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Abstract. The ability to explain decisions made by AI systems is highly
sought after, especially in domains where human lives are at stake such
as medicine or autonomous vehicles. While it is often possible to ap-
proximate the input-output relations of deep neural networks with a few
human-understandable rules, the discovery of the double descent phe-
nomena suggests that such approximations do not accurately capture
the mechanism by which deep neural networks work. Double descent
indicates that deep neural networks typically operate by smoothly inter-
polating between data points rather than by extracting a few high level
rules. As a result, neural networks trained on complex real world data are
inherently hard to interpret and prone to failure if asked to extrapolate.
To show how we might be able to trust AI despite these problems we
introduce the concept of self-explaining AI. Self-explaining AIs are ca-
pable of providing a human-understandable explanation of each decision
along with confidence levels for both the decision and explanation. Some
difficulties with this approach along with possible solutions are sketched.
Finally, we argue it is important that deep learning based systems in-
clude a “warning light” based on techniques from applicability domain
analysis to warn the user if a model is asked to extrapolate outside its
training distribution.

Keywords: Interpretability · explainability · explainable artificial intel-
ligence · XAI · trust · deep learning

1 Introduction

There is growing interest in developing methods to explain deep neural network
function, especially in high risk areas such as medicine and driverless cars. Such
explanations would be useful to ensure that deep neural networks follow known
rules and when troubleshooting failures. Despite the development of numer-
ous techniques for interpreting deep neural networks, all such techniques have
flaws, and there is confusion regarding how to properly “interpret an interpeta-
tion” [41,32]. Perhaps more troubling, though, is that a new understanding is
emerging that deep neural networks function through the interpolation of data
points, rather than extrapolation [24]. This calls into question long-held nar-
ratives about deep neural networks “extracting” high level features and rules,
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and also indicates that all current methods of explanation do not capture failure
modes that occur from extrapolation.

In response to difficulties raised by explaining black box models, Rudin argues
for developing better interpretable models instead, arguing that the “interpetability-
accuracy” trade-off is a myth. While it is true that the notion of such a trade-off
is not rigorously grounded, empirically in many domains the state-of-the art
systems are all deep neural networks. For instance, most state-of-art AI systems
for computer vision are not interpretable in the sense required by Rudin. Even
highly distilled and/or compressed models which achieve good performance on
ImageNet require at least 100,000 free parameters [30]. Moreover, the human
brain also appears to be an overfit “black box” which performs interpolation,
which means that how we understand brain function also needs to change [24].
If evolution settled on a model (the brain) which is uninterpretable, then we
expect advanced AIs to also be of that type. Interestingly, although the human
brain is a “black box”, we are able to trust each other. Part of this trust comes
from our ability to “explain” our decision making in terms which make sense
to us. Crucially, for trust to occur we must believe that a person is not being
deliberately deceptive, and that their verbal explanations actually maps onto
the processes used in their brain to arrive at their decisions.

Motivated by how trust works between humans, in this work we explore the
idea of self-explaining AIs. Self-explaining AIs yield two outputs - the decision
and an explanation of that decision. This idea is not new, and it is something
which was pursued in expert systems research in the 1980s [47]. More recently
Kulesza et al. introduced a model which offers explanations and studied how
such models allow for “explainable debugging” and iterative refinement [27].
However, in their work they restrict themselves to a simple interpretable model
(a multinomial naive Bayes classifier). Alvarez-Melis & Jaakkola introduce a
“self-explaining” neural network which makes predictions using a number of hu-
man interpretable concepts or prototypes [4]. In a somewhat similar vein, Chen
et al. [14] have proposed a “This looks like That” network. Unlike previous
works, in this work we explore how we might create trustworthy self-explaining
AI for networks and agents of arbitrary complexity, including artificial general
intelligences (AGIs). We also seek for a more rigorous way to make sure the
explanation given is actually explaining an aspect of the mechanism used for
prediction. After defining key terms, we discuss the challenge of interpreting
deep neural networks raised by recent studies on interpolation in deep neural
networks. Then, we discuss how self-explaining AIs might be built. We argue
that they should include at least three components - a measure of mutual infor-
mation between the explanation and the decision, an uncertainty on both the
explanation and decision, and a “warning system” which warns the user when
the decision falls outside the domain of applicability of the system. We hope this
work will inspire further work in this area which will ultimately lead to more
trustworthy AI.
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2 Interpretation, explanation, and self-explanation

As has been discussed at length elsewhere, different practitioners understand
the term “intepretability” in different ways, leading to a lack of clarity (for
detailed reviews, see[32,2,35,5]). The related term “explainability” is typically
used in a synonymous fashion [41], although some have tried to draw a distinc-
tion between the two terms [28]. Here we take explanation/explainability and
interpretation/interpretability to be synonymous. Murdoch et al. define an ex-
planation as a verbal account of neural network function which is descriptively
accurate and relevant [35]. By “descriptively accurate” they mean that the in-
terpretation reproduces a large number of the input-output mappings of the
model. The explanation may or may not map onto how the model works inter-
nally. Additionally, any explanation will be an approximation, and the degree of
approximation which is deemed acceptable may vary depending on application.
By “relevance”, what counts as a “relevant explanation” is domain specific – it
must be cast in terminology that is both understandable and relevant to users.
For deep neural networks, the two desiderata of accuracy and relevance appear
to be in tension - as we try to accurately explain the details of how a deep neural
network interpolates, we move further from what may be considered relevant to
the user.

This definition of explanation in terms of capturing input-output mappings
in a human understandable way contrasts with a second meaning of the term
explanation which we may call mechanistic explanation. Mechanistic expla-
nations abstract faithfully (but approximately) the actual data transformations
occurring in the model. To consider why mechanistic explanations can be useful,
consider a deep learning model we trained recently to segment the L1 verte-
bra [16]. The way a radiologist identifies the L1 vertebra is by scanning down
from the top of the body and finding the last vertebra that has ribs attached
to it, which is T12. L1 is directly below T12. In our experience our models
for identifying L1 tend to be brittle, indicating they probably use a different
approach. For instance, they may do something like “locate the bright object
which is just above the top of the kidneys”. Such a technique would not be as
robust as the technique used by radiologists. If a self-explaining AI had a model
of human anatomy and could couch its explanations with reference to standard
anatomical concepts, that would go a long way towards engendering trust. In
general, the “Rashomon Effect”, first described by Leo Brieman [13], says that
for any set of noisy data, there are a multitude of models of equivalent accu-
racy, but which differ significantly in their internal mechanism. As a real-world
example of the Rashomon Effect, when detecting Alzheimer’s disease in brain
MRI using a CNN the visualized interpretations for models trained on different
train-test folds differed significantly, even though the models were of equivalent
accuracy [46]. Even more troubling, the visualizations differed between different
runs on the same fold, with the only difference being in the random initialization
of the network [46]. Finally, interpretations can vary between test examples.[8]
In many works only a few examples (sometimes cherry-picked) are given to “ex-
plain” how the model works, rather than attempting to summarize the results of
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the interpretability method on the entire test set. To summarize, in deep neural
networks it is possible the mechanism of prediction can differ greatly between
models of equivalent accuracy, even when the models all have the same archi-
tecture, due to peculiarities of the training data and initialization used. On top
of this issue, it is also possible that specific details of the mechanism may vary
wildly within a given model across different test cases.

There is another type of explanation we wish to discuss which we may call
meta-level explanation. Richard P. Feynman said “What I cannot create, I do
not understand”. Since we can create deep neural networks, we do understand
them, in the sense of Feynman, and therefore we can explain them in terms
of how we build them. More specifically, we can explain neural network func-
tion in terms of four components necessary for creating them - data, network
architecture, learning rules (optimization method), and objective function [39].
The way one explains deep neural network function from data, architecture, and
training is analogous to how one explains animal behaviour using the theory of
evolution. The evolution of architectures by “graduate student descent” and the
explicit addition of inductive biases mirrors the evolution of organisms. Simi-
larly, the training of architectures mirrors classical conditioning in animals. The
explanation of animal behaviour in terms of meta-level theories like evolution
and classical conditioning has proven to be enormously successful and stands in
contrast to attempts to seek detailed mechanistic accounts.

Finally, the oft-used term black box also warrants discussion. The term is
technically a misnomer since the precise workings of deep networks are fully
transparent from their source code and network weights, and therefore for sake
of rigor should not be used. A further point is that even if we did not have ac-
cess to the source code or weights (for instance for intellectual property reasons,
or because the relevant technical expertise is missing), it is likely that a large
amount of information about the network’s function could be gleaned through
careful study of the its input-output relations. Developing mathematically rig-
orous techniques for “shining lights” into “black boxes” was a popular topic in
early cybernetics research [6], and this subject is attracting renewed interest in
the era of deep learning. As an example of what is achievable, recently it has
been shown that weights can be inferred for ReLU networks through careful
analysis of input-output relations [40]. One way of designing a “self-explaining
AI” would be to imbue the AI with the power to probe its own input-output
relations so it can warn its user when it may be making an error and (ideally)
also distill its functioning into a human-understandable format.

3 Why deep neural networks are generally
non-interpretable

Many methods for interpretation of deep neural networks have been developed,
such as sensitivity analysis (saliency maps, occlusion maps, etc.), iterative map-
ping [11], “distilling” a neural network into a simpler model [18], exploring failure
modes and adversarial examples [20,22], visualizing filters in CNNs [50], acti-
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vation maximization based visualizations [17], influence functions [26], Shap-
ley values [33], Local Interpretable Model-agnostic Explanations (LIME) [38],
DeepLIFT [44], explanatory graphs [52], and layerwise relevance propagation [7].
Yet, all of these methods capture only particular aspects of neural network func-
tion, and the outputs of these methods are very easy to misinterpret [41,29,49].
Often the output of interpretability methods vary largely between test cases,
but only a few “representative” cases (often hand picked) are shown in papers.
Moreover, it has been shown that popular methods such as LIME [4], Shapley
values [4], and saliency maps [15,49,1] are not robust to small changes in the
image such as Gaussian noise.

As we discussed before, we do not expect the current push towards more
interpretable models led by Rudin and others to be successful in general - deep
neural networks are here to stay, and they will become even more complex and
inscrutable as time goes on. Lillicrap & Kording [30] note that attempts to com-
press deep neural networks into a simpler interpretable models with equivalent
accuracy typically fail when working with complex real world data such as im-
ages or human language. If the world is messy and complex, then neural networks
trained on real world data will also be messy and complex. Leo Breiman, who
equates interpretability with simplicity, has made a similar point in the context
of random forest models [13]. In many domains, the reason machine learning
is applied is because of the failure of simple models or because of the compu-
tational burden of physics-based simulation. While we agree with Rudin that
the interpretability-accuracy trade-off is not based on any rigorous quantitative
analysis, we see much evidence to support it, and in some limiting cases (for
example superintelligent AGIs which we cannot understand even in principle
or brain emulations, etc) the inescapability of such a trade-off existing to some
extent becomes clear.

On top of these issues, there is a more fundamental reason to believe it will
be hard to give mechanistic explanations for deep neural network function. For
some years now it has been noted that deep neural networks have enormous
capacity and seem to be vastly underdetermined, yet they still generalize. This
was shown very starkly in 2016 when in Zhang et al. showed how deep neural
networks can memorize random labels on ImageNet images [51]. More recently
it has been shown that deep neural networks operate in a regime where the bias-
variance trade-off no-longer applies [9]. As network capacity increases, test error
first bottoms out and then starts to increase, but then (surprisingly) starts to
decrease after a particular capacity threshold is reached. Belkin et al. call this
the “double descent phenomena” [9] and it was also noted in an earlier paper
by Sprigler et al [45], who argue the phenomena is analogous to the “jamming
transition” found in the physics of granular materials. The phenomena of “double
descent” appears to be universal to all machine learning [9,10], although its
presence can be masked by common practices such as early stopping [9,36],
which may explain why it took so long to be discovered.

In the regime where deep neural networks operate, they not only interpolate
each training data point, but do so in a “direct” or “robust” way [24]. This
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means that the interpolation does not exhibit the overshoot or undershoot which
is typical of overfit models, rather it is almost a piecewise interpolation. The use
of interpolation implies a corollary - the inability to extrapolate. The fact that
deep neural networks cannot extrapolate calls into question popular ideas that
deep neural networks “extract” high level features and “discover” regularities
in the world. Actually, deep neural networks are “dumb” - any regularities that
they appear to have captured internally are solely due to the data that was fed
to them, rather than a self-directed “regularity extraction” process.

4 Challenges in building trustworthy self-explaining AI
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Fig. 1. Sketch of a simple self-explaining AI system. Optional (but recommended)
components are shown with dashed lines.

In his landmark 2014 book Superintelligence: Paths, Dangers, Strategies, Nick
Bostrom notes that highly advanced AIs may be incentivized to deceive their
creators until a point where they exhibit a “treacherous turn” against them [12].
In the case of superintelligent or otherwise highly advanced AI, the possibility of
deception appears to be a highly non-trivial concern. Here however, we suggest
some methods by which we can trust the explanations given by present day deep
neural networks, such as typical convolutional neural networks or transformer
language models. Whether these methods will still have utility when it comes to
future AI & AGI systems is an open question.

To show how we might create trust, we focus on an explicit and relatively
simple example. Shen et al. [43] and later LaLonde et al. [28] have both proposed
deep neural networks for lung nodule classification which offer “explanations”.
Both authors make use of a dataset where clinicians have labeled lung nodules
not only by severity (cancerous vs. non-cancerous) but also quantified them (on
a scale of 1-5) in terms of five visual attributes which are deemed relevant for di-
agnosis (subtlety, sphericity, margin, lobulation, spiculation, and texture). While
the details of the proposed networks vary, both output predictions for severity
and scores for each of the visual attributes. Both authors claim that the visual
attribute predictions “explain” the diagnostic prediction, since the diagnostic
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branch and visual attribute prediction branch(es) are connected near the base
of the network. However, no evidence is presented that the visual attribute pre-
diction is in any way related to the diagnosis prediction. While it may seem
intuitive that the two output branches must be related, this must be rigorously
shown for trustworthiness to hold.1 Additionally, even if the visual attributes
were used, no weights (“relevances”) are provided for the importance of each at-
tribute to the prediction, and there may be other attributes of equal or greater
importance that are used but not among those outputted (this point is admitted
and discussed by Shen et al. [43]).

Therefore, we would like to determine the degree to which the attributes in
the explanation branch are responsible for the prediction in the diagnosis branch.
We focus on the layer where the diagnosis and explanation branch diverge and
look at how the output of each branch relates to activations in that layer. There
are many ways of quantifying the relatedness of two variables, the Pearson cor-
relation being one of the simplest, but also one of the least useful in this context
since it is only sensitive to linear relationships. A measure which is sensitive
to non-linear relationships and which has nice theoretical interpretation is the
mutual information. For two random variables X and Y it is defined as:

MI(X,Y ) ≡
∑
y∈Y

∑
x∈X

p(x, y) log

(
p(x, y)

p(x)p(y)

)
= H(x, y)−H(x)−H(y)

(1)

Where H(x) is the Shannon entropy. One can also define a mutual information
correlation coefficient (rMI(X,Y ) =

√
1− e−2MI(X,Y)) [31]. This coefficient has

the nice property that it reduces to the Pearson correlation in the case that
P (x, y) is a Gaussian function with non-zero covariance. The chief difficulty
of applying mutual information is that the underlying probability distributions
P (x, y), P (x), and P (y) all have to be estimated. Various techniques exist for
doing this however, such as by using kernel density estimation with Parzen win-
dows [48].2 Suppose the latent vector is denoted by L and has length N . Denote
the diagnosis of the network as D and the vector of attributes A. Then for a
particular attribute Aj in our explanation word set we calculate the following to
obtain a “relatedness” score between the two:

R(Aj) =

N∑
i

MI(Li, D)MI(Li, Aj) (2)

1 Non-intuitive behaviours have repeatably been demonstrated in deep neural net-
works, for instance it has been shown networks based on rectified linear units contain
unexpectedly large “linear regions” with many unused units inside them [23].

2 Note that this sort of approach should not be taken as quantifying “information
flow” in the network. In fact, since the output of units is continuous, the amount of
information which can flow through the network is infinite (for discussion and how
to recover the concept of “information flow” in neural networks see [21]). What we
propose to measure is the the mutual information over the data distribution used.
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An more naive method is to train a “post-hoc” model to try to predict the
diagnosis from the attributes (also shown in figure 1). While this cannot tell
us much about mechanism of the main model (due to the Rashomon effect) we
can learn a bit from it. Namely, if the post-hoc model is not as accurate as
the diagnosis branch of the main model, then we know the main model is using
additional features.

5 Ensuring robustness through applicability domain and
uncertainty analysis

The concept of an “applicability domain”, or the domain where a model makes
good predictions, is well studied in the area of molecular modeling known as
quantitative structure property relationships (QSPR), and practitioners in that
field have developed a number of techniques which are ready for export (for a
review, see [42] or [37]). It is remarkable that quantifying the applicability do-
main of models hasn’t become more widespread in other areas where machine
learning, given concerns about robustness and adversarial attacks. An analy-
sis of applicability domain analysis methods for deep learning and in particular
computer vision is outside the scope of this paper and will be the subject of a
future work. However, as an illustration, one way of delineating the applicability
domain is to calculate the convex hull of the input vectors for all training data
points (if the input is very high dimensional, dimensionality reduction should
be applied first). If the input/latent vector of a test data point falls outside
the convex hull, then the model should send an alert saying that the test point
falls outside the model’s applicability domain. Applicability domain analysis can
be framed as a simple form of AI self-awareness, which is thought by some to
be an important component for AI safety in advanced AIs [3]. Finally, models
should contain measures of uncertainty for both their decisions and their expla-
nations. Ideally, this should be done in a Bayesian way using a Bayesian neural
network [34,25]. If not enough compute is available, approximate methods are
now available - for instance random dropout during inference can be used to
estimate uncertainties at little extra computational cost [19]. Just as including
experimental error bars is standard in all of science, uncertainty quantification
should be standard practice in AI research.

6 Conclusion

We argued that deep neural networks trained on complex real world data are
very difficult to interpret due to their power arising from brute-force interpola-
tion over big data rather than through the extraction of high level rules. Moti-
vated by this and by the need for trust in AI systems we introduced the concept
of self-explaining AI and described how a simple self-explaining AI would func-
tion for diagnosing medical images. To build trust, we showed how a mutual
information metric can be used to verify that the explanation given is related to
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the diagnostic output. Crucially, in addition to an explanation, self-explaining
AI outputs confidence levels for both the decision and explanation, further aid-
ing our ability to gauge the trustworthiness of any given diagnosis or decision.
Finally, an applicability domain analysis should be done for AI systems where
robustness and trust are important, so that systems can alert their user if they
are asked work outside their domain of applicability.
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