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Abstract. A variety of colored resource-oriented Petri nets (CROPN)-
based control method to forbid deadlock in flexible manufacturing sys-
tems (FMS) are to add control places to the original net, which makes
the net being complex. This paper proposes a novel concept in colored
resource-oriented Petri nets (CROPN) called colored capacity. Firstly,
the foraml definition of colored capacity in a CROPN is given. Based on
this concept, the new execution rule of the transitions is proposed. Then,
a procedure is developed such that the colored capacity function of each
place in a CROPN can be obtained. By colored capacity function, all
control places that are used to forbid illegal markings in CROPN are
displaced by the colored capacity and the deadlock can be avoided by
the new execution rule, which makes the structru of the net much sim-
pler than the net with control places. Finally, an FMS example is used
to illustrate the proposed method.

Keywords: Deadlock avoidance· discrete event systems· flexibility man-
ufacturing systems· Petri nets· colored resource-oriented Petri net.

1 Introduction

Flexible manufacturing systems (FMS) have been widely used in industrial fields
[1]-[7]. However, since a large number of jobs have to share same resource in an
FMS, deadlocks may arise, which leads to serious consequences. To deal with
deadlock issue in FMSs, many control policies based on Petri net models have
been established.

In these control policies, a deadlock avoidance strategy to prevent the FMS
modeled by Petri nets from being deadlock is to add some constraints to the
targeted FMS such that the system is deadlock-free. The work in [9] proposes
a colored resource-oriented Petri net (CROPN) model to analyze the deadlock
problem in FMS. The CROPN is considered to be more powerful than other
Petri nets such as the resource place-based Petri nets[5].

? This work was supported in part by the Science and Technology Development Fund,
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The work in [5] establishes the deadlock-free operations in CROPN. However,
to use the deadlock avoidance policy proposed in [5], we need to add control
places to the original net, which makes the net being complex.

In this paper, a novel CROPN concept called colored capacity is proposed.
We define the colored capacity of the place, which represents the biggest number
of tokens with the same color that the place can retain simultaneously. It is shown
that a place in CROPN may have different colored capacity corresponding to
different color. Based on the concept of colored capacity, the new transitions
firing rule for CROPN is presented. Then, after we obtain all deadlock and
impending deadlock markings by using the method proposed in [5], a method
is presented to determine the colored capacity for each place in CROPN by
simple calculation. It is shown that the colored capacity of a place in CROPN
will change along with the marking change. Based on the dynamically changing
color capacity, combined with the new transitions firing rule proposed in this
paper, all deadlock markings and impending deadlock markings in a flexible
manufacturing systems (FMS) modeled by CROPN are forbidden, therefore,
this FMS is deadlock-free and we do not need to add control places to the net.

The contributions in this paper are as follows:
1) In this paper, the colored concept for FMS modeled by CROPN is pro-

posed, which is not considered in [5].
2) Based on the dynamically changing color capacity, combined with the new

transition firing rule proposed in this paper, all deadlock markings and impend-
ing deadlock markings in a flexible manufacturing systems (FMS) modeled by
CROPN are forbidden without the need to add control places to the net.

This paper is organized as follows. Section 1 is the introduction. Section 2
defines the concept of colored capacity for CROPN. Section 3 proposes a method
to determine the colored capacity for each place in all interactive subnets in
CROPN by simple calculation. Section 4 presents a FMS example to explain the
application of the proposed method. We conclude in Section 5.

2 Realization of Control Policies for Interactive Subnets

In this section, a method is developed to determine the colored capacity for each
place in CROPN such that the deadlock-avoidance policy U(vk) is realized by
using the the new transitions firing rule.

Consider CROPN in Fig. 2 [5], there are three part types A, B, and C, where
p0 → t2 → p1 → t4 → p2 → t5 → p3 → t7 → p4 → t9 → p0 for the operating of
part-A and p0 → t10 → p4 → t8 → p3 → t6 → p2 → t1 → p0 for the operating
of part-B and p0 → t2 → p1 → t3 → p5 → t11 → p0 for the operating of part-C
with K(p1) = K(p3) = K(p5) = 1 and K(p2) = K(p4) = 2. Hence, we have
C(p0) = {b2, b10} , C(p1) = {b3, b4} , C(p2) = {b1, b5} , C(p3) = {b6, b7} , C(p4) =
{b8, b9} , C(p5) = {b11} . In this net, there is only one interactive subnet v2 =
{p2, t5, t6, p3, t7, t8, p4} formed by two PPCs:

v1 = {p2, t5, p3, t6}, v2 = {p3, t7, p4, t8} (1)
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Fig. 1. A CROPN with one interactive subnet formed by two PPCs[5]

Let Θ(v2) = (M(p2)(b5), M(p2)(b1), M(p3)(b7), M(p3)(b6) (2)

Then, by the algorithm proposed in [5], we have MFBM ∗∗(v2) = {M1,M2,M3}
such that

M1(v2) = Θ1(v2) = (0, 0, 1, 0, 0, 2)T

M2(v2) = Θ2(v2) = (2, 0, 0, 1, 0, 0)T

M3(v2) = Θ3(v2) = (2, 0, 0, 0, 0, 2)T

(3)

Hence, to prevent deadlock in this net, we have three control policies in U(v2)
used to prohibit MFBM ∗ ∗(v2) as follows:

C(M1) : M(p3)(b7) +M(p4)(b8) ≤M1(p3)(b7)

+M1(p4)(b8)− 1 = 2;
(4)

C(M2) : M(p2)(b5) +M(p3)(b6) ≤M2(p2)(b5)

+M2(p3)(b6)− 1 = 2;
(5)

C(M3)) : M(p2)(b5) +M(p4)(b8) ≤M3(p2)(b5)

+M3(p4)(b8)− 1 = 3.
(6)

where M /∈MB(v2).
Next, we discuss how to realize U(v2) by using colored capacity and its new

execution rule. First, let us present some notations as follows:

1. In a CROPN, given a marking M . For a place p ∈ P , let RM(M(p)(bi)) =
K(p)(bi)(M)−M(p)(bi) denote the number of free room available to tokens
with color bi in p at marking M , where bi ∈ C(p).

2. Given a CROPN, a subnet vk in the net with Mi ∈ MFBM ∗ ∗(vk), let
Si(v

k) = Λi(v
k)− 1, where Λi(v

k) =
∑

D(vk)(i,l,j)Mi(pl)(bj).
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3. In a CROPN, given a mrking M , for a place p ∈ P , we use C(p, z) to denote
a set of colores of bz ∈ C(p). Hence, let

∑
C(p,z)M(p)(bz) denote the number

of tokens corresponding to C(p, z) for marking M .

4. In a CROPN, we use A(L, J) to denote the set of combinations of pL ∈ P
and bJ ∈ C(P ), where C(P ) = {C(pu)|u = 0, 1, ..., |P | − 1}.

5. Given a CROPN, a subnet vk in the net, we use C(vk)(L, J) to denote
the set of combinations of pL ∈ P (vk) and bJ ∈ C(vk), where C(vk) ={
C(p)|p ∈ P (vk)

}
.

6. Given a CROPN, a subnet vk in the net. When MFBM ∗ ∗(vk) have been
found, let us rearrange the markings in MFBM ∗ ∗(vk) as M1,M2, ...,. Then,
define D(vk)(A, l, j) = {D(vk)(1, l, j) ∪D(vk)(2, l, j)∪, ...}

7. Given a CROPN, a subnet vk in the net. DefineND(vk)(L, J) = C(vk)(L, J)−
D(vk)(A, l, j) such that for any combination (pL, bJ) ∈ ND(vk)(L, J), we
have (pL, bJ) ∈ C(vk)(L, J) and (pL, bJ) /∈ D(vk)(A, l, j).

In view of the above-mentioned definitions, given an interactive subnet vk in a
CROPN, we classify the colored capacityK(p)(bi)(M), p ∈ P (vk), bi ∈ C(p),M /∈
MB(vk) into two categories:(1) K(p)(bi)(M) for (p, bi) ∈ D(vk)(A, l, j). (2)
K(p)(bi)(M) for (p, bi) ∈ ND(vk)(L, J).

To realize U(v2) for subnet v2 in the net shown in Fig.2, we need to consider
all items in D(v2)(A, l, j), where D(v2)(A, l, j) = D(v2)(1, l, j) ∪D(v2)(2, l, j) ∪
D(v2)(3, l, j) and U(v2) = {C(M1), C(M2), C(M3)}.

We first determine K(p)(bi)(M), (p, bi) ∈ D(v2)(1, j, l) for realizing C(M1)
by using the new execution rule. Consider two combinations (p3, b7) and (p4, b8)
from D(v2)(1, l, j). Suppose

RM(M(p3)(b7)) =

{
S1(v2)−

∑
D(v2)(1,l,j)

M(pl)(bj)

}
(7)

RM(M(p4)(b8)) =

{
S1(v2)−

∑
D(v2)(1,l,j)

M(pl)(bj)

}
(8)

where M /∈ MB(v2), S1(v2) = 2, D(v2)(1, l, j) = {(p3, b7), (p4, b8)}. Then, we
have K(p3)(b7)(M) = 2 −M(p4)(b8) and K(p4)(b8)(M) = 2 −M(p3)(b7). It is
clear that for any M /∈ MB(v2), the constraint is realized by using the colored
capacity and new transitions firing rule. For example, assume that M(p3)(b7) =
0,M(p4)(b8) = 2, we have K(p3)(b7)(M) = 0 < M(p3)(b7) − I(p3, t5)(b5) +
O(p3, t5)(b5) = 1. Hence, transition t5 can not fire at marking M . Similarly, the
transition t10 can not fire at marking M . Hence, @t ∈ T,M [t > M ′ such that
M ′(p3)(b7) + M ′(p4)(b8) > 2. Therefore, with K(p3)(b7)(M) and k(p4)(b8)(M)
being determined for any reachable marking M /∈MB(v2), we have M(p3)(b7)+
M(p4)(b8) ≤ 2, imply that C(M1) is realized.

Note that, for any marking M /∈ FB(v2), we have K(p3)(b7)(M) ≤ K(p3) = 1
and K(p4)(b8)(M) ≤ K(p4) = 2. But, assume that M(p4)(b8) = M(p4)(b9) = 0
and M(p3)(b7) = M(p3)(b6) = 0, by Eqs.(11) and (12) we have K(p3)(b7)(M) =



Title Suppressed Due to Excessive Length 5

2, which is a contradiction. Hence, Eq.(11) and (12) must be rewritten as follows:

RM(M(p3)(b7)) = min

{
S1(v2)−

∑
D(v2)(1,l,j)

M(pl)(bj)

,K(p3)−
∑

C(p3,z)
M(p3)(bz)

} (9)

RM(M(p4)(b8)) = min

{
S1(v2)−

∑
D(v2)(1,l,j)

M(pl)(bj)

,K(p4)−
∑

C(p4,z)
M(p4)(bz)

} (10)

where C(p3, z) = {b7, b6} and C(p4, z) = {b9, b8}. For example, assume that
M(p4)(b8) = M(p4)(b9) = 0 and M(p3)(b7) = M(p3)(b6) = 0, by Eq.(10)
and Eq.(11), we have RM(M(p3)(b7)) = 1 and RM(M(p4)(b8)) = 2. That
is K(p3)(b7)(M) = 1 and K(p4)(b8)(M) = 2 do not contradict K(p3)(b7)(M) ≤
K(p3) = 1 and K(p4)(b8)(M) ≤ K(p4) = 2.

Furthermore, assume that M(p2)(b5) = 2, M(p3)(b7) = 0,M(p3)(b6) = 0 and
M(p4)(b8) = 1,M(p4)(b9) = 0, by Eq.(13) and Eq.(14), we haveK(p3)(b7)(M) =
1 and K(p4)(b8)(M) = 2. By new transitions firing rule, the transition t10
can fire, i.e., M [t10 > M ′ such that M ′(p4)(b8) = 2,M ′(p2)(b5) = 2, and
M ′(p3)(b7) = 0. Note that, at marking M ′, constraint is satisfied. But, some
constraint is not satisfied, since M ′(p4)(b8)+M ′(p2)(b5) = 4 > 3. Hence, Eq.(13)
and (14) must be rewritten as follows:

RM(M(p3)(b7)) = min

{
S1(v2)−

∑
D(v2)(1,l,j)

M(pl)(bj)

,K(p3)−
∑

C(p3,z)
M(p3)(bz)

} (11)

RM(M(p4)(b8)) = min

{
S1(v2)−

∑
D(v2)(1,l,j)

M(pl)(bj)

, S3(v2)−
∑

D(v2)(3,l,j)
M(pl)(bj)

,K(p4)−
∑

C(p4,z)
M(p4)(bz)

} (12)

where S3(v2) = 3, D(v2)(3, l, j) = {(p2, b5), (p4, b8)}. Then, assume that

M(p2)(b5) = 2,

M(p3)(b7) = 0,M(p3)(b6) = 0,

M(p4)(b8) = 1,M(p4)(b9) = 0.

(13)

By Eq.(15) and Eq.(16), we have K(p3)(b7)(M) = 1 and K(p4)(b8)(M) = 1.
Hence, by new transition firing rule, the transition t10 can not fire at marking
M .
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Similarly, to realize constraint, we select two combinations (p2, b5) and (p3, b6)
from D(v2)(2, l, j) and determine the corresponding colored capacity as follows:

RM(M(p2)(b5)) = min

{
S2(v2)−

∑
D(v2)(2,l,j)

M(pl)(bj)

, S3(v2)−
∑

D(v2)(3,l,j)
M(pl)(bj)

,K(p2)−
∑

C(p2,z)
M(p2)(bz)

} (14)

RM(M(p3)(b6)) = min

{
S2(v2)−

∑
D(v2)(2,l,j)

M(pl)(bj)

,K(p3)−
∑

C(p3,z)
M(p3)(bz)

} (15)

where
M /∈MB(V 2)

D(v2)(2, l, j) = {(p2, b5), (p3, b6)

C(p2, z) = {b1, b5}
(16)

Thus RM(M(p2)(b5)) + M(p2)(b5) = K(p2)(b5)(M), and RM(M(p3)(b6)) +
M(p3)(b6) = K(p3)(b6)(M).

Note that, with K(p3)(b7)(M),K(p4)(b8)(M),K(p2)(b5), and K(p3)(b6)(M)
being determined, where M /∈ MB(v2), all items in D(1, l, j), D(2, l, j), and
D(3, l, j) are considered, the constraint set U(v2) is realized by using the excu-
ation rule.

The next step is to determine K(pL)(bJ)(M) for (pL, bJ) ∈ ND(v2)(L, J).
Since every item in ND(v2)(L, J) has no contribution to realize U(v2), we do
not need to think over S1(v2), S2(v2), S3(v2) for K(pL)(bJ)(M). Therefore, we
have

RM(M(p0)(b2)) = RM(M(p0)(b10)) =∞ (17)

RM(M(p1)(b3)) = RM(M(p1)(b4)) = K(p1)−∑
C(p1,z)

M(p1)(bz)
(18)

RM(M(p2)(b1)) = K(p2)−
∑

C(p2,z)
M(p2)(bz) (19)

RM(M(p4)(b9)) = K(p4)−
∑

C(p4,z)
M(p4)(bz) (20)

RM(M(p5)(b11)) = K(p5)−
∑

C(p5,z)
M(p5)(bz) (21)

where M /∈MB(v2) and K(p0)(b2)(M) = K(p0)(b10)(M) =∞, K(p1)(b3)(M) =
K(p1)−M(p1)(b4),K(p1)(b4)(M) = K(p1)−M(p1)(b3),K(p2)(b1)(M) = K(p2)−
M(p2)(b5), K(p4)(b9)(M) = K(p4)−M(p4)(b8), K(p5)(b11)(M) = K(p5).

Next, we transform the above analysis into Algorithm 1 for determining the
colored capacity of each place in an interactive subnet in a CROPN.
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Algorithm 1 Dtermine the colored capacity of every place in an interactive
subnt in a CROPN.

Given a CROPN, an interactive subnet vk in the net. With MFBM ∗ ∗(vk)
being found by Algorithm presented in [5], we rearrange the markings in MFBM ∗
∗(vk) as M1,M2, ...,M|MFBM∗∗(vk)|.

Input: D(vk)(i, l, j), ND(vk)(L, J), Si(v
k), i ∈

{
1, 2, ...,

∣∣MFBM ∗ ∗(vk)
∣∣}.

K(p), and C(p, z), p ∈ P (vk);
Output: colored capacity K(pL)(bJ)(M), where M /∈MB(vk), and (pL, bJ) ∈

C(vk)(L, J).

1. Step 1:
For I=1 to

∣∣MFBM ∗ ∗(vk)
∣∣;

Relay(I)← D(vk)(I, l, j);
End for;
Let RMt = ∅;

2. Step 2:
For q=1 to

∣∣MFBM ∗ ∗(vk)
∣∣;

While D(vk)(q, l, j) 6= ∅;
Select a combination (pl, bj) from D(vk)(q, l, j);
RMt ← Sq(vk)−

∑
Relay(q)M(pl)(bj);

For d= q+1 to
∣∣MFBM ∗ ∗(vk)

∣∣;
If (pl, bj) is an item in Relay(d);
Delete the item (pl, cl) from D(vk)(d, l, j);

RMt ← RMt∪
{
Sd(vk)−

∑
Relay(d)M(pl)(bj)

}
;

End if;
End for;
RMt ← RMt ∪K(pl)−

∑
C(pl,z)

M(pl)(bz);

K(pl)(bj)(M) = min(RMt) +M(pl)(bj);
Delete the item (pl, cl) from D(vk)(q, l, j);
RMt ← ∅;
End while;
End for;

3. Step 3:
While ND(vk)(L, J) 6= ∅;
Select a combination (pL, bJ) from ND(vk)(L, J);
K(pL)(bJ)(M) = k(pL)−

∑
C(pL,z)M(pL)(bz)

+M(pL)(bJ);
Delete the item (pL, bJ) from ND(vk)(L, J);
End while;

In algorithm 1, we preprocess a set in step 1. Next, in step 2, we determine
K(pl)(bj)(M) for any (pl, bj) ∈ D(vk)(A, l, j), where M /∈ MB(vk(x)). Finally,
in step 3, we determine K(pL)(bJ)(M) for any (pL, bJ) ∈ ND(vk)(L, J).

The algorithm 1, combined with the analysis in this section, we have the
following theorems.
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Theorem 1. Given a CROPN, an interactive subnet vk in the net, if for any
combination (pL, bJ) ∈ C(vk)(L, J), K(pL)(bJ)(M) is determined by algorithm
1, where M /∈MB(vk), then the subnet vk is deadlock-free.

Proof: According to the analysis in this section, if for every place in subnet
vk, the colored capacity is determined by algorithm 1, then U(vk) is realized by
using the new execuation rule. Furthermore, by algorithm 1, no control places
and arcs are added such that no new bad marking will produce in that subnet.
Therefore, the subnet vk is deadlock-free. The conclusion holds. �

Theorem 2. Given a CROPN, an interactive subnet vk in the net, and a set
MFBM ∗∗(vk), if U(vk) is realized by the colored capacity and the new execuation
rule, such that for any reachable marking M ,

∑
D(vk)(i,l,j)M(pl)(bj) ≤ Λi(v

k)−
1, where Mi ∈ MFFM ∗ ∗(vk), then, the control policy set U(vk) is maximally
permissive.

Proof: By Theorem 1, with U(vk) being realized by using the colored capacity
and the new execuation rule, the subnet vk is deadlock-free, imply that for
any marking Mb ∈ MFBM , Mb is prohibited. Suppose the control policy set
U(vk) is not maximally permissive. Then, ∃M1 ∈ ML, M1 is prohibited, which
implies that there exists Mi ∈MFBM ∗∗(vk) such that

∑
D(vk)(i,l,j)M1(pl)(bj) >

Λi(v
k)− 1, which is a contradiction. The conclusion holds. �

By Theorem 1, with K(pL)(bJ)(M), (pL, bJ) ∈ C(vk)(L, J) being determined
by Algorithm 1, the net is deadlock-free. The remaining problem is how to de-
termine K(p)(bJ)(M) for (p, bj) ∈ A(L, J)− C(vk)(L, J). On the one hand, for
any place p /∈ P (vk), p has no influence to deadlock. On the other hand, we
need to deliver as many products as possible into system modeled by CROPN.
Therefore, we have following Algorithm.

Algorithm 2 Dtermine the colored capacity of place that is not in interactive
subnts in a CROPN.

Given a CROPN formed by l subnet vk(1), vk(2), ...,and vk(l).
Input: A(L, J), and C(vk(1))(L, J),...,C(vk(l))(L, J).
Output: colored capicity K(pL)(bJ)(M), where M ∈ R(M0), and (pL, bJ) ∈

A(L, J) − C(vk(1))(L, J) ∪ C(vk(2))(L, J), ..., C(vk(l))(L, J), and K(p), p ∈
P (vk).

1. Step 1:
Relay = ∅;
Relay1 = ∅;
For I=1 to l;
Relay← C(vk(I))(L, J) ∪ Relay;
End for;
Relay1 = A(L, J)− Relay;

2. Step 2:
While Relay1 6= ∅;
Select a combination (pL, bJ) from Relay1;
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K(pL)(bJ)(M) = k(pL)−
∑

C(pL,z)M(pL)(bz)

+M(pL)(bJ);
Delete the item (pL, bJ) from Relay1;
End while;

In summary, we develop a deadlock avoidance procedure as follows such that
for every interactive subnet vk in a CROPN, U(vk) is realized and the net is
made deadlock-free.

Procedure 1 Deadlock avoidance procedure for FMSs modeled by CROPN.

– Step 1:Given a FMS, let us construct its corresponding CROPN model by
using the Procedure proposed in [5].

– Step 2:Find all interactive subnets in the CROPN [5].
– Step 3:For every interactive subnet vk in the net, let us determine the colored

capacity K(pL)(bJ)(M) for (pL, bJ) ∈ C(vk)(L, J) by using Algorithm 1.
– Step 4:Determine the colored capacity K(pL)(bJ)(M) for (pL, bJ) ∈ A(L, J)−
C(vk(1))(L, J) ∪ C(vk(2))(L, J), ..., C(vk(l))(L, J) by using Algorithm 2.

3 FMS Example

Consider a flexible manufacturing system (FMS) cell with three machines m1,
m2, and m3 processing two part types A and B. A-part has three operations:
m1 → m2 → m3. B-part has three operations: m3 → m2 → m1. The capacity of
resource m1, m2 and m3 is 1, 1 and 1, respectively.

To make the FMS cell deadlock-free, by Procedure 1, the first step is to
construct its corresponding CROPN model as shown in Fig. 3, where the place
p0 represents the central storage with K(p0) = ∞, the place px represents the
machine mx with K(px) = 1 for x ∈ {1, 2, 3}. With the modele, we have C(ti) =
bi, where i ∈ {1, 2, ..., 8}. Hnece, we have C(p0) = {b2, b8}, C(p1) = {b1, b3},
C(p2) = {b4, b5}, and C(p3) = {b6, b7}.

The second step is to find all interactive subnets in the net. It is clear that
there is only one interactive subnet v2 = {p1, t3, p2, t5, p3, t6, t4} formed by two
PPCs: v1 = {p1, t3, p2, t4} , v2 = {p2, t5, p3, t6}. Hence, we have the following
result: ∑

C(p1,z)
M(p1)(bz) = M(p1)(b3) +M(p1)(b1)∑

C(p2,z)
M(p2)(bz) = M(p2)(b4) +M(p2)(b5)∑

C(p3,z)
M(p3)(bz) = M(p3)(b6) +M(p3)(b7)

A(L, J) = {(p0, b2), (p0, b8), (p1, b1), (p1, b3), (p2, b4),

(p2, b5), (p3, b6), (p3, b7)}

C(v2)(L, J) = {(p1, b1), (p1, b3), (p2, b4),

(p2, b5), (p3, b6), (p3, b7)}
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In the third step, we first need to do the reachability analysis for the net by
using the traditional execution rules Eq(1) and Eq(2). The reachability graph
and reachable markings of the net are shown in Fig.4 and Table I, respectively.
Note that, in Table I, only markings M(p)(bi) > 0 are presented. It is clear that
markings M0−M3, M5−M7, M10−M12, and M15−M19 are legal markings, while
markingsM4,M8, andM9 are impending deadlock markings, markingsM13,M14

are deadlock markings. Hence, we have MFBM = {M4,M8,M9,M13,M14}. Fur-
ther, we have MFBM ∗ ∗(v2) =

{
M4(v2),M8(v2),M9(v2)

}
, where M4(v2) =

(0, 1, 0, 0, 1, 0)T , M8(v2) = (0, 0, 0, 1, 1, 0)T , and M9(v2) = (0, 1, 1, 0, 0, 0)T . Let
us rearrange the markings in MFBM ∗∗(v2) as M1,M2,M3, where M1 = M4(v2),
M2 = M8(v2), and M3 = M9(v2). Hence, we have the following result:

D(v2)(1, l, j) = {(p1, b3), (p3, b6)}

D(v2)(2, l, j) = {(p2, b5), (p3, b6)}

D(v2)(3, l, j) = {(p1, b3), (p2, b4)}

S1(v2) = S2(v2) = S3(v2) = 1

C(M1) : M(p1)(b3) +M(p3)(b6) ≤ 1

C(M2) : M(p2)(b5) +M(p3)(b6) ≤ 1

C(M3) : M(p1)(b3) +M(p2)(b4) ≤ 1

D(v2)(A, l, j) = {(p1, b3), (p2, b4), (p2, b5), (p3, b6)}

ND(v2)(L, J) = {(p1, b1), (p3, b7)}

With these results, we then determine the colored capacity function of each place
in interactive subnets in the net by using the Algorithm 1 as follows:

K(p1)(b1)(M) = K(p1)−M(p1)(b3) (22)

K(p1)(b3)(M) = min {1−M(p1)(b3)−M(p3)(b6),

1−M(p1)(b3)−M(p2)(b4),

K(p1)−M(p1)(b3)−M(p1)(b1)}+M(p1)(b3)

(23)

K(p2)(b4)(M) = min {1−M(p1)(b3)−M(p2)(b4),

K(p2)−M(p2)(b4)−M(p2)(b5)}+M(p2)(b4)
(24)

K(p2)(b5)(M) = min {1−M(p2)(b5)−M(p3)(b6),

K(p2)−M(p2)(b4)−M(p2)(b5)}+M(p2)(b5)
(25)

K(p3)(b6)(M) = min {1−M(p1)(b3)−M(p3)(b6),

1−M(p2)(b5)−M(p3)(b6),

K(p3)−M(p3)(b6)−M(p3)(b7)}+M(p3)(b6)

(26)

K(p3)(b7)(M) = K(p3)−M(p3)(b6) (27)
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Finally, by step 4 in Procedure 1, we have

K(p0)(b2)(M) =∞ (28)

K(p0)(b8)(M) =∞ (29)

With the colored capacity function of each place in the net determined by
Procedure 1, the non-colored capacity CROPN net becomes the colored capac-
ity CROPN net. Let us do the reachability analysis for it by using the new
execution rule for verifying whether the FMS cell modeled by colored capac-
ity net is made deadlock-free. The result is shown in Fig.5, where markings
{M4,M8,M9,M13,M14} in Fig.4 and Table I are forbidden and no legal mark-
ing is forbidden, imply that the FMS cell modeled by colored capacity CROPN
net is made deadlock-free.

Let us analyze the mechanism of making the colored capacity net deadlock-
free by using the new execution rule. We consider the following three cases.

1. If we use the non-colored capacity net (traditional CROPN) and the tra-
ditional execution rule, then By Fig.4, the transitions t8 and t2 can fire
at marking M1 and M2, respectively. This means that the FMS cell mod-
eled by non-colored capacity net can enter bad state M4 from state M1 or
M2. If the colored capacity are introduced into the net, then the net be-
comes colored capacity net. At marking M1(Table I), by Eq. (25), we have
K(p3)(b6)(M1) = 0. This implies that K(p3)(b6)(M1) = 0 < M(p3)(b6) −
I(p3, t8)(b8)+o(p3, t8)(b8) = 1. Hence, by Definition ??, the transition t8 can
not fire at marking M1. Similarly, at marking M2, we have K(p1)(b3)(M2) =
0 and K(p1)(b3)(M2) = 0 < M(p1)(b3) − I(p1, t2)(b2) + o(p1, t2)(b2) = 1.
Hence, the transition t2 can not fire at marking M2. This means that the
FMS cell modeled by colored capacity net cannot enter bad marking M4

from state M1 or M2.

2. At marking M3, we have K(p3)(b6)(M3) = 0 and K(p3)(b6)(M3) = 0 <
M(p3)(b6) − I(p3, t8)(b8) + o(p3, t8)(b8) = 1. Hence, the transition t8 can
not fire at marking M3. At marking M5, we have K(p1)(b3)(M5) = 0 and
K(p1)(b3)(M5) = 0 < M(p1)(b3)−I(p1, t2)(b2)+o(p1, t2)(b2) = 1. Hence, the
transition t2 can not fire at marking M5. Therefore, the FMS cell modeled by
the colored capacity net cannot enter bad markings M8 and M9 from state
M3 and M5 while the traditional non-colored capacity net can as shown in
Fig.4.

3. At marking M6, we have K(p3)(b6)(M6) = 0 and K(p3)(b6)(M6) = 0 <
M(p3)(b6) − I(p3, t8)(b8) + o(p3, t8)(b8) = 1. Hence, the transition t8 can
not fire at marking M6. At marking M11, we have K(p1)(b3)(M11) = 0
and K(p1)(b3)(M11) = 0 < M(p1)(b3) − I(p1, t2)(b2) + o(p1, t2)(b2) = 1.
Hence, the transition t2 can not fire at marking M11. Therefore, the FMS
cell modeled by colored capacity net cannot enter markings M13 and M14

from markings M6 and M11, while the traditional non-colored capacity net
can as shown in Fig.4.
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In terms of deadlock prevention, to make the FMS cell deadlock-free, com-
pared the work in [5], the control policies of both proposed methods are equal.
However, as shown in Table II, 1 control place and 8 arcs are added to the non-
colored capacity CROPN net for this example in [5], while no control place and
arc needed to be added by using the method proposed in this paper. Thus, the
method proposed in this paper is structurally simpler than the work in [5].

p0

p1

p2

p3

t5

t3 t4

t6
t7

t8

n

t1

t2

Fig. 2. The CROPN for FMS Example
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Fig. 3. Reachability graph of the non-colored capacity CROPN in Fig.3
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Fig. 4. Reachability graph of the colored capacity CROPN in Fig.3

Table 1. Reachable Markings of the CROPN in Fig. 3

Marking

M0 M0(p0)(b2) = n and M0(p0)(b8) = n
M1 M1(p0)(b2) = n, M1(p0)(b8) = n and M1(p1)(b3) = 1
M2 M2(p0)(b2) = n, M2(p0)(b8) = n and M2(p3)(b6) = 1
M3 M3(p0)(b2) = n, M3(p0)(b8) = n and M3(p2)(b5) = 1
M4 M4(p0)(b2) = n, M4(p0)(b8) = n, M4(p1)(b3) = 1 and M4(p3)(b6) = 1
M5 M5(p0)(b2) = n, M5(p0)(b8) = n and M5(p2)(b4) = 1
M6 M6(p0)(b2) = n, M6(p0)(b8) = n, M6(p1)(b3) = 1 and M6(p2)(b5) = 1
M7 M7(p0)(b2) = n, M7(p0)(b8) = n and M7(p3)(b7) = 1
M8 M8(p0)(b2) = n, M8(p0)(b8) = n, M8(p2)(b5) = 1 and M8(p3)(b6) = 1
M9 M9(p0)(b2) = n, M9(p0)(b8) = n, M9(p1)(b3) = 1 and M9(p2)(b4) = 1
M10 M10(p0)(b2) = n, M10(p0)(b8) = n and M10(p1)(b1) = 1
M11 M11(p0)(b2) = n, M11(p0)(b8) = n, M11(p2)(b4) = 1 and M11(p3)(b6) = 1
M12 M12(p0)(b2) = n, M12(p0)(b8) = n, M12(p1)(b3) = 1 and M12(p3)(b7) = 1
M13 M13(p0)(b2) = n, M13(p0)(b8) = n, M13(p1)(b3) = 1, M13(p2)(b5) = 1 and M13(p3)(b6) = 1
M14 M14(p0)(b2) = n, M14(p0)(b8) = n, M14(p1)(b3) = 1, M14(p2)(b4) = 1 and M14(p3)(b6) = 1
M15 M15(p0)(b2) = n, M15(p0)(b8) = n, M15(p1)(b1) = 1 and M15(p3)(b6) = 1
M16 M16(p0)(b2) = n, M16(p0)(b8) = n, M16(p2)(b5) = 1 and M16(p3)(b7) = 1
M17 M17(p0)(b2) = n, M17(p0)(b8) = n, M17(p1)(b1) = 1 and M17(p2)(b4) = 1
M18 M18(p0)(b2) = n, M18(p0)(b8) = n, M18(p1)(b3) = 1, M18(p2)(b5) = 1 and M18(p3)(b7) = 1
M19 M19(p0)(b2) = n, M19(p0)(b8) = n, M19(p1)(b1) = 1, M19(p2)(b4) = 1 and M19(p3)(b6) = 1

Table 2. Comparison between the Supervisors Obtained based on CROPN and Colored
Capacity CPOPN.

The number of control places of the net The number of arcs of the net

CROPN: 1 8
Colored Capacity CROPN:0 0
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4 Conclusion

In this paper, a novel CROPN concept called colored capacity is proposed. We
define the colored capacity of the place, which represents the biggest number of
tokens with the same color that the place can retain simultaneously. A method is
presented to determine the colored capacity for each place in CROPN by simple
calculation. Then all deadlock markings and impending deadlock markings in
a flexible manufacturing systems (FMS) modeled by CROPN are forbidden,
therefore, this FMS is deadlock-free and we do not need to add control places
to the net.
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