for extracting relevant information from
financial documents such as invoices. However, there is plenty of
room for improvement in terms of automating and correcting
post information extracted errors. This paper describes the
user-involved, self-correction concept based on the sequence to
sequence Neural Machine Translation (NMT) as applied to rectify
the incorrectness in the results of the information extraction.
Even though many efficient Post-OCR error rectification methods
have been introduced in the recent past to improve the quality
of digitized documents, they are still imperfect and demand
improvement in the area of context-based error correction
specifically for the documents involving sensitive information.
This paper further illustrates the capability of sequence learning
with the help of feedback provided during each cycle of training,
yields relatively better results and have outsmarted the state-of-
the-art OCR error correction methods.

Index Terms—Document Understanding, Post IE Error Correc-
tion and Completeness, Sequence to Sequence Neural Machine
Translation

I. INTRODUCTION

From the very beginning of computers to the current digital era,
computers have been remarkably transformed and upgraded.
Among many applications, the main purpose of computer is to
process the information. In this age of automation, where the
primary aim is to digitize every thing, one of the essential task
is to capture and process all kinds of documents. While the
documents containing texts are rather interpretable but working
on the scanned images of the documents is certainly not an
effortless operation.

Digital Mailroom System is defined as the system which
receives the mails and processes them automatically. The
processing part in the mailroom system includes various
functionalities like digitizing the mail, it’s classification, dis-
tribution among the related personnel and so on. Optical
Character Recognition (OCR) [[7] is the process that allows us to
convert documents such as scanned paper images, photographs
or invoices into machine readable and editable information
by applying various image processing methodologies [18]],
[S]. These OCR systems have been used mainly to extract

handwritten or typed information in the digital mailroom
systems. The problem arises when these information extraction
systems cannot extract the exact information due to many
reasons like the source graphical document itself is not readable,
scanner has a poor result, characters in the document are too
close to each other resulting in problems like reading “Ouery’
instead of “Query”, “8” instead of ”3”, to name a few. It
is even more challenging to correct errors in proper nouns
like names, addresses and also in numerical values such as
telephone number, insurance number and so on. An example
of a sample invoice can be seen in Figure [T} Let’s suppose we
need to extract first name, last name, date of birth, insurance
number and hospital name from this invoice image, then some
of the possible errors in the extracted information along with
the respective ground truth is shown in Figure 2]

bl

Patient Invoice
First Name: Aabbcc
Last Name: Mnopgr
Date of Birth: 22.01.1973
Insurance Number: 1234567
Hospital Name: Krankenhaus Kaiserslautern

Fig. 1: Synthetic sample invoice image containing information
of the patient.

Extracted Information:
A@bboc MnOpqgr 22.01.1978 1284567 Krank€nhau$ Kajserslaut€nn

Ground Truth:
Aabbcc Mnopqr 22.01.1973 1234567 Krankenhaus Kaiserslautern

Fig. 2: Extracted information from the synthetic sample invoice
(as shown in Figure [I)) and it’s corresponding ground truth.
Some of the errors in the extracted information can be observed
here.

Hence these erroneous words can simply affect the processing
of data specifically when the data is important such as personal
information of clients for a company. Hence, these problems
lead to manual labor where a person has to read all the extracted
information, distinguish the errors and correct the mistakes
every time. Our approach stands to overcome this human labor



part which shall reduce the human effort involved in correcting
and completing the errors and missing information from the
extracted data.

A considerable amount of research has been conducted in
the area of post-Information Extraction (IE) corrections with
various techniques. Few of those techniques involve machine
learning algorithms to rectify the textual errors obtained from
OCR [11],[12],[10] while in another approach, they propose
the method to select most suitable correction among all of the
available options [[13]]. It has also been clearly illustrated that
the errors generated from the IE systems are more diverse than
the handwriting errors [6] and [9]. In one of the previous works
[14], NMT is already used in correcting post-OCR errors in
the historical documents.

In this paper, the data on which we worked on consists of
customer and company profiles based on the type of invoice
processed. For example, in a health care invoice the data might
have all the personal information such as First name, Last
name, Date of birth, Hospital Address, Type of Medicine and
so on. We have 2 cases for this data, one we generate ourselves
and call it as Synthetic data use case whereas another one is a
Private data use case from a health care insurance company.
One of the biggest problem in these use cases is that we cannot
take much help from any language model because most of
the values in the data are the proper nouns. To overcome this
problem we have introduced a new technique called Feedback
Learning over sequence to sequence learning technique.

The rest of the paper is organized as follows. Section
explains the working of NMT whereas Section [[TI] describes
the Feedback Learning process and Section [[V] defines the
methodology used in detail. Section [V]illustrates the design
and experiments. Section [VI] discusses the evaluation of the
obtained results while Section concludes the paper.

II. SEQUENCE TO SEQUENCE NEURAL MACHINE
TRANSLATION

Neural Machine Translation (NMT) is a machine translation
method that uses deep neural networks. Back in the old days,
the usual method for the sentence-based translation system is
executed by dividing the source sentences into multiple pieces
and then translated them sentence-by-sentence, but this leads
to severe problems in the translation outputs because of the
many reasons like less fluency in the language, no or very less
context awareness, order of the translated sentence is totally
inaccurate according to the grammatical rules of the objective
language and so on. Lately, the sequence-to-sequence models
[17] [1] have done wonders not only in such kind of problems
but also in speech recognition and text summarization.

NMT is based on these sequence-to-sequence models which
basically mimics how human interprets any sentence. We
humans read the entire sentence, interpret the meaning, and
then map those words into respective translation. Same is the
case regarding working of NMT [14].

"I am here.” + "Ich bin da”

Fig. 3: A simple representation of an encoder-decoder archi-
tecture [[14] which translates the English sentence "I am here"
into the German language.

The Figure [J]] explains the workflow of NMT. First, the encoder
converts a source sentence into a "meaning" vector (array
of values) which is basically the latent representation of the
features. These features will be passed through a decoder and
the decoder network tries to learn them accurately, having the
vocabulary and grammar of the target language, it produces a
translation.

The implementation of these decoders and encoders have been
executed using different deep learning architectures but since
we are dealing with sequential data (one line per profile), The
Recurrent Neural Network (RNN) is the most suited to work
with encoder and decoder. The encoder in our model is uni-
directional LSTM whereas the decoder is AttentionalRNN. We
selected LSTM because of its outstanding performance in the
fields of speech recognition, language modeling, translation,
and image captioning.

III. FEEDBACK LEARNING

In this paper, we define the feedback learning as a learning
cycle in which the network is being trained by continuously
receiving an input from the user and it will learn those
patterns of correction and after some point in time, when the
network is properly trained it will start resolving those errors
automatically without the external help from the user. To make
it simpler, in the first feedback cycle, network after completing
the first training will translate the results, and those results
will be incorporated along with the training data in the second
feedback cycle. This approach benefits profoundly in the health-
care sector as most of the information in a patient’s billing
invoice is important and any missing or inaccurate report can
cause complication. With the objective of decreasing human
involvement, we focus on achieving a system that auto-corrects
the errors after the feedback cycle. So whenever the network
encounters similar faults or misplaced information in the data, it
predicts the appropriate output by keeping track of the context.
To implement this concept, we have used Neural Machine
Translation (NMT) that has been applied earlier in the past as
well for post-OCR correction [14].

IV. METHODOLOGY

In this section, we present the use of an open source library
called OpenNMT [8]] which uses the neural sequence modeling



to help improving the output of information extraction. We
compare our network model performance with the baseline
method of using the basic Hunspell [[I15] German dictionary
look-up to prove our point that the feedback Learning is not a
normal spell correction method.

A. Word Based Sequence-to-Sequence model

In this model, we use encoder-decoder architecture by treating
post-IE data as neural sequence translation problem. The model
is based on a word level tokenization, the encoder considers
each of the sentence as a sequence of words. The configuration
of our network is explained as below:

1) Layers : 2 (uni-directional RNN LSTM encoder and
Attentional RNN LSTM decoder)

2) Size of Layers : 512

3) Word Embedding Size : 512

4) Dropout Percentage : 30

5) Optimizer : Adam Optimizer

6) Learning Rate : 0.001

7) Beam Width : 4

8) Batch Size : 32

Here, we divide our problem into three sub-tasks Preprocessing,
Training and Inference.

1) Preprocessing

We consider the dataset generated using Faker [3] as described
in Section [V-AT| and the very first step is to build source and
target vocabularies by specifying the size of vocabulary. The
data consists of parallel source (src) and target (trg) data with
one sentence per line and each of the fields are separated by
spaces. Each line in the source file corresponds to the equivalent
line in the target file. The source file consists of erroneous data
from the information extraction and the target file consists of
correct data which acts as ground truth. It indicates that the
error data (src) has to be translated into correct data.

2) Training

From the dataset, we prepared the configuration described
above is saved in the config file to train and evaluate in parallel
on our dataset. Validation in parallel helps in evaluating our
model convergence during the training. The training is done on
a CUDA [2f] enabled NVIDIA GPU and the log information
of training is written to Tensorboard [19]], which helps us to
visualize and monitor training and evaluation loss and few
other characteristics of our model like learning rate and data
distribution.

3) Inference

Once the training is completed, we have our saved model to
evaluate the performance of the model architecture against other
baseline methods. This saved model is now used to predict and
correct the mistakes from our test dataset. The predictions are

done by using beam [[19]] search where multiple hypothetical
target predictions are considered for each sequence during the
individual step and most relevant prediction is taken.

B. Dictionary look-up using Hunspell

In this method, we tokenize the test dataset and pass each
of the words to our custom dictionary using Hunspell[15] to
correct the mistakes and select the best prediction. Here we
use our own dictionary because the dataset in our experiment
contains proper nouns and using a generic German dictionary
would produce a bad result by default. Since our dataset has
numerical values such as insurance number and date of birth,
we correct this information using regular expression because
any dictionary would not be able to predict the numerical
mistakes.

V. EXPERIMENTAL DESIGN

In this section, we present the different kinds of datasets used
for training and testing our network model. We discuss how
each of the datasets is generated and give details of the test cases
involved in the translation of the output. After the prediction,
we evaluate the resulting output from our different test cases
and analyze the performance of the model later.

A. Datasets

1) Synthetic Use Case

This dataset is generated from an open source Python library
named Faker [3]]. We considered private dataset as a base and
tried to replicate a similar format of data by generating data
from the library. For this experiment, we created synthetic
data having 150,000 user profiles with the corresponding
fields (FirstName, LastName, Address, Hospital Name, Hospital
Addpress, Sex, Date of Birth, Phone Number, Insurance Number).
In this data, there are 25,000 unique user profiles and the
rest 125,000 are the replication from the unique profiles with
different combinations of data fields mentioned above.

Now that we have ground truth, the challenge was to simulate
erroneous data almost identical to OCR output. For this purpose,
we used a document analysis tool OCRopus [16] to identify
the statistics of common information extraction errors in
a real-world scenario. From the character distribution stats
through OCRopus, we generated error data by replacing certain
characters from the ground truth with the identified errors.
For example ("a’ : ’0’, ’e’’€’). We created artificial noise
by corrupting 95% of the data generated using Faker with
character replacements. We have assigned percentages to each
of the particular characters which need to be replaced. By the
end of this process, there will be two datasets, one with ground
truth and the other with an error data. For a real world scenario,
the erroneous data represents the extracted information coming
out from a digital mailroom system, and the ground truth
data represents the manually corrected information with the
help of human verification. The sample information sequence,



ground truth and the respective error profile are mentioned
below. It is important to note that the delimiter between the two
consecutive information is space, however, it is also possible
that space could occur within the information element, for
example, the address might have multiple information such as
street name, postcode, city, and country (Leonid-Renner-Platz
71165 Wurzen Hamburg Germany) in the sample.

Information sequence in our dataset follow this order <Address,
Birthdate, Blood Group, First Name, Insurance Number,
Hospital Address, Hospital ID, Hospital Name, Hospital
City, Hospital Postcode, Last Name, Phone Number, Gen-
der>

Ground Truth : Leonid-Renner-Platz 71165 Wurzen Hamburg
Germany 2004-06-08 A+ Reimar 422893598198 Sankt Annen
Str.9 990702828 Krankenhaus St. Anna-Stift Loningen 49624
Wilms 03549 58413 M

Error Data: L€onjd-R€nn€r-Platz 71165 Wurz€n Hamburg,
G €rmony 2004-06-00 A+ Reimar 0422893598198 $ankt Amen
Str.9 960702328 Krankenhau$ St. Anna-Stift Loningen 49624
Wilm$ 03549 58413 M

The dataset is divided into train, test and validation sets having
two parallel documents (Ground truth and error data) since
OpenNMT requires a source(error data) and target(ground truth)
as an input during training. The distribution of the data into
Training, Validation, and Testing is elaborated in the Table

2) Private Use Case

This dataset is rather a small one as compared to synthetic but it
is based on the actual information from an insurance company
which makes this a critical use case. Since the number of given
unique profiles is only 94 which are certainly not enough to
train a deep neural network so we increased the number of
profiles by augmenting the data and introducing different errors
in a similar way as we have made in the synthetic data use
case. This approach leads to 20,000 profiles where each profile
is treated in a single sentence and we have corrupted 95% of
data in the same manner as we did for the synthetic data use
case. The distribution of the data into Training, Validation, and
Testing for this case is also explained in Table [T

Dataset Statistics for both of the use cases
Datasets | # Sentences | Training | Validation | Test
Synthetic 150,000 70,000 10,000 30,000

Private 20,000 12,000 1,000 3,000

TABLE I: Data distribution showing the number of samples
used in each case for the first feedback learning cycle where
one sample is a single user profile.

The Table [II] illustrates the data distribution of feedback cycle
2 which is basically the second iteration. In this loop, we
combine the prediction results obtained from the feedback
cycle 1 with our training data. Hence, the size of the training
set for synthetic use will be 100,000 samples (70,000 + 30,000

from feedback cycle 1). After updating the vocabularies in the
preprocessing stage, we train the model again for further 10,000
steps in the synthetic use case and 5,000 more steps in private
use case. While deciding the number of steps in the second
feedback learning cycle, the evaluation loss is considered as
a significant factor. Once the model is trained, we infer the
test set from Table [l on both of our models and calculate the
prediction accuracy.

Dataset Statistics for both of the use cases
Datasets | # Sentences | Training | Validation | Test
Synthetic 150,000 100,000 10,000 30,000

Private 20,000 15,000 1,000 3,000

TABLE II: Data distribution showing the number of samples
used in each case for the second feedback learning cycle where
one sample is a single user profile.

VI. PERFORMANCE EVALUATION

In this section, we present the results of the various test cases.
This helps us to understand whether the predicted output of
our deep learning trained network has improved or not. The
accuracy is defined as how identical is the predicted document
with respect to the target document. To calculate the accuracy
we use Levenshtein distance[4] as it helps in identifying the
number of edit operations required to transform the error data
to ground truth and it gives the similarity measure between
two documents. In all of our test cases, we have used token
level error measurement. The following test cases were used :

o Test Case 1 : In this experiment, we used the test set that
was obtained by splitting the erroneous data.

o Test Case 2 : In this experiment, we introduced a new
set of errors to test case 1. We did this to check if the
model still predicts the output sequence correctly even
when it has not seen or trained on new kind of errors.
Example : Lconid-Rcenncr-Platz 77165 Wurzen Hamburg
Gcrmany 2004-06-08 A+ Reiiimar 0422893598198 Sankt
Annen Str.9 990702828 Krankenhaus St.Anna-Stift Leanin-
gen 49624 Wiiilms 03549 58413 M

o Test Case 3 : In this experiment, we removed a few data
fields from the ground truth that was generated initially.
Example : Leonid-Renner-Platz 71165 Wurzen Hamburg
Germany 2004-06-08 A+ Sankt Annen Str.9 990702828
Krankenhaus St. Anna-Stift Loningen 49624 Wilms 03549
58413 M

o Test Case 4 : In this experiment, we removed one random

field on even line and two random fields if it’s an odd
line in the dataset.
Example L€onjd-R€nn€r-Platz 71165 Hamburg
G €rmany 2004-06-00 A+ Reimar 0422893598198 $ankt
Amen Str.9 Krankenhau$ St.Anna-Stift Loningen 49624
Wilm$ 03549 58413 M

o Hunspell Case 5 : This experiment is followed on
the basis of the second approach mentioned in the



methodology (IV-B)) of using Hunspell[15] to check the
prediction.

A. Synthetic Use Case

The Table [IT] explains the results for the individual test cases
which were elaborated earlier and it can be clearly seen that
our model has predicted better results in all of the first four test
cases. Another important thing to shed light on is the difference
between the performances from the first four cases and the
fifth case which is the Hunspell. This clearly demonstrates
that the feedback learning technique has absolutely outsmarted
the use of the dictionary in post-IE correction specially when
the dataset consists of many proper nouns while the Table
presents the results of Table [[II] showing the improvement in
accuracy after the second feedback learning cycle.

Test Cases Accuracy Before Accuracy After
1 27.14 93.21
2 27.03 92.47
3 38.80 91.48
4 21.08 90.89
5 27.14 31.39

TABLE III: Accuracy in each of the test case before and after
applying the trained model on extracted information in the first
feedback learning cycle.

Test Cases Accuracy Before Feedback Accuracy
1 93.21 94.91
2 92.47 93.22
3 91.48 93.18
4 90.89 92.63
5 31.39 32.12

TABLE IV: Accuracy in each test case before and after applying
the trained model on extracted information in the second
feedback learning cycle.

The Figure displays the evaluation loss of our training
model. The training has been stopped by us after 15,000 steps
since the evaluation loss starts ascending and could cause the
model to overfit. The orange line indicates the training loss
while the blue line implies the evaluation loss.

B. Private Use Case

For the private use case, we have also achieved fairly good
results. The Table describes the result on post OCR
information extraction done on the data directly taken from
the OCR output.

The Figure [3]] is the evaluation loss of private use case and
the training is done only until 10,000 steps as the dataset is
small and it has least validation loss at that particular point.

Tralning Steps -
0.000 2.000K 4.000K 6.000K 8.000! 10.000K 12.000K 14.000K 16.000K

Fig. 4: Training progress of the network after every 2,000
steps on Synthetic use case to monitor the evaluation loss. The
model starts to converge after 15,000 steps.

Test Cases Accuracy Before
1 59.45

Feedback Accuracy
91.15

TABLE V: Accuracy of Private test case before and after
applying the trained model on extracted information in the first
feedback learning cycle.

The Table [V]] represents the results of Table [V| and it clearly
depicts the improvement in accuracy after the second feedback
learning cycle in the private use case as well.

0.00 = = =
Training Steps

0000 Lo0ok 2000 3000k 4000k 5000k 6000k 7000k 8000k 9000k

Fig. 5: Training progress of the network after every 1,000 steps
on Private use case to monitor the evaluation loss. The model
starts to converge after 9,000 steps

Test Cases Accuracy Before
1 91.15

Feedback Accuracy
92.61

TABLE VI: Accuracy of Private test case before and after
applying the trained model on extracted information in the
second feedback learning cycle.

C. Significance Test

We wanted to prove that the new model trained in the second
feedback cycle having the prediction results from the first
feedback cycle would give us better results as compared to
the model trained in the first feedback cycle. We proposed
a null hypothesis which is precisely the contradiction of our
assumption. In order to reject or accept the null hypothesis,
we performed the significance test by applying reinforcement
sampling technique and divided our synthetic test set of 30,000
samples into 10 pieces of 3,000 samples each and a private
test set of 3,000 samples into 10 batches of 300 samples.
We calculated the prediction accuracy by inferring each of
these samples and our t-test value identifies that the new
model produced after second feedback cycle has a significant



improvement in performance and predicted better results. This
also proves our assumption and rejects the null hypothesis. It
also helps us recognizing another point that retraining with
the predicted output will always improve the results each time
accounting to the feedback patterns and reduces the human
involvement in correcting the errors with the increase in the
size of the dataset.

VII. CONCLUSION

Post-IE error corrections have become a vital step for pro-
cessing information from the graphical documents. Sometimes
these corrections develop into a challenging task, specially
when the data is not prominent in the scanned images, along
with it, when we are treating proper noun error correction. In
this paper, we proposed the new feedback learning technique
that explains how erroneous words after information extraction
can be corrected by reducing the human effort in the detection
and correction of post-IE errors. We have implemented this
concept through deep learning architecture using OpenNMT
which is an open source tool. Our method manages to convert
27.14% accuracy of information extraction in test case 1 into
93.21% accuracy of information extraction after first feedback
learning cycle and this accuracy is further increased up to
94.91% in the second feedback learning cycle in the synthetic
use case. While in the private use case it, converts 59.45%
accuracy of information extraction for the test case 1 into
91.15% accuracy after first feedback learning cycle which is
further improved to 92.61% in the second feedback learning
cycle.

Our current results have involved word based tokenization;
however, it would be interesting to explore the current approach
using character-based tokenization. Taking the limited size of
the dataset into consideration, we have used uni-directional
LSTM. In case of a relatively bigger dataset, bi-directional
LSTM can be used which may lead to even better performances.
Exploiting this feedback learning approach on other supervised
classification problems could be a thought-provoking idea.
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