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Abstract. A variety of colored resource-oriented Petri nets (CROPN)-
based control method to realize control policies in flexible manufacturing
systems (FMS) are to add control places to the original net, which makes
the net being complex. This paper proposes a novel concept in colored
resource-oriented Petri nets (CROPN) called colored capacity. Firstly,
the foraml definition of colored capacity in a CROPN is given. Based
on this concept, the new execution rule of the transitions is proposed.
Then, a method is developed such that the colored capacity for places
is determined. By colored capacity, all given control policies are realized
without adding control places, thus making the net simple. Finally, an
FMS example is used to illustrate the proposed method.

Keywords: Deadlock avoidance· discrete event systems· flexibility man-
ufacturing systems· Petri nets· colored resource-oriented Petri net.

1 Introduction

Flexible manufacturing systems (FMS) have been widely used in industrial fields
[1]-[7]. However, since a large number of jobs have to share same resource in an
FMS, deadlocks may arise, which leads to serious consequences. To deal with
deadlock issue in FMSs, many control policies based on Petri net models have
been established.

In these control policies, a deadlock avoidance strategy to prevent the FMS
modeled by Petri nets from being deadlock is to add some constraints to the
targeted FMS such that the system is deadlock-free. The work in [9] proposes
a colored resource-oriented Petri net (CROPN) model to analyze the deadlock
problem in FMS. The CROPN is considered to be more powerful than other
Petri nets such as the resource place-based Petri nets[5].

The work in [5] establishes the deadlock-free operations in CROPN. However,
to use the deadlock avoidance policy proposed in [5], we need to add control
places to the original net, which makes the net being complex.
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In this paper, a novel CROPN concept called colored capacity is proposed.
We define the colored capacity of the place, which represents the biggest number
of tokens with the same color that the place can retain simultaneously. It is shown
that a place in CROPN may have different colored capacity corresponding to
different color. Based on the concept of colored capacity, the new transitions
firing rule for CROPN is presented. Then, after we obtain all deadlock and
impending deadlock markings by using the method proposed in [5], a method
is presented to determine the colored capacity for each place in CROPN by
simple calculation. It is shown that the colored capacity of a place in CROPN
will change along with the marking change. Based on the dynamically changing
color capacity, combined with the new transitions firing rule proposed in this
paper, all deadlock markings and impending deadlock markings in a flexible
manufacturing systems (FMS) modeled by CROPN are forbidden, therefore,
this FMS is deadlock-free and we do not need to add control places to the net.

The contributions in this paper are as follows:
1) In this paper, the colored concept for FMS modeled by CROPN is pro-

posed, which is not considered in [5].
2) Based on the dynamically changing color capacity, combined with the new

transition firing rule proposed in this paper, all deadlock markings and impend-
ing deadlock markings in a flexible manufacturing systems (FMS) modeled by
CROPN are forbidden without the need to add control places to the net.

This paper is organized as follows. Section 1 is the introduction. Section 2
gives some basics for the model of CROPM. Section 3 defines the concept of
colored capacity for CROPN. 4 proposes a method to determine the colored
capacity. Section 5 presents a FMS example to explain the application of the
proposed method. We conclude in section 6. The acknowledgment is in section
7.

2 Preliminaries

In this subsection, some notations and concepts about colored resource-oriented
Petri net (CROPN) are presented. The reader can refer to [5], [16], [17] and [18]
for more CROPN theory.

A CROPN is a five-tuple N = (P, T,A,W,K), where P is a set of places and
T is a set of transitions, A ⊆ (P×T )∪(T×P ) is the relationship of the transitions
and places in the graph, W : A→ {0, 1, . . . } is the weight function on the arcs,
and K : P → {0, 1, . . . } is the capacity function. In CROPN, we attach color to
each token in places and the color set is equal to T . Let M : P ×T → {0, 1, . . . }
be the marking of CROPN in a state M , such that M(p, t) represents the number
of tokens with color t in place p at marking M , where p ∈ Q, t ∈ T . We then
show the execution rule for CROPN as follows:

Definition 1. In a CROPN at marking M , a transition t ∈ T is said to be
process-enabled if and only if for all p ∈ P

M(p, t) ≥W (p, t) (1)
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Definition 2. A transition t is said to be resource-enabled at marking M if and
only if for all p ∈ P

K(p) ≥M(p)−W (p, t) + W (t, p) (2)

, where M(p) represents the number of tokens regardless of colors in place p at
marking M . Then we define that a transition t ∈ T can be enabled at M iff it
is both process-enabled and resource-enabled at marking M . When transition
t ∈ T files at M , then W (p, t) tokens with color t are removed from place p and
W (t, p) tokens are transmitted to place p for p ∈ P .

3 Definition of Colored Capacity

In this section, the formal definition of colored capacity is proposed. Then we
define the new execution rule for CROPN.

Definition 3. Given a CROPN with marking M , let Kc : P × T × M →
{0, 1, . . . } be the colored capacity such that for all p ∈ P , for all t ∈ T , for
all marking M reachable from the initial marking, Kc(p, t,M) represents the
maximum free number of tokens with color t that p can retain at marking M .

For example, if Kc(p, t,M) = 1, then only one token with color t can move
into place p at marking M . However if Kc(p, t,M) = 0, then no token with color
t can move into place p at marking M . We then define the new transition firing
rule for CROPN.

Definition 4. Given a CROPN, transition t ∈ T is said to be enabled at M if

1. transition t is process-enabled.
2. assume that the firing of a transition t ∈ T at marking M will add W (t, p1)

tokens with color t1 ∈ T into place p1 with (t, p1) ∈ A. Then Kc(p1, t1,M) ≥
W (t, p1).

Remark 1. Note that in the normal capacity in CROPN, we can only control
the number of tokens with colors in specified places by adding additional control
places to CROPN. However, based on the colored capacity and new execution
rule, we can control the number of tokens with colors in places without adding
control places, which will be illustrated in the next section. Furthermore, the
work in [5] assume that the color of a token will changed when this token goes
from a place to another and the change of color is decided by a process plan and
is known in advance.

4 Realization of Control Policies for Interactive Subnets
by using Colored Capacity

In this section, we show that how to realize control Policies in CROPN by using
colored capacity.
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Fig. 1. A CROPN with one interactive subnet [5]

Consider CROPN in Fig. 1 [5]. Assume that K(p1) = K(p3) = K(p5) =
1 and K(p2) = K(p4) = 2. In this net, the only interactive subnet v1 =
{p2, t5, t6, p3, t7, t8, p4}. From the work in [5], we have three control policies to
avoid deadlock to occur as follows:

u1 : M(p3, t7) + M(p4, t8) ≤ 2; (3)

u2 : M(p2, t5) + M(p3, t6) ≤ 2; (4)

u3 : M(p2, t5) + M(p4, t8) ≤ 3. (5)

Note that if there exists marking M such that M(p3, t7)+M(p4, t8) = 3, then
from place capacity, we have M(p3, t7) = 1 and M(p4, t8) = 2. In this marking,
transitions t7 and t8 are process enabled but not resource enabled, implying that
no tokens can pass these transitions any time and thus CROPN is deadlocked
at marking M . This is why we need policy u1 to restrict the number of tokens
with colors t7 and t8 in places p3 and p4. One can easy check policies u2 and
u3 in a similar way. Next, we discuss how to realize, for instance, policy u1 by
using colored capacity.

To realize policy u1, clearly we have

Kc(p3, t7,M) ≤ 2−M(p3, t7)−M(p4, t8)

Kc(p4, t8,M) ≤ 2−M(p4, t8)−M(p3, t7)
(6)

Because, for instance, if Kc(p3, t7,M) > 2 − M(p3, t7) − M(p4, t8), then
when M(p3, t7) + M(p4, t8) = 2, we have that Kc(p3,M, t7) ≥ 1, implying that
at least one token with color t7 can add to place p3. After doing this, we have
that M ′(p3, t7)+M ′(p4, t8) ≥ 3, which contradicts policy u1, where M ′ is reach-
able from marking M . Furthermore clearly we have Kc(p3, t7,M) ≤ K(p3) and
Kc(p4, t8,M) ≤ K(p4). Since the possible colors of tokens in places p4 and p3
are t8, t9, and t7, t6 respectively. Thus we have

Kc(p3, t7,M) ≤ K(p3)−M(p3, t7)−M(p3, t6)

Kc(p4, t8,M) ≤ K(p4)−M(p4, t8)−M(p4, t9)
(7)
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However, from policy u3, if M(p2, t5) = 2, then the free number of tokens
with color t8 in place p4 must less than one, implying that Kc(p4,M, t8) ≤ 1.
Thus Kc(p4, t8,M) is related to policies u1 and u3. Thus we have

Kc(p4, t8,M) ≤ 3−M(p2, t5) (8)

To make the maximal permissive of the tokens with colors t7 and t8 in places
p3 and p4, from Eqs (6) to (8), we have

Kc(p4, t8,M) = min[(2−M(p4, t8)−M(p3, t7)),K(p4)−M(p4, t8)−M(p4, t9),

3−M(p2, t5)]
(9)

and

Kc(p3, t7,M) = min[(2−M(p4, t8)−M(p3, t7)),K(p3)−M(p3, t7)−M(p3, t6)]
(10)

Clearly by using Eqs. (8) and (9), we can realize policy u1 with the new
execution rule defined in Definition 4. Next we show in Algorithm 1 to determine
colored capacity given CROPN and control policies.

Algorithm 1 Determination of the colored capacity given a CROPN and con-
trol policies developed form the method from [5].

Input: control policies and CROPN
Output: colored capicity.

1. By using the method from [5] we compute the control policies. Assume that
there x control policies to forbid deadlock. The first control policy is of the
form u1 = M(p11, t11) + M(p12, t12) + · · · + M(p1l(1), t1l(1)) ≤ N(1), where
l(1) ≥ 1 and N(1) ≥ 0. The second control policy is of the form u2 =
M(p21, t21) + M(p22, t22) + · · · + M(p2l(2), t2l(2)) ≤ N(2), where l(2) ≥ 1
and N(2) ≥ 0. The x control policy is of the form ux = M(px1, tx1) +
M(px2, tx2) + · · ·+ M(pxl(x), txl(x)) ≤ N(x), where l(x) ≥ 1 and N(x) ≥ 0.

2. For all place p ∈ P , let C(p) := {t ∈ T |(p, t) ∈ A} be the possible col-
ors the token can labeled in place p. Let Mp :=

∑
t∈C(p) M(p, t). Con-

sider the ith policy with i ∈ {1, 2, . . . , x}, we write M(p, t) ∈ ui when
there exists j ∈ {1, 2 . . . l(i)} such that M(pij , tij) = M(p, t). We define
Mpij ,tij :=

∑
y∈{1,2...l(i)}\j M(piy, tiy). Then for all k1 ∈ {1, 2, . . . x}, k2 ∈

{1, 2, . . . l(k1)}, we set

Kc(pk1k2 , tk1k2 ,M) =min[(K(pk1k2)−Mpk1k2
),

N(k1)− uk1
, N(j1)−Mpk1k2

,tk1k2
]

(11)

where M(pk1k2
, tk1k2

) ∈ uj1 for j1 ∈ {1, 2, . . . , x} \ k1.
3. output colored capacity for CROPN.

Remark 2. From the above discussion, colored capacith is marking-variant. If
the CROPN and the control policies to be considered satisfy that (1) the firing
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of any transition cannot add token to a place and remove token in the place
with the same color from this place simultaneously, and (2) the control policies
are maximally permissive, then clearly by using colored capacity proposed in
this paper, we can realize these policies and do not forbid legal markings. If
any one of the above conditions does not hold, then clearly by using colored
capacity proposed in this paper, we can realize these policies and may forbid
legal markings.

5 FMS Example

Consider a CROPN [5] in Fig. 2, where K(p1) = K(p2) = K(p3) = 1. From [5],
its reachability tree and detailed markings are shown in Fig. 3 and table. 1, re-
spectively. Furthermore, the control policies to be considered to forbid markings
M4,M5,M9 are as follow:

u1 = M(p1, t3) + M(p3, t6) ≤ 1 (12)

u2 = M(p2, t5) + M(p3, t6) ≤ 1 (13)

u3 = M(p1, t3) + M(p2, t4) ≤ 1 (14)

By using Algorithm 1 we can determine colored capacity as follows:

K(p1, t3,M) = min {1−M(p1, t3)−M(p3, t6),

1−M(p1, t3)−M(p2, t4),

K(p1)−M(p1t3)−M(p1, t1)}
(15)

K(p2, t4,M) = min {1−M(p1, t3)−M(p2, t4),

K(p2)−M(p2, t4)−M(p2, t5)}
(16)

K(p2, t5,M) = min {1−M(p2, t5)−M(p3, t6),

K(p2)−M(p2, t4)−M(p2, t5)}
(17)

K(p3, t6,M) = min {1−M(p1, t3)−M(p3, t6),

1−M(p2, t5)−M(p3, t6),

K(p3)−M(p3, t6)−M(p3, t7)}
(18)

From the reachability tree, only markings M1,M2 can reach marking M4. In
marking M1, from table 1, we have M1(p1, t3) = 1, implying that K(p3, t6,M1) =
0 (Eq. 18). Thus transition t8 cannot fire at marking M1 by new firing rule de-
fined in Definition 4 because the firing of this transition will add one token
with color t6 to place p3, which contradicts K(p3, t6,M1) = 0. Thus from mark-
ing M1 we cannot reach marking M4. In marking M2, from table 1, we have
M2(p3, t6) = 1, implying that K(p1, t3,M2) = 0 (Eq. 15). Thus transition t2
cannot fire at marking M2 by new firing rule because the firing of this transition
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Fig. 2. The CROPN for FMS Example

will add one token with color t3 to place p1, which contradicts K(p1, t3,M2) = 0.
Thus from marking M2 we cannot reach marking M4. Thus bad marking M4 is
forbidden by using corlored capacity. In ths similar way one can easy to check
that markings M4,M5,M9 are all forbidden by colored capacity implying that
all control policies are forbidden without adding control places.
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Fig. 3. Reachability graph of the non-colored capacity CROPN in Fig.3

6 Conclusion

In this paper, a novel CROPN concept called colored capacity is proposed. We
define the colored capacity, which represents the maximum free number of to-
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Table 1. Reachable Markings of the CROPN in Fig. 3

Marking

M0 M0(p0, t2) = n and M0(p0, t8) = n
M1 M1(p0, t2) = n, M1(p0, t8) = n and M1(p1, t3) = 1
M2 M2(p0, t2) = n, M2(p0, t8) = n and M2(p3, t6) = 1
M3 M3(p0, t2) = n, M3(p0, t8) = n and M3(p2, t5) = 1
M4 M4(p0, t2) = n, M4(p0, t8) = n, M4(p1, t3) = 1 and M4(p3, t6) = 1
M5 M5(p0, t2) = n, M5(p0, t8) = n and M5(p2, t4) = 1
M6 M6(p0, t2) = n, M6(p0, t8) = n, M6(p1, t3) = 1 and M6(p2, t5) = 1
M7 M7(p0, t2) = n, M7(p0, t8) = n and M7(p3, t7) = 1
M8 M8(p0, t2) = n, M8(p0, t8) = n, M8(p2, t5) = 1 and M8(p3, t6) = 1
M9 M9(p0, t2) = n, M9(p0, t8) = n, M9(p1, t3) = 1 and M9(p2, t4) = 1
M10 M10(p0, t2) = n, M10(p0, t8) = n and M10(p1, t1) = 1
M11 M11(p0t2) = n, M11(p0, t8) = n, M11(p2, t4) = 1 and M11(p3, t6) = 1
M12 M12(p0, t2) = n, M12(p0, t8) = n, M12(p1, t3) = 1 and M12(p3, t7) = 1
M13 M13(p0, t2) = n, M13(p0, t8) = n, M13(p1, t3) = 1, M13(p2, t5) = 1 and M13(p3, t6) = 1
M14 M14(p0, t2) = n, M14(p0, t8) = n, M14(p1, t3) = 1, M14(p2, t4) = 1 and M14(p3, t6) = 1
M15 M15(p0, t2) = n, M15(p0, t8) = n, M15(p1, t1) = 1 and M15(p3, t6) = 1
M16 M16(p0, t2) = n, M16(p0, t8) = n, M16(p2, t5) = 1 and M16(p3, t7) = 1
M17 M17(p0, t2) = n, M17(p0, t8) = n, M17(p1, t1) = 1 and M17(p2, t4) = 1
M18 M18(p0, t2) = n, M18(p0, t8) = n, M18(p1, t3) = 1, M18(p2, t5) = 1 and M18(p3, t7) = 1
M19 M19(p0, t2) = n, M19(p0, t8) = n, M19(p1, t1) = 1, M19(p2, t4) = 1 and M19(p3, t6) = 1

kens with the specific color that the place can retain. A method is presented
to determine the colored capacity in CROPN by simple computation. Then all
given control policies are realized without adding additional control places, thus
making the net simple. However, the colored capacity method may forbid legal
markings, which is the future work.
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