
EasyChair Preprint

№ 600

Challenges and proposals for enabling dynamic

heterogeneous execution of Big Data frameworks

Maria Xekalaki, Juan Fumero and Christos Kotselidis

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

October 31, 2018

Challenges and proposals for enabling dynamic
heterogeneous execution of Big Data frameworks

Maria Xekalaki
School of Computer Science
The University of Manchester

Manchester, UK
maria.xekalaki@manchester.ac.uk

Juan Fumero
School of Computer Science
The University of Manchester

Manchester, UK
juan.fumero@manchester.ac.uk

Christos Kotselidis
School of Computer Science
The University of Manchester

Manchester, UK
christos.kotselidis@manchester.ac.uk

Abstract—The efficient execution of Big Data applications
requires a large quantity of compute and memory resources.
Typically, these resources are in the form of data centres with
numerous processing elements connected through a computer
network. Although initially the majority of data centers were
utilizing only CPU resources, nowadays we can find hetero-
geneous accelerators such as GPUs and FPGAs. Ideally, Big
Data frameworks and applications should exploit those diverse
hardware resources in order to push their performance bound-
aries or increase resource utilization. Despite ongoing work to
enable such functionality, the majority of the solutions revolve
around external libraries that provide pre-compiled kernels for
heterogeneous accelerators. This fact imposes programmability
and code fragmentation challenges that can only be addressed by
enabling Big Data platforms to dynamically compile and execute
their code on such devices.

In this paper we analyze and discuss the major challenges for
programming and executing Big Data processing applications on
distributed systems with heterogeneous hardware. In addition, we
present our work-in-progress towards providing a heterogeneous
programming framework for running Big Data applications on
systems that include diverse hardware resources including CPUs,
GPUs, and FPGAs. In contrast to existing approaches, our
envisioned solution employs JIT compilation and runtime sup-
port, integrated in the data flow engine, enabling the automatic
acceleration of Big Data platforms completely transparently to
the user and without sacrificing programmability.

Index Terms—Big Data Frameworks; Apache Flink; GPGPUs

I. INTRODUCTION

The advent of data intensive applications in the form of
social media analytics, machine learning, and the Internet
of Things (IoT), has resulted in a plethora of Big Data
processing frameworks [1] including, but not limited to,
MapReduce [2], Apache Flink [3], Spark [4] and Storm [5].
These systems enable programmers to express computations in
high-level programming languages such as Java, Scala, Python
and R which are executed on commodity clusters or cloud
environments. The performance of the aforementioned systems
is directly linked to the processing capacity of the underlying
hardware configuration currently following a scale-out or a
scale-up approach.

In order to tackle the ever-increasing need for extreme com-
pute capabilities, cloud providers (e.g. Google [6], Amazon [7],
etc.) have recently started investing in equipping their clusters

with heterogeneous hardware, such as Graphics Processing
Units (GPUs) and Field Programmable Gate Arrays (FPGAs),
to increase their computational power and energy efficiency.

Although such heterogeneous cloud deployments are public
and ready-to-use, Big Data platforms can not currently exploit
them in a transparent manner. Any solutions or proposals,
mainly derived from academia, tackle the challenge of hetero-
geneous Big Data acceleration by introducing external libraries
that contain specific pre-defined and pre-compiled kernels. By
offloading specific parts of the computation, reflected by those
kernels, Big Data platforms can exploit heterogeneous hardware
in a non-transparent manner by combining multiple program-
ming models. By following this approach, the programming
models become fragmented since well-known data-flow engines
execute code of managed programming languages (such as
Java and Scala) while GPUs and FPGAs are only programmed
with C-based languages like OpenCL and CUDA. Since the
majority of Big Data frameworks are Java-based, and hence
execute on top of a Java Virtual Machine (JVM) [8], adding
JVM support for heterogeneous execution could potentially
solve that problem. Although there is a limited number of
projects that perform GPU compilation for Java programs
(e.g. Aparapi [9], IBM-J9 [10] and Marawacc [11], [12]),
both their proper integration with Big Data frameworks and
execution capabilities pose challenges in enabling transparent
and dynamic Big Data acceleration on heterogeneous hardware.

In this paper we present the current challenges and consider-
ations when programming Big Data applications on heteroge-
neous distributed systems (e.g., clusters of computers with CPU,
GPUs, and FPGAs connected through a network). In addition,
we present our work-in-progress towards providing a common
programming paradigm and framework for accelerating Big
Data applications dynamically and transparently to the users.
To showcase our solutions, we modified the existing Apache
Flink, for batch data processing, to allow programmers to
execute workloads on CPUs and GPUs transparently. Our
proposal includes a runtime layer integrated into the Apache
Flink runtime that allows automatic compilation and execution
on the heterogeneous cluster. To allow GPU execution, we use
Tornado [13], [14], a practical heterogeneous programming
framework that executes Java programs on OpenCL-compatible
hardware.

In detail, this paper contributes the following:
• It presents the main challenges for enabling Big Data

applications and frameworks to exploit heterogeneous
hardware resources dynamically and transparently to the
users.

• It demonstrates our work-in-progress towards integrating
a batch and stream data processing engine (Apache Flink)
with a heterogeneous programming framework (Tornado),
in order to enable heterogeneous execution of Big Data
applications.

II. CHALLENGES

Enabling the automatic and transparent acceleration of Big
Data frameworks on heterogeneous hardware entails a number
of challenges which are outlined in the following subsections:

a) Programmability: Developing Big Data applications
on distributed memory systems (e.g., clusters of compute nodes
and data centers) is a challenging task that combines multiple
programming paradigms. Structured parallel programming,
combined with Map/Reduce operators, is the basis of the most
recent and extended parallel programming frameworks for
Big Data analytics and processing. In addition, the successful
Map/Reduce programming paradigm is often combined with
ideas borrowed from functional programming, facilitating the
development process of parallel and distributed applications.
For example, Apache Flink exposes a set of parallel operations
such as map, reduce, filter, and group. This programming
style(s) is commonly expressed with high-level programming
languages like Java, Python and R. The combination of the
high-level languages, the use of structured parallel patterns, and
the operator-style processing of Big Data frameworks enables
programmers and researchers to prototype their ideas very
rapidly since they are not expected to possess specific set of
skills for parallel programming.

Unfortunately, when combining these ideas and program-
ming styles with heterogeneous computing, applications are
becoming increasingly complex. For example, GPUs are
usually programmed in C-like, low-level programming models
and languages, with the most common ones being CUDA
and OpenCL. When programming from high-level Big Data
frameworks such as Flink or Spark, users need to mix Java and
Scala code with low-level CUDA and OpenCL. This creates not
only programmability challenges, since programmers of various
expertise are required, but also results in code fragmentation
and code maintenance issues. Ideally, the runtime system
supporting the Big Data framework should provide compilation
and runtime support for arbitrarily compiling any code segment
to any hardware device completely transparently to the user.
By using the same parallel and structured patterns such as
map and reduce, developers should benefit from the underlying
hardware capabilities without having to manually code their
application in a different programming language.

In addition, users need to compose map/reduce operations
in a different way to fully utilize the GPUs. For example,
Apache Flink processes items from input data collections
(called data sets) at the granularity of a single element. When

computing on heterogeneous and parallel hardware such as
GPUs, computation needs to be performed in a coarse grain
rather than a fine grain manner. This is due to the fact
GPUs or other devices have different and distinct memory
and address spaces. Hence, any data used during execution
must be explicitly allocated and then transferred from the
main host (e.g., a CPU) to the target compute-device (e.g., a
GPU). Therefore, the Big Data framework should factor in
the execution time (or the anticipated performance) the time
required to perform a bulk copy of data to the heterogeneous
device.

b) Data Partitioning: Batch and stream data processing
are the two main computational models that the most common
frameworks support. For example, although Apache Spark was
originally designed for batch processing, it recently added
support for micro-batch data processing where data is first
accumulated into a buffer and then processed at once. Stream
data processing, currently supported by Apache Flink, enables
computations as soon as data becomes available. Depending on
the input application and business’ requirements, developers
can select between the two modes of execution.

Although these two models work well for computations on
homogeneous architectures (CPUs), they face challenges when
applied in a heterogeneous context due to data partitioning. The
main challenge in data partitioning for Big Data applications is
to find the right balance in order to maximize the performance
and utilization of the underlying heterogeneous hardware
resources. The decision on which device a particular task should
execute must be accompanied by the correct data granularity
upon which the execution will be performed. For example,
if the runtime system selects a GPU for execution, the data
partitioning should dynamically be divided in such as way
that maximizes resource utilization on GPUs. Otherwise, the
performance will degrade compared to CPU-only execution, in
which an even data distribution between cores suffices both for
load-balancing and non-starvation of the hardware resources.

c) Fault Tolerance: Big Data frameworks utilize check-
pointing [15] in order to provide fault-tolerant execution.
Checkpoints are global asynchronous snapshots of the state of
an application and they are used to recover the computation
from a predefined point, in case an error occurs. For example, if
a server crashes or goes offline, a main server can re-schedule
the job amongst the rest of the operational servers from the
last checkpoint. The frequency of checkpointing typically can
be user-defined (for example via a time-stamp) and poses
a trade-off between execution time and replay actions upon
restoring a checkpoint. The more frequently we checkpoint our
application, the less work we will have to repeat upon a failure
in the expense of time spent to perform the checkpointing.

Although this trade-off is evident and can be calculated in
advance for CPU-only execution, it poses significant challenges
when executing on heterogeneous hardware. For example if
we consider GPUs, both the parallel execution of code and the
coarse granularity of data they operate on, can influence the
efficiency of checkpoint operations due to the following reasons:
1) checkpointing in GPUs is a more expensive operation

compared to CPUs since data must be copied back to the
host’s memory, and 2) the infrequent checkpointing of GPU
executed code, as a means to tackle the performance overhead,
can result in significant replay operations due to the bulk
execution granularity they operate on.

d) Maintaining the Data Value: This challenge correlates
directly with the processing granularity that heterogeneous
devices, such as GPUs, require. With respect to time-critical
data where its value is highly dependent on its lifespan, it is
imperative to process it as soon as possible. However, in GPU
processing this may not be feasible due to the fact we have to
perform bulk computations on coarse-grain data since they are
designed for high-throughput, rather than low-latency.

Finding the right balance between the amount of data to be
processed on distributed memory systems and keeping the data
value by processing it in real-time is a significant challenge.
Ideally, an optimizing Big Data processing runtime should be
aware of these trade-offs and adapt itself to the best combination
in order to satisfy the user requirements.

III. BACKGROUND

In this paper we attempt to tackle the challenge of pro-
grammability by enabling dynamic compilation and execution
of Big Data frameworks on heterogeneous devices. As a proof-
of-concept, we prototype our solutions by combining the state-
of-the-art Apache Flink execution engine with the Tornado
framework.

We considered several aspects regarding platform capabilities
and implementation details before selecting the Big Data
framework for our proof-of-concept implementation. Currently,
the most popular frameworks are Apache Spark, Flink, and
Storm [16]. As discussed by Karimov et. al. [17], the selection
of a platform highly depends on the nature of the running
application. Apache Flink and Storm are predominately stream-
ing engines that also support batch processing, unlike Spark,
which is mostly used for batch processing with its streaming
capabilities being in the form of micro-batching [18]. Our aim
is to enable heterogeneous execution for both stream and batch
data applications and hence we opted for Apache Flink to
showcase our solutions. In addition, the code base of Apache
Flink is closer to a pure Java implementation which makes the
integration with Tornado easier compared to the rest (e.g. Scala-
based in Apache Spark). Nevertheless, our proposed solutions
are orthogonal to the Big Data framework and can be applied
to any JVM-based frameworks and platforms.

This section provides an overview of the frameworks used,
while Section IV describes our work-in-progress in enabling
GPU execution on Apache Flink.

A. Apache Flink

Apache Flink is a Big Data framework for both batch and
stream processing. Figure 1 depicts the main components of
the Apache Flink architecture. A typical Flink cluster consists
of a client, a Job Manager, and at least one Task Manager. The
client creates a data-flow graph that models how the data flows
between Flink operators, such as map and reduce, and deploys

Flink Client

Flink program

Job Manager

Scheduler

Task Slot

Task Manager #1
Task Slot

Memory Manager

Task Slot

Task Manager #2
Task Slot

Memory Manager

...

Fig. 1: Overview of the Apache Flink Architecture

it to the Job Manager. The Job Manager is the main process
(normally allocated in a dedicated server) that uses round-robin
scheduling to distribute the computation among the available
Task Managers. It is also responsible for tracking the status of
each operation and coordinating the various checkpoints.

The Task Managers are the processes that are executed on
the compute nodes of the cluster. These processes define their
available resources through task slots that can run pipelines
of successive tasks. Additionally, the memory within a Task
Manager is equally split among all task slots. For instance, if
a Task Manager has four task slots, each pipeline that runs on
these task slots will utilize 1/4 of its managed memory.

Apache Flink has two core Application Programming In-
terfaces (APIs): the data set API, which is used for finite
data sets and the data stream API which is used for real time
data processing. Furthermore, Apache Flink user functions
are regular Java or Scala methods that implement a set of
transformations (e.g., map, reduce, group, join) on data sets
or data streams.

B. Tornado

Tornado is a practical heterogeneous programming frame-
work for Java programs generating OpenCL C code through
JIT compilation. One of the main advantages of Tornado is
that it supports dynamic configuration allowing developers to
identify data-parallel code and the device it should execute on.
Tornado consists of three software layers as shown in Figure 2:

1) The Tornado API: Tornado uses a task-based API
that allows developers to group tasks together so that
the runtime can perform data transfer optimizations
automatically. In addition, developers can identify a data-
parallel loop by adding a Parallel annotation (@Parallel)
before its induction variable for auto-parallelization.

2) The Tornado Runtime: The Tornado Runtime is respon-
sible for performing data management optimizations and
coordinating the execution between the host and the
hardware accelerators.

3) The Tornado Compiler: Tornado is equipped with a Just-
In-Time compiler that dynamically produces machine
code for each target device. Moreover, the compiler

JIT Heap

Optimiser

OCL- Execution Engine

DFG
Tornado
Runtime

Tornado
Compiler

Task
Schedule

Task
API

Tornado
API

Fig. 2: Tornado Overview

Listing 1: An array multiplication on Tornado
1 public void mult(int[] a, int[] b, int[] c) {
2 for (@Parallel int i = 0; i < c.length; i++) {
3 c[i] = a[i]*b[i];
4 }}
5 // Tornado task-composition
6 TaskSchedule s = new TaskSchedule("s0")
7 .task("t0", myClass::mult, a, b, c)
8 .streamOut(c)
9 .execute();

communicates with the OpenCL drivers to install the
code on the device, perform data allocation, and transfer
data between the host and the target device.

Listing 1 shows a multiplication example of two integer
arrays in Tornado. As already mentioned, since Tornado has
a task-based API we create a task-schedule. This schedule
contains a single task that stores the mult function, the input
arrays a and b, and the output array c. Since Tornado does
not automatically copy back the result from the accelerator to
the main host, a streamOut operation is necessary. This way
Tornado minimizes the amount of data transfers since only
the necessary data will be copied back using this operation.
Finally, the execution begins with the execute call in line 9.

IV. ENABLING GPU EXECUTION WITHIN FLINK

This section presents our proposal to automatically enable
GPU execution in Apache Flink. In our implementation we
utilize Tornado in order accelerate Flink applications using
heterogeneous hardware resources. The integration of Flink and
Tornado takes place in two components of Flink, the Client and
the Task Manager. An overview of the integration is illustrated
in Figure 3. Our contributions to the existing Flink platform
are represented in light-yellow.

a) Extending the Flink-API: On the Client side, we
extended Flink with a set of interfaces and classes that enable
programmers to exploit Tornado and run on GPUs, while
adhering to Flink’s programming model.

The UML diagram of Figure 4 presents the new class
hierarchy for a Flink map transformation in our proposed
framework. The purple components of the UML diagram shows
our extensions over the existing MapFunction interface in Flink.
We provide a new interface called TornadoMapFunction with a

Flink Client

Tornado Compatible
Functions

Job Manager

Scheduler

Task Manager

JIT Heap
Tornado
Compiler

Optimiser

OCL- Execution Engine

DFG
Tornado
Runtime

TaskSchedule(“s0”)
.task(“t1”,f1,D1,D2,out1)
.streamOut(out1).execute();

 ...

Function Buffer

f1 f2 f3 DS1 DS2

Data Buffer

Fig. 3: Flink-Tornado integration overview

set of typed and non-generic new methods tmap (Tornado maps).
Because Tornado does not currently support Java generics, we
define a set of methods with common data types that users can
override and execute.

Additionally, we provide a new abstract class called
TornadoMapFunctionBase, which implements the tmap meth-
ods with a common template. This is because the Tornado
API exposes task-based parallelism while Flink exposes data-
parallelism. We provide a small snippet as a template to
convert from data parallelism to task-based parallelism in this
abstract class. In this way, the full method is compatible with
the Tornado programming model while keeping the Flink’s
semantics.

b) Extending the Task Manager: The second part we have
extended to enable Flink’s execution on heterogeneous devices
is the Task Manager. Flink currently executes its operations in a
fine-grained way. This means that when a Flink computation is
available in the task manager for final execution, the execution
pipeline of operations is defined to be executed element by
element. This architecture allows Flink to have fine-grain
control over checkpoints and failures. However, this is not
suitable for computation on heterogeneous hardware such as
GPUs.

To make the execution flow compatible with Tornado and
GPUs, we extended the Task Managers to store task information
(data sets and input functions) into internal buffers. When a
data sink task is deployed to the Task Manager, the Tornado
Task Schedules are created and perform all the computations
on GPUs using the stored information. The final output is
then collected by the data sink similarly to the original Flink
implementation. As a result, the user obtains the output in the
existing and expected Flink’s objects, while the execution has
been performed on a GPU.

To illustrate our extensions, we present K-means as an
example that demonstrates how a Flink application can be
adapted to run on our proposed framework.

MapFlinkUserClass
+ compute(double[]...) : void

{abstract} TornadoMapFunctionBase
+ {abstract} compute(double[] ...) : void
+ tmap(double[] ...) : void

<<Interface>> TornadoMapFunction
+ tmap(double[] ...) : void
+ map(T) : O

<<Interface>> MapFunction
+ map(T) : O

Extends

Fig. 4: Flink-Tornado Integration API

Listing 2: Kmeans on Apache Flink: main function
1 loop = centroids
2 .iterate(params.getInt("iterations", 10));
3 newCentroids = points
4 .map(new SelectNearestCenter())
5 .withBroadcastSet(loop, "centroids")
6 .map(new CountAppender())
7 .groupBy(0)
8 .reduce(new CentroidAccumulator())
9 .map(new CentroidAverager());
10 finalCentroids = loop.closeWith(newCentroids);
11 clusteredPoints = points
12 .map(new SelectNearestCenter())
13 .withBroadcastSet(finalCentroids, "centroids");

A. K-means

K-means is a popular clustering algorithm [19] that groups
points with their nearest centroids. Initially, each point is
assigned to the centroid closest to it. Then, for each centroid,
the mean of the distance between itself and all the points
assigned to it is calculated. In turn, the centroid is then moved
to the calculated position. This process is repeated until no
points change their centroid cluster or after a specified number
of iterations.

a) K-means on Apache Flink: Listing 2 illustrates a
sketch of the K-means application in Apache Flink. As shown,
four transformations (three map and one reduce) are applied
to the points and centroids data sets for a fixed number of
iterations. After this pipeline of operations is executed, the
points are assigned to the new centroids by applying a map

transformation to the points and the new centroids data sets
(line 12). The functionality of each transformation is defined
by user functions.

b) K-means on Flink-Tornado: The process of creating
a version of K-means that is Tornado compatible consists of
two phases:

Listing 3: Kmeans on Apache Flink: SelectNearestCentroid
1 class SelectNearestCenter extends RichMapFunction {
2 @Override
3 public Tuple2<Integer, Point> map(Point p) {
4 for (Centroid centroid : centroids) {
5 closestCentroidId = computeDistance(...)
6 }
7 return new Tuple2<>(closestCentroidId, p);
8 }
9 }

Listing 4: Kmeans on Flink/Tornado: SelectNearestCentroid
1 class SelectNearestCenter extends

↪→ TornadoMapFunctionBase {
2 public void compute(double[] centroids_id[], ...,

↪→ double[] pointX ...) {
3 for (@Parallel int j = 0; j < numOfPoints; j++) {
4 for (int i = 0; i < numOfCentroids; i++) {
5 closestCentroidId = computeDistance(...)
6 }
7 result_id[j] = closestCentroidId;
8 }
9 }

1) Adapting the user functions to be compatible with the
Tornado API.

2) Collecting all the input data and functions in the Task
Managers to create the appropriate task schedules.

Listing 4 illustrates how the user function of Listing 3 has
been adapted to be compatible with Tornado. Since Tornado
operates on primitive arrays, the arguments of the function are
two arrays for the points (one for each x, y coordinates) and
three arrays for the centroids (one that stores their ids and two
for their x, y coordinates). The code is inside a for loop in
order to be executed for all the elements of the points’ arrays.
The remaining of the user functions were transformed in a
similar manner.

The execution then proceeds like in a typical Flink cluster
until the Job Manager starts deploying the Execution Graph
among the Task Managers. Each task that is deployed to a Task
Manager, it stores either data, if it is a data source task, or a
user function. When the Task Manager receives the data sink
task, all the necessary information to complete the execution
is available.

The task schedules shown in Listing 5 represent the K-means
control flow as presented in Listing 2. The first task schedule
contains one task with the first map operation (line 4, Listing 2)
that maps each point to its nearest centroid. To simulate the
groupBy operation in line 7 of Listing 2, two new arrays are
created for each centroid that store the coordinates of the points
that are mapped to them. Then, a new Task Schedule applies a
reduce and a map transformation on the points of each centroid.
The execution of these schedules is repeated for the specified
number of iterations. Finally, the Task Schedule in line 20
(Listing 5), maps the points to their new centroids. After the
last Task Schedule is executed, the results are consumed by
the data sink.

Listing 5: Kmeans on Flink/Tornado: Task Schedules
1 public class Task implements Runnable {
2 run() {
3 ...
4 for (int i = 0; i < iterations; i++) {
5 new TaskSchedule("s0")
6 .task("t0", selectnearestcenter::tmap,

↪→ centroidsId, centroidsX, centroidsY,
↪→ pointsX, pointsY, sel_id)

7 .streamOut(sel_id)
8 .execute();
9 ...
10 for (int m = 0; m < numOfcentroids; m++) {
11 ...
12 new TaskSchedule("s1")
13 .task("t1", centroidaccum::treduce,

↪→ points_x_centr_m, points_y_centr_m,
↪→ accum)

14 .task("t2", centroidavg::tmap, accum,
↪→ newcentroids)

15 .streamOut(newcentroids)
16 .execute();
17 }
18 ...
19 }
20 new TaskSchedule("s2")
21 .task("t3", selectnearestcenter::tmap,

↪→ centroidsId, newcentrx, newcentry,
↪→ pointsX, pointsY, finalOutput)

22 .streamOut(finalOutput)
23 .execute();
24 ...
25 }
26 }

V. RELATED WORK

Over the last decade, several research efforts have been
made towards accelerating Big Data applications using het-
erogeneous hardware resources. HadoopCL [20], for example,
generates OpenCL code using the Aparapi framework similarly
to other state-of-the-art frameworks, like HeteroDoop [21],
Glasswing [22] and HeterosSpark [23]. All of these frameworks
rely on precompiled OpenCL and native kernels and to the
best of our knowledge, no other heterogeneous Big Data
framework supports dynamic configuration and JIT compilation
in a hardware agnostic manner.

Regarding improving the programmability of heterogeneous
hardware devices, Voodoo [24] achieves that by providing an
algebraic programming model and a compiler that produces
OpenCL C code. Although Voodoo has a similar vision to
ours (that is, to tackle the programmability challenges on
heterogeneous hardware resources), it targets databases instead
of Big Data frameworks, and, consequently, its API focuses on
a different kind of functionality. In addition, Voodoo does
not support control flow operations, which is an essential
part of Object Oriented programming; a vital feature required
by the majority of the Big Data frameworks’ user programs.
Furthermore, Weld et. al. [25] propose a runtime that provides
a programming abstraction between disjoint libraries and
frameworks that can be integrated into Apache Spark. However,

it does not yet target heterogeneous accelerators, unlike our
proposed Big Data stack.

VI. CONCLUSIONS AND FUTURE WORK

Enabling Big Data applications and frameworks to use a
wide number of compute nodes and heterogeneous hardware
resources is still under research. This paper discusses the major
challenges to implement such types of applications and it
presents our work-in-progress towards improving programma-
bility of Big Data applications in order to enable the transparent
use of GPUs and CPUs. Our solution is based on the state-
of-the-art Apache Flink and Tornado frameworks, and we
showcase their current integration status by using K-means
as a use-case. The novelty of our solution is that, although
we augmented the Flink’s API, we preserve the semantics of
original programs in Flink while enabling GPU execution.

In the future, we plan to address other challenges besides
programmability such as making our integrated framework
fault-tolerant by implementing checkpoints on heterogeneous
devices and dynamically partitioning data between heteroge-
neous hardware efficiently. Additionally, we plan to enable
autoparallelization, eliminating the need for the developers to
manually mark the data parallel loops using the @Parallel

annotation. Instead, an extra compiler phase will be added to
Tornado that will automatically identify the data dependencies
in the loops and try to parallelize the code if possible. Finally,
we also aim to target other types of heterogeneous hardware,
such as FPGAs, and to evaluate our system on CPUs, GPU
and FPGAs.

ACKNOWLEDGMENT

This work is partially supported by the EU Horizon 2020
E2Data 780245. We would like to thank Viktor Rosenfeld,
Sebastian Bress, Foivos Zakkak, Steffen Zeuch, and Clemens
Lutz for their feedback and valuable discussions.

REFERENCES

[1] U. Sivarajah, M. M. Kamal, Z. Irani, and V. hanth Weerakkody., “Critical
analysis of big data challenges and analytical methods.” Journal of
Business Research 70, pp. 263–286, 2017.

[2] J. Dean and S. Ghemawat, “MapReduce: simplified data processing on
large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107–113, Jan. 2008.

[3] P. Carbone, S. Ewen, S. Haridi, A. Katsifodimos, V. Markl, and
K. Tzoumas, “Apache flink: Stream and batch processing in a single
engine.” In IEEE Data Engineering Bulletin, Volume 38, 2015.

[4] A. Spark. https://spark.apache.org/. [Online]. Available:
https://spark.apache.org/

[5] A. Storm. http://storm.apache.org/. [Online]. Available:
http://storm.apache.org/

[6] G. C. P. B. J. Barrus. (2017) Gpus are now available for google
compute engine and cloud machine learning. [Online]. Available:
https://cloudplatform.googleblog.com/2017/02/GPUs-are-now-available-
for-Google-Compute-Engine-and-Cloud-Machine-Learning.html

[7] A. W. Services. https://aws.amazon.com/hpc/. [Online]. Available:
https://aws.amazon.com/hpc/

[8] T. Lindholm, F. Yellin, G. Bracha, and A. Buckley, The Java Virtual
Machine Specification, Java SE 8 Edition, 1st ed. Addison-Wesley
Professional, 2014.

[9] G. Frost. Aparapi. [Online]. Available:
https://code.google.com/archive/p/aparapi/

[10] IBM, “Ibm j9 virtual machine,” 2018. [Online]. Available:
https://www.ibm.com/support/knowledgecenter/en/SSYKE2_7.0.0/com
.ibm.java.win.70.doc/user/java_jvm.html

[11] J. J. Fumero, T. Remmelg, M. Steuwer, and C. Dubach, “Runtime Code
Generation and Data Management for Heterogeneous Computing in Java,”
in Proceedings of the Principles and Practices of Programming on The
Java Platform, ser. PPPJ ’15. New York, NY, USA: ACM, 2015, pp.
16–26.

[12] J. J. Fumero, M. Steuwer, and C. Dubach, “A Composable Array Function
Interface for Heterogeneous Computing in Java,” in Proceedings of
ACM SIGPLAN International Workshop on Libraries, Languages, and
Compilers for Array Programming, ser. ARRAY’14. New York, NY,
USA: ACM, 2014, pp. 44:44–44:49.

[13] J. Clarkson, J. Fumero, M. Papadimitriou, F. S. Zakkak, M. Xekalaki,
C. Kotselidis, and M. Luján, “Exploiting High-performance
Heterogeneous Hardware for Java Programs Using Graal,” in Proceedings
of the 15th International Conference on Managed Languages & Runtimes,
ser. ManLang ’18. New York, NY, USA: ACM, 2018, pp. 4:1–4:13.
[Online]. Available: http://doi.acm.org/10.1145/3237009.3237016

[14] C. Kotselidis, J. Clarkson, A. Rodchenko, A. Nisbet, J. Mawer, and
M. Luján, “Heterogeneous Managed Runtime Systems: A Computer
Vision Case Study,” in Proceedings of the 13th ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments, ser. VEE
’17. New York, NY, USA: ACM, 2017, pp. 74–82.

[15] P. Carbone, S. Ewen, G. Fóra, S. Haridi, S. Richter, and
K. Tzoumas, “State management in apache flink®: Consistent
stateful distributed stream processing,” Proc. VLDB Endow.,
vol. 10, no. 12, pp. 1718–1729, Aug. 2017. [Online]. Available:
https://doi.org/10.14778/3137765.3137777

[16] S. Chintapalli, D. Dagit, B. Evans, R. Farivar, T. Graves, M. Holderbaugh,
Z. Liu, K. Nusbaum, K. Patil, B. Peng, and P. Poulosky, “Benchmarking
streaming computation engines: Storm, flink and spark streaming,” 2016
IEEE International Parallel and Distributed Processing Symposium
Workshops (IPDPSW), pp. 1789–1792, 2016.

[17] J. Karimov, T. Rabl, A. Katsifodimos, R. Samarev, H. Heiskanen, and

V. Markl, “Benchmarking distributed stream processing engines,” arXiv
preprint arXiv:1802.08496 (2018)., 2018.

[18] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica, “Dis-
cretized streams : A fault-tolerant model for scalable stream processing,”
in ACM, 2013, pp. 423–438.

[19] M. Verma, M. Srivastava, N. Chack, A. K. Diswar, and N. Gupta, “A
comparative study of various clustering algorithms,” in Data Mining,
International Journal of Engineering Research and Applications (IJERA),
2012, pp. 1379–1384.

[20] M. Grossman, M. Breternitz, and V. Sarkar., “Hadoopcl: Mapreduce
on distributed heterogeneous platforms through seamless integration
of hadoop and opencl.” In 27th International Parallel and Distributed
Processing Symposium Workshops and PhD Forum (IPDPSW), 2013.

[21] A. Sabne, P. Sakdhnagool, and R. R. Eigenmann, “Heterodoop: A
mapreduce programming system for accelerator clusters.” In Proceedings
of the 24th International Symposium on High-Performance Parallel and
Distributed Computing, 2015.

[22] I. El-Helw, R. Hofman, and H. Bal., “Glasswing: Accelerating mapreduce
on multi-core and many-core clusters.” In Proceedings of the 23rd
International Symposium on High-performance Parallel and Distributed
Computing, 2014.

[23] P. Li, Y. Luo, N. Zhang, and Y. Cao., “Heterospark: A heterogeneous
cpu/gpu spark platform for machine learning algorithms.” In 2015 IEEE
International Conference on Networking, Architecture and Storage (NAS),
2015.

[24] H. Pirk, O. Moll, M. Zaharia, and S. Madden, “Voodoo - a vector algebra
for portable database performance on modern hardware,” PVLDB, vol. 9,
pp. 1707–1718, 2016.

[25] S. Palkar, J. J. Thomas, A. Shanbhag, D. Narayanan, H. Pirk,
M. Schwarzkopf, S. Amarasinghe, M. Zaharia, and S. InfoLab, “Weld :
A common runtime for high performance data analytics,” in Conference
on Innovative Data Systems Research (CIDR), 2016.

