
EasyChair Preprint
№ 5807

Task-Specific Temporal Node Embedding

Mounir Haddad, Cécile Bothorel, Philippe Lenca and
Dominique Bedart

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

June 15, 2021

Noname manuscript No.
(will be inserted by the editor)

Task-specific Temporal Node Embedding

Mounir Haddad ·
Cécile Bothorel ·
Philippe Lenca ·
Dominique Bedart

Received: date / Accepted: date

Abstract Graph embedding aims to learn a representation of graphs’ nodes in
a latent low-dimensional space. The purpose is to encode the graph’s structural
information. While the majority of real-world networks are dynamic, litera-
ture generally focuses on static networks and overlooks evolution patterns. In
a previous article entitled ”TemporalNode2vec: Temporal Node Embedding
in Temporal Networks”, we introduced a dynamic graph embedding method
that learns continuous time-aware vertex representations. In this paper, we
adapt TemporalNode2vec to tackle especially the node classification-related
tasks. Overall, we prove that task-specific embedding improves data efficiency
significantly comparing to task-agnostic embedding.

Keywords Dynamic network embeddings · Graph representation learning ·
Latent representations

1 Introduction

In the last decade, literature has taken an interest in the extraction of net-
works’ relevant structural information. Yet, one has to format graph data

M. Haddad
IMT Atlantique, Lab-STICC, F-29238 Brest, France
DSI Global Services
E-mail: mounir.haddad@imt-atlantique.fr

C. Bothorel
IMT Atlantique, Lab-STICC, F-29238 Brest, France
E-mail: cecile.bothorel@imt-atlantique.fr

P. Lenca
IMT Atlantique, Lab-STICC, F-29238 Brest, France
E-mail: philippe.lenca@imt-atlantique.fr

D. Bedart
DSI Global Services
E-mail: dominique.bedart@dsi-globalservices.fr

2 Mounir Haddad et al.

in such a way to make its exploitation easier for machine learning models.
Traditional approaches, commonly based on user-defined heuristics [1–3], are
time-consuming in terms of feature engineering.

Some emerging novel approaches known as data embeddings intend to learn
a latent representation of the data that lie in graphs in low dimensional spaces
[4]. These techniques have been designed for textual data at first [5] and,
thereafter, have been adapted to graphs among other data structures. Last
years have seen graph representation learning approaches flourish. Some are
based on matrix factorization [6–8], on random walks [9–11] or on deep learning
techniques (convolutional neural networks [12] or autoencoders [13,14])

As real-world datasets generally evolve over time, a few and recent ap-
proaches consider the temporal dimension to capture evolution patterns. Some
methods use temporal information for the conception of more reliable embed-
dings [15,16], while other ones learn a representation for the network at each
time step [17–19].

In a previous paper, we presented TemporalNode2vec [18], a temporal
node embedding framework, based on the static node embedding algorithm
Node2vec [9] and a smoothing mechanism for dynamic word embeddings [20].
Its principal advantage lies in the way temporal information is incorporated:
the different time steps embeddings are learned jointly. As the majority of em-
bedding techniques, TemporalNode2vec is task-agnostic by design: this means
that the resulting vertices representations are generic and independent regard-
ing downstream machine learning tasks. Intuitively, it seems to be possible to
enhance the quality and the efficiency of the embeddings if the inference tasks
to be addressed are known a priori. Upon this idea, we propose a variant
of TemporalNode2vec called TsTemporalNode2vec. It is a task-specific semi-
supervised embedding algorithm tied up to node classification tasks, made pos-
sible by a slight modification of the objective function of TemporalNode2vec.
Our main contribution lies in the use of a part of the ground-truth nodes’ labels
within the representation learning process. We show in our experiments that
this variant helps improving node classification tasks and makes the learned
embeddings more data-efficient.

2 Task-agnostic embedding

2.1 TemporalNode2vec model

In order to build sequences of vertices, TemporalNode2vec [18] uses random
walks for each time step in a similar way to node2vec [9]. Given a sequence of
temporal graphs {G1, . . . , GT }, we obtain T ×N × |V | sequences of vertices
of length l, where N is the number of walks starting from each vertex and V
is the set of the temporal graph vertices.

Homophily, or the ability to bring close together embeddings which nodes
share similar neighbors [21], is a property that embeddings should preserve. We

Task-specific Temporal Node Embedding 3

use Positive Pointwise Mutual Information matrices (PPMI) for this purpose.

PPMI(v1, v2)t = max

(
0, log

(
θ
|v1, v2|wt · |V |
|v1|t · |v2|t

))
∀(v1, v2 6= v1, t) ∈ V 2 × [[1, T]]

(1)

where |vi|t is the number of occurrences of vi in the set of walks of Gt, |v1, v2|wt
is the number of times v1 and v2 co-appear in the set of walks of Gt within a
window of size w, and θ is a tunable hyperparameter controlling the trade-off

between PMI entries stability (large negative values of log
(
θ
|v1, v2|wt ×|V |
|v1|t×|v2|t

)
)

and rare co-appearance pairs of nodes. The overall objective function to opti-
mize for {U1, . . . , UT } is:

L = LSt + τ LSm + λ LLR

=

T∑
t=1

∥∥PPMIt − Ut U
T
t

∥∥2
F

+ τ

T∑
t=2

‖Ut − Ut−1‖2F + λ

T∑
t=1

‖Ut‖2F
(2)

where LSt is the static term, LSm is the temporal smoothing term and LLR

stands for low-rank data-fidelity enforcement.

2.2 Experiments

To evaluate TemporalNode2vec, 3 baseline methods have been considered:
Two state-of-the-art static embedding methods (DeepWalk [10] and node2vec
[9]) and DynamicTriad [17], a dynamic embedding approach focusing on how
triads of vertices open/close. For each of those baseline methods, a grid search
has been performed over multiple values for their different hyperparameters.

The performed experiments show that TemporalNode2vec improves node
classification tasks (up to 14.2% in terms of F1 score) and affords to achieve
good performances with a limited number of representation features (figure 1).
On the other hand, TemporalNode2vec is less efficient in edge-related inference
tasks.

3 Task-specific embedding

As seen above, it is possible to extract a small number of features describ-
ing accurately the input temporal graphs. This means that the dimensions of
the obtained latent embedding space contain sufficient information to perform
all the considered inference tasks, as the embeddings are built agnostically
regarding downstream machine learning tasks. However, at this point, the dis-
tribution of each task’s useful information over the latent dimensions remains
unknown. For example, in a simplistic scenario, some of the retained features

4 Mounir Haddad et al.

Fig. 1: Node classification on AMiner1dataset

may be relevant to edge reconstruction tasks and irrelevant to node classifi-
cation ones. In such a configuration, to perform node classification, one can
settle for a smaller number of features. Upon this idea, we propose a variant
of TemporalNode2vec we call TsTemporalNode2vec (task-specific TemporalN-
ode2vec): It is a semi-supervised embedding algorithm tied up to node clas-
sification tasks, made possible by a slight modification of TemporalNode2vec
objective function.

3.1 TsTemporalNode2vec model

In addition to a sequence of graphs, TsTemporalNode2vec takes also in input
a sequence of timestamped vertices labels S = {si,c,t} where si,c,t signifies that
the vertex vi belongs to the community c at the time step t. In order to conceive
TsTemporalNode2vec, we modify the objective function of TemporalNode2vec
by forcing the proximity of embeddings for the pairs of nodes that belong to
the same community. This may be achieved by adding a term to the objective
function:

Lts =
∑

(i,j,t)∈Spos

‖ui(t)− uj(t)‖2 (3)

where ui(t) represents the embedding of the vertex vi at t and Spos = {(i, j, t)}
is derived from S and signifies that the vertices vi and vj belong to the same
community at t. However, introducing the term Lts is not practical as it in-
volves vectors rather than matrices, unlike the other terms of the objective
function shown in equation (2).

Instead, we choose to incorporate the supervision additional data into the
PPMI matrices: as these matrices express nodes’ temporal similarities, one

1 More details in section 3.2.2

Task-specific Temporal Node Embedding 5

can increase the entries corresponding to the pairs of nodes belonging to the
same community. We introduce Ssup and SPMI matrices:

Ssup(vi, vj)t =

{
1 if (i, j, t) ∈ Spos

0 otherwise
(4)

SPMI(vi, vj)t = PPMI(vi, vj)t + α ·mt · Ssup(vi, vj)t (5)

where mt is the median of the non-zero values of PPMIt and α is a hyperpa-
rameter controlling PPMI values increase. We use mt as a normalization so
that α is of order unity.

On another note, it is relevant to notice that the timestamped labels S
encompass also information about pairs of nodes belonging to different com-
munities: in the same way as Spos, we derive Sneg from S. It is then possible
to incorporate Sneg in Ssup and SPMI matrices:

Ssup(vi, vj)t =

1 if (i, j, t) ∈ Spos

−1 if (i, j, t) ∈ Sneg

0 otherwise
(6)

SPMI(vi, vj)t = max
(

0, PPMI(vi, vj)t + α ·mt · Ssup(vi, vj)t

)
(7)

That being set, we substitute PPMI matrices with SPMI ones in the
objective function expressed in equation (2). The following steps of Tempo-
ralNode2vec remain unchanged.

3.2 Experiments

3.2.1 Node classification/prediction

The idea is to find nodes’ ground-truth communities based on their embed-
dings. For the node classification task, the current vertices embeddings are used
to find their labels. On the other hand, for the node class prediction task, we
predict nodes’ labels at a time step using their embeddings at the previous
time step. For both inference tasks, the classifier used is logistic regression.

3.2.2 Datasets

In order to challenge TsTemporalNode2vec performances, we submit its output
embeddings to node classification for the 3 real-world datasets.

– AMiner [22]: 51k researchers and 624k coauthor relationships, divided
into 17 timestamped weighted graphs, (a weight represents the number of
common papers between 2 nodes). Authors are mapped to research fields
(labels) regarding the domains their publications address.

6 Mounir Haddad et al.

– Yelp2: an extract of Yelp challenge dataset. It traces internet users’ com-
ments on businesses. We consider users and businesses as being nodes while
comments are regarded as interactions (38k nodes, 744k edges, 17 time
steps). Users can be mapped to categories (labels) when looking at the
type of businesses they usually comment on.

– Tmall3: an extract of the sales at Tmall.com 6 months before the ”Double
11 Day” event in 2014. It stores buyers’ interactions with products (27k
nodes, 2.9M edges, 10 time steps). We assign labels to users as described
for Yelp dataset (categories of preferred products as labels).

3.2.3 Labeling ratio

As TsTemporalNode2vec is a semi-supervised embedding model, one has to
define and set the labeling ratio. For the datasets we consider, it is important to
note that the nodes’ labels are not equal regarding the amount of information
they provide: some nodes interact within all the time steps while others are
active during very few ones. Therefore, it seems worthwhile to rate nodes’
contributions in terms of the provided information. For each node vi, we define
the quantity Qi:

Qi =
qi∑

vj∈V
qj (8)

where qi is the number of time steps where the vertex vi is active. Then, a
labeling ratio r can be obtained by a choosing a random sample of nodes RSr

satisfying: ∑
vj ∈ RSr

Qj ≈ r (9)

3.2.4 Model tested values

Besides TemporalNode2vec hyperparameters, TsTemporalNode2vec has an
additional one α, as described in equations (5) and (7). For our experiments,
we keep the values of TemporalNode2vec hyperparameters giving the best per-
formances on node classification and perform a grid search over (d, r, α) ∈
{2, 4, 7, 10, 15, 20, 25} × {0.1, 0.25, 0.5} × {0.1, 0.33, 0.67, 1}.

3.2.5 Results analysis and interpretation

Table 1 shows the results of the experiments. Overall, TsTemporalNode2vec
improves the performances on node classification tasks. This is particularly the
case for small embedding dimensions. This finding confirms our prior intuition
stating that task-specific embedding captures as much relevant information
as possible within the embedding latent dimensions. Also, as the embedding

2 https://www.yelp.com/dataset/challenge
3 https://tianchi.aliyun.com/competition/entrance/231576/information

Task-specific Temporal Node Embedding 7

dimension grows, the gap between task-specific and task-agnostic approaches
scores tends to narrow: for large values of d, the relevant information is cap-
tured by both methods.

Concerning the labeling ratio, the experiments show that setting r to 0.1
is sufficient to enhance the F1 score. This means that labeling 10% of the
nodes helps to significantly improve the inference performances. On the other
hand, it seems that larger values of r (0.25 and 0.5) do not bring much more
improvement to the performances (respectively, an average F1 score gain of
0.8% and 1.4% comparing to r = 0.1). This could be explained by the fact
that TsTemporalNode2vec needs a small ratio of labeled nodes to understand
the kind of communities to focus on.

Lastly, the hyperparameter α seems to have a significant impact on the per-
formances. For example, large α values result in bad performances for AMiner
dataset, while setting α to 0.33 would be the best choice for Yelp dataset.

AMiner
r = 0.1 r = 0.25 r = 0.5

Yelp
r = 0.1 r = 0.25 r = 0.5

Tmall
r = 0.1 r = 0.25 r = 0.5

Table 1: TsTemporalNode2vec results analysis

8 Mounir Haddad et al.

Concerning Tmall dataset, it seems that the value of α does not have a huge
impact on the classification score. Further investigation is needed to explain
that point. Overall, it seems that the optimal value of α and its impact highly
depends on the considered dataset.

3.3 TsTemporalNode2vec application context

Task-specific temporal graph embedding can be useful in many cases. One can
take advantage of total or partial metadata giving information about nodes
communities. Also, when such data is not available, it is possible to perform a
soft labeling step, consisting of marking pairs of nodes probably belonging to
the same community or probably belonging to different communities, based on
some user-defined heuristic. In this case, task-specific embedding offers more
flexibility, as it is possible to specify and highlight the desired communities or
types of communities. One must nevertheless note that the hand-engineered
co-belonging rule is to be considered as a method to reproduce the ground-
truth communities partially but reliably. It should then privilege precision
rather than recall.

4 Conclusion

In this paper, we presented TsTemporalNode2vec, a task-specific temporal
node embedding method, tied up to node classification. We proved its effi-
ciency in encoding dynamic graphs structural information into a very limited
number of dimensions. Moreover, we listed some application contexts where
task-specific embedding could be useful. Further work related to exploiting
the embeddings for different purposes (visualization, dynamics analysis and
prediction) is underway.

References

1. S. Bhagat, G. Cormode, S. Muthukrishnan, in Social network data analytics (Springer,
2011), pp. 115–148

2. S.V.N. Vishwanathan, N.N. Schraudolph, R. Kondor, K.M. Borgwardt, Journal of Ma-
chine Learning Research 11(Apr), 1201 (2010)

3. D. Liben-Nowell, J. Kleinberg, Journal of the American society for information science
and technology 58(7), 1019 (2007)

4. Y. Bengio, A. Courville, P. Vincent, IEEE transactions on pattern analysis and machine
intelligence 35(8), 1798 (2013)

5. T. Mikolov, K. Chen, G. Corrado, J. Dean, arXiv preprint arXiv:1301.3781 (2013)
6. S. Cao, W. Lu, Q. Xu, in Proceedings of the 24th ACM international on conference on

information and knowledge management (ACM, 2015), pp. 891–900
7. M. Belkin, P. Niyogi, in Advances in neural information processing systems (2002), pp.

585–591
8. M. Ou, P. Cui, J. Pei, Z. Zhang, W. Zhu, in Proceedings of the 22nd ACM SIGKDD

international conference on Knowledge discovery and data mining (ACM, 2016), pp.
1105–1114

Task-specific Temporal Node Embedding 9

9. A. Grover, J. Leskovec, in Proceedings of the 22nd ACM SIGKDD international con-
ference on Knowledge discovery and data mining (ACM, 2016), pp. 855–864

10. B. Perozzi, R. Al-Rfou, S. Skiena, in Proceedings of the 20th ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining (ACM, 2014), pp. 701–710

11. H. Chen, B. Perozzi, Y. Hu, S. Skiena, in Thirty-Second AAAI Conference on Artificial
Intelligence (2018)

12. T.N. Kipf, M. Welling, arXiv preprint arXiv:1609.02907 (2016)
13. S. Cao, W. Lu, Q. Xu, in Thirtieth AAAI Conference on Artificial Intelligence (2016)
14. D. Wang, P. Cui, W. Zhu, in Proceedings of the 22nd ACM SIGKDD international

conference on Knowledge discovery and data mining (ACM, 2016), pp. 1225–1234
15. Y. Zuo, G. Liu, H. Lin, J. Guo, X. Hu, J. Wu, in Proceedings of the 24th ACM SIGKDD

International Conference on Knowledge Discovery & Data Mining (ACM, 2018), pp.
2857–2866

16. G.H. Nguyen, J.B. Lee, R.A. Rossi, N.K. Ahmed, E. Koh, S. Kim, in Companion of the
The Web Conference 2018 on The Web Conference 2018 (International World Wide
Web Conferences Steering Committee, 2018), pp. 969–976

17. L. Zhou, Y. Yang, X. Ren, F. Wu, Y. Zhuang, in Thirty-Second AAAI Conference on
Artificial Intelligence (2018)

18. M. Haddad, C. Bothorel, P. Lenca, D. Bedart, in International Conference on Complex
Networks and Their Applications (Springer, 2019), pp. 891–902

19. S. Mahdavi, S. Khoshraftar, A. An, in 2018 IEEE International Conference on Big
Data (Big Data) (IEEE, 2018), pp. 3762–3765

20. Z. Yao, Y. Sun, W. Ding, N. Rao, H. Xiong, in Proceedings of the Eleventh ACM
International Conference on Web Search and Data Mining (ACM, 2018), pp. 673–681

21. S. Fortunato, Physics reports 486(3-5), 75 (2010)
22. J. Tang, J. Zhang, L. Yao, J. Li, L. Zhang, Z. Su, in Proceedings of the 14th ACM

SIGKDD international conference on Knowledge discovery and data mining (ACM,
2008), pp. 990–998

