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Abstract

This paper compares three semantic pars-
ing representations in their analysis of a
few simple but central phenomena. These
are PropS, AMR, and GKR for the rep-
resentations, and passivization, coordina-
tion, and negation for the phenomena.

1 Introduction

Infering entailment and contradiction relations be-
tween utterances (texts / sentences / questions and
answers) is a necessary, if not sufficient, condi-
tion for natural language understanding. Infer-
ence is also the central topic of logic, in whatever
flavour: philosophical, computational, or mathe-
matical. Semantic parsing of utterances into ex-
plicit meaning representations has been one ap-
proach employed in recent work on natural lan-
guage inference, e.g. Abstract Meaning Repre-
sentation (AMR, (Banarescu et al., 2013)), PropS
(Stanovsky et al., 2016), decompositional seman-
tics (Zhang et al., 2017), UDepLambda (Reddy
et al., 2017), and Boxer (Bos, 2015). Given the
relatively limited amounts of high quality training
data for inference, we believe that these explic-
itly representational approaches have merit viewed
alongside end-to-end neural architectures.

A number of larger inference datasets
have recently been constructed e.g. SICK
citemarelli2014, SNLI (Bowman et al., 2015),
MultiNLI (Williams et al., 2017). These datasets
are still fairly small by deep learning standards,
and it is also not clear how trustworthy they are,
nor whether they really measure what humans
mean by inference. In (Kalouli et al., 2017b,a,
2018) we investigated the SICK corpus, the
earliest and smallest of these corpora. For that we
used an easy off-the-shelf open source pipeline
that allowed us to uncover several annotation

problems and to propose semi-automatic means
of discovering and correcting logical mistakes in
SICK. In this paper we recall these corrections
of mechanical turkers inference annotations, and
compare semantic parser meaning representations
of selected SICK sentence pairs for three different
appoaches: PropS, AMR, and GKR.

Graphical Knowledge Representation (GKR)
(Kalouli and Crouch, 2018; Crouch and
Kalouli, 2018) is a new open source seman-
tic framework and parser, and can be found at
https://github.com/kkalouli/GKR_
semantic_parser. It is a descendant of
the Abstract Knowledge Representation (AKR)
developed at Xerox PARC (Bobrow et al., 2007),
but is considerably different in its theory and
principal implementation practice. AKR was first
decoupled from the XLE/LFG parser by (Crouch,
2014), and then the representation and inference
process recast in graphical form in (Boston et al.,
Forthcoming). GKR, like AKR, has a focus
on handling intensional inferences in natural
language (hypotheticals, modals, etc) in addition
to the more standard fare of first-order inferences.
GKR uses enhanced dependencies ((Schuster and
Manning, 2016)) obtained via the Stanford Neural
Universal Dependency parser (Chen and Man-
ning, 2014) to first create dependency graphs. The
dependencies are used as the scaffold from which
a number of semantic sub-graphs are constructed,
the most important of which are a conceptual,
predicate-argument graph, and a contextual graph
to deal with Boolean, intensional, and quantifica-
tional aspects of meaning. Additional graphs to
capture the semantic impact of morpho-syntactic
features (e.g. tense, number), and coerference are
also built. The design is deliberately modular, so
that further application-dependent graphs can be
layered in, e.g for distributional word and phrase
vectors, or for dialogue state and plan monitoring

https://github.com/kkalouli/GKR_semantic_parser
https://github.com/kkalouli/GKR_semantic_parser


(Shen and Harkema, Forthcoming).
In comparing SICK representations across

frameworks we do not aim for comprehensiveness,
but merely to highlist some of the significant simi-
alrities and differences. We also aim to show how
GKR fulfills some of the desiderata for a semantic
representation set out in (de Paiva, 2011).

2 SICK

SICK (Sentences Involving Compositional
Knowledge) by (Marelli et al., 2014) is an En-
glish corpus, created to provide a benchmark
for compositional extensions of Distributional
Semantic Models (DSMs). The data set consists
of English sentence pairs, generated from existing
sets of captions of pictures. The authors of SICK
selected a subset of the caption sources and
applied a 3-step generation process to obtain their
pairs. This data was then sent to Amazon Turkers
who annotated them for semantic similarity
and for inference relations, i.e. for entailment,
contradiction and neutral stances. Since SICK
was created from captions of pictures, it contains
literal, non-abstract, common-sense concepts.
The corpus is simplified in aspects of language
processing not fundamentally related to compo-
sionality: there are no named entities, the tenses
have been simplified to the progressive only, there
are few modifiers, few pronouns etc. The curators
of the corpus also made an effort to reduce the
amount of encyclopedic world-knowledge needed
to interpret the sentences.

The number of sentences pairs of the corpus
may seem substantial (almost 10K of pairs), but
there is much redundancy in the contents. Due to
the construction process many of the sentences are
repeated in different pairs. In total there are 6076
unique sentences and only some 2000 unique lem-
mas whose meanings are to be found in Princeton
WordNet synsets. The data set consists of 9840
sentence pairs, which have been annotated as

1424 pairs of contradictions (AcBBcA)
1300 pairs of double entailment (AeBBeA)
1513 pairs of single entailment (AeBBnA)
4992 pairs of neutrals (AnBBnA)

The SICK corpus is a good dataset to test ap-
proaches to semantic representations and natural
language inference, due to its intended, human-
curated simplicity. The pairs mostly talk about ev-
eryday, concrete actions and actors. The sentences

are short; there are no complicated syntactic struc-
tures. There are very few ellipsis and the sen-
tences are mostly grammatical and short. There
was also an effort by the corpus creators to remove
all named entities from sentences in SICK, which
is helpful for the tasks we want to focus on. Ad-
ditionally, there were efforts to limit the number
of compounds and pronouns and tenses were con-
verted to the progressive only.

2.1 Previous Work on SICK
About 18 months ago we started to investigate
SICK to make sure it was a trustworthy baseline
for work in inference. However, we soon discov-
ered that the data is very noisy, so we needed to
provide mechanisms to produce correct annota-
tions.

In a series of papers we discussed ways of
correcting the corpus SICK ((Kalouli et al.,
2017b),(Kalouli et al., 2017a), (Kalouli et al.,
2018)). As we argued, the inferences obtained
from the several existent inference-based corpora
(Bowman et al., 2015; Williams et al., 2017) need
to match humans’ intuitions of logical inference.
Hence, we should not have asymmetric contra-
dictions (A is contradictory to B, but B is neu-
tral with respect to A) nor should we have infer-
ences that contradict common sense (such as a
flute entails a guitar). Nevertheless this is what
happens with several of the original SICK annota-
tions. This is why we needed to correct such mis-
takes, so that we could use SICK as our baseline
corpus for natural language inference.

To do our corrections and analyses, we first put
together an easy off-the-shelf pipeline. The rea-
soning was that we would like to know how many
of the SICK inferences could be done simply using
open source resources like WordNet and SUMO.
We used CoreNLP (Schuster and Manning, 2016)
to produce enhanced Universal Dependencies, We
used JIGSAW(Basile et al., 2007) for disambigua-
tion into Princeton WordNet (PWN) senses, then
we used PWN to SUMO mappings to associate a
bag of SUMO concepts to each sentence1. Using
this basic data, we first checked the collection of
inferences annotated by the turkers as single en-
tailments, the 1513 pairs AeBBnA. We discov-
ered that 12% of these pairs needed corrections
and we supplied these (Kalouli et al., 2017a).

1The processed corpus data is available from
GitHub https://github.com/kkalouli/
SICK-processing

https://github.com/kkalouli/SICK-processing
https://github.com/kkalouli/SICK-processing


Secondly we investigated the contradictions in
the corpus and discovered that as many as 611
pairs were actually ‘asymmetric contradictions’.
Since the turkers were asked to annotate only one
direction entailments, in as many as 611 pairs,
the annotators thought that A was contradictory
to B, but B was neutral to A. And in a few
cases they even had that B entailed it! This meant
that around 30% of all contradictions annotated
in the corpus were non-logical. To correct these
we needed to tighten the guidelines much (Kalouli
et al., 2017b). As discussed by the SICK creators
themselves, the lack of common referents was a
big issue when dealing with contradictions. (This
was also discussed when producing the SNLI cor-
pus (Bowman et al., 2015).) But there were other
issues too, like the use of privative adjectives and
nouns (for instance a fake gun is not a gun, the
same way a cartoon airplane is not an airplane),
etc. We decided that we can only detect contradic-
tions in sentences that are ‘close enough’. In par-
ticular there are predicates ‘contradictory in con-
text’, that need commonsense to be detected. For
example Children in red shirts are playing in the
leaves and Children in red shirts are sleeping in
the leaves need to be annotated as a contradiction,
although sleep and play are not direct antonyms.

Thirdly we came up with one approach to auto-
matically annotating and correcting the inference
pairs in SICK, based on the observation that sev-
eral SICK pairs differ only by one word. Differ-
ing by “one word” means that there is either one
more word in the one sentence than in the other or
that each of the sentences contains a word that is
not found in the other one. These pairs that dif-
fer only by one word (or none) are what we called
”easy inferences” in (Kalouli et al., 2018). Us-
ing this approach we could automatically correct
and re-annotate some of the pairs without hav-
ing to solve all the inference challenges associ-
ated with the meanings of the sentences first. We
end up with 2936 (almost one third of the corpus)
pairs being “one-word apart” and for these we can
mostly infer from the relationship in WordNet be-
tween the words apart, the relationship between
the sentences, see the details in the paper. This is
clearly one of the drawbacks of the elicitation pro-
cess used to produce the inference corpus. When
humans are asked to contradict or infer from one
sentence another, they tend to make the minimal
modification necessary for the goal at hand, many

times changing one single word.

3 Graphical Knowledge Representation
(GKR)

As mentioned in the introduction, despite some
logical similarities between GKR and AKR, in
particular their use of concepts and contexts, their
sources are very different: GKR uses enhanced
dependencies (Schuster and Manning, 2016) ob-
tained via the Stanford Neural Universal Depen-
dency parser (Chen and Manning, 2014) to create
dependency graphs, on top of which fuller seman-
tic graphs are constructed by GKR. On the other
hand, AKR, the semantic component of the Xe-
rox Language Engine (XLE) platform is based on
Lexical Functional Grammar (LFG) to create the
representations. The AKR approach was decou-
pled from XLE/LFG in (Crouch, 2014) and then
revisited in an explicitly graphical form in (Boston
et al., Forthcoming), recasting AKR as a set of lay-
ered sub-graphs, including a conceptual graph, a
contextual graph, a property graph, a syntactic de-
pendency graph, a co-reference graph, and with
the possibility of layering in further sub-graphs
should an application demand it.

GKR is a semantic parser that rewrites a given
sentence into a layered semantic graph. The im-
plementation of the parser is done in Java. The
semantic graph is a rooted, node-labelled, edge-
labelled, directed graph. It consists of at least
four sub-graphs, layered on top of a central con-
ceptual (or predicate-argument) sub-graph. Each
such graph encodes different information and thus
the parser is highly modular. There is a dependen-
cies sub-graph, a conceptual sub-graph, a contex-
tual sub-graph, a properties sub-graph and a lexi-
cal sub-graph.

The Stanford CoreNLP software is used to pro-
duce the enhanced++ dependencies of Schuster
and Manning (2016). The output dependencies
are straightforwardly rewritten to the GKR de-
pendency graph. The conceptual graph, produced
next, contains the basic predicate-argument struc-
ture of the sentence: what is talked about; the se-
mantic subject or agent, the semantic object or pa-
tient, the modifiers, etc.

The conceptual graph is the core of the seman-
tic graph and glues all other sub-graphs together.
Note that, as discussed in (Kalouli and Crouch,
2018) and (Condoravdi et al., 2001), the variables
in the conceptual graph are interpreted as con-



Figure 1: The conceptual (left) and the contextual
(right) graph of The boy faked the illness.

Figure 2: The conceptual graphs of The big air-
plane is arriving (left) and The cartoon airplane
is arriving (right).

cepts, not collections of individuals. Also the con-
ceptual graph does not make any commitments
about the existence or otherwise of those concepts.
In Figure 1 in blue we see the conceptual graph of
the sentence The boy faked the illness: the predi-
cate is the root node and the semantic subject and
object are children nodes. No further existential
information is encoded in this graph so no judg-
ments about truth or entailment can be made so far.
However, the graph does allow judgments about
semantic similarity. In fact, it also accounts for
hard cases like the ones with privative adjectives
mentioned before. The conceptual graphs of the
sentences A = The big airplane is arriving, B =
The cartoon airplane is arriving are shown in Fig-
ure 2. The graph of sentence A modifies the con-
cept of airplane so that a subset of the concept is
addressed, while sentence B imposes a restriction
on airplane so that a new concept cartoon airplane
is involved. If the two graphs were to be compared
for their semantic similarity, they would correctly
be judged non-similar despite the phenomenical
closeness of their basic concepts.

The contextual graph provides the existential
commitments of the sentence. It introduces a top
context (or possible world) which represents what-
ever the author of the sentence takes the described
world to be like; in other words, whatever her
“true” world holds. Additional contexts can be in-
troduced, corresponding to any alternative, possi-

Figure 3: Part of the properties graph of Two peo-
ple are riding a bike.

ble worlds introduced in the sentence. Such con-
texts can be introduced by negation, disjunction,
modals, clausal contexts of propositional attitudes
(e.g. belief, knowledge, obligation), implicatives
and factives, imperatives, questions, conditionals
and distributivity. The contextual graph is built on
top of the concepts graph, as shown in Figure 1
on the right. For our example the graph gives us
the information that there is a top context in which
only the concept (fake) linked with the ctx hd arc
is instantiated. The top context contains the em-
bedded context of illness, in which again only the
concept of illness is instantiated through the ctx hd
arc. But the context of illness is antiveridical in the
top context: it does not exist in it which is accurate
as the illness was faked.

The properties graph associates the conceptual
graph with morphological and syntactical features
such as the cardinality of nouns, the verbal tense
and aspect, the finiteness of specifiers, etc. The
extracted properties can then be imposed on the
corresponding concepts as restrictions to compute
inference or solve issues like distributivity men-
tioned before. This can be seen in Figure 3, which
depicts only a part of the properties graph of the
sentence Two people are riding a bike; it shows
the properties of the concept bike. The cardinal-
ity of the noun is set to singular but its specifier
to indefinite so that when the two restrictions are
combined – e.g. for doing inference –, the under-
specificity required is kept intact: there is not nec-
essarily one bike involved, but also not two; both
readings are still allowed.

Finally, the lexical graph carries the lexical in-
formation of the sentence. It associates each
node of the conceptual graph with its disam-
biguated sense and concept, its hypernyms and
its hyponyms, making use of the disambiguation
algorithm JIGSAW (Basile et al., 2007), Word-
Net (Fellbaum, 1998)) and the knowledge base
SUMO (Niles and Pease, 2001). To build the lex-
ical graph, the whole sentence is first run through
the JIGSAW algorithm which disambiguates each



word of the sentence by assigning it the WordNet
sense with the highest probability. Then, the dis-
ambiguated sense is matched to its WordNet hy-
ponyms and hypernyms and to the SUMO con-
cepts. This means that the tokens of the sen-
tence are expanded to other senses and concepts,
in a way that allows their look-up and their inter-
linking. This idea is integrating our insight that
lexical resources are not enough for inference sys-
tems and that “smarter”, state-of-the-art methods
have to be infused: word vectors can easily be
added to the graph so that the existing words are
further expanded and inter-linked. With that we
are aiming at a hybrid parser, which makes use of
the strengths of both methods: it relies heavily on
rules for the graph construction but also integrates
machine-learning output for the graph expansion.

The implemented parser rewrites a given sen-
tence to the subgraphs discussed and with that,
it produces the final semantic graph for the sen-
tence. This representation is suitable for further
processing into question-answering or dialog sys-
tems, into inference – as it will be shown shortly –
and other semantic tasks.

4 Semantic Representations

Given the much advertised new capabilities of
neural net dependency parsers and POS-taggers
and the linguistically informed simplifications of
the SICK corpus, it seemed reasonable to see how
many of these sentences get a reasonable shallow
semantic representation and how these shallow in-
terpretations can help with inference. But there is
now a proliferation of semantic representations, as
hinted in the introduction. Which semantic repre-
sentation should we choose and why?

To help us decide we choose a very small col-
lection of SICK pairs and tried to apply three se-
mantic representations to them: ProPs, AMR and
GKR. This is not an empirical study, simply a
way of getting more information about the space
of possibilities. This also helps to clarify the im-
portant differences between these semantic possi-
bilities. Since the pairs of SICK are syntactically
simplified, for this work we decided to choose
pairs dealing with the most complex phenomena
involved in SICK, with the assumption that if these
phenomena work good enough in the various rep-
resentations, the representations will also be able
to deal with the simpler phenomena. Therefore,
we chose pairs involving passive voice, coordina-

tion, and negation. These are:

• A: A guitar is being played by the man.
B: A man is playing a trumpet

• A: A dog is running on concrete and is hold-
ing a blue ball.
B: A dog is running on concrete and is hold-
ing a ball.

• A: There is no cyclist performing a jump on
a bicycle.
B: A cyclist is performing a jump on a bicy-
cle.

There are a number of other phenomena not show-
cased in SICK, such as clausal complements, im-
peratives, conditionals and implicatives/factives,
for which it is really interesting to compare the
various representations but these comparisons will
have to wait for a future work. Additionally, the
pairs we chose involve inference relations which
raise interesting discussion points both about the
most suitable semantic representation to compute
inference as well as about the required inference.
In the following we will discuss how our chosen
pairs behave in each of the three representations.

4.1 PropS

The PropS system (Stanovsky et al., 2016) is
designed to explicitly express the propositional
structure of a sentence. The system abstracts
away from the syntactic structure by adding rela-
tions such as and for coodination or outcome and
condition for conditionals or prop of for relative
clauses, all necessary semantic notions to be ex-
tracted from a given sentence. This means that it
represents such phenomena more explicitly than
the dependencies do, as we can also observe by
running a couple of SICK pairs with it. However,
by addressing only propositional / clausal struc-
ture, PropS does not provide sufficient information
about the internal semantics of many noun phrase
to drive a number of SICK inferences

Passives
PropS representations normalize passive and ac-
tive alternations:

played:(subj:the man , obj:a guitar )
playing:(subj:A man , dobj:a trumpet )

However, as can be seen there is no normalization
of the verb inflections.



Coordination
The sentences of the pair A= A dog is running on
concrete and is holding a blue ball. B= A dog is
running on concrete and is holding a ball. are sep-
arated in their component clauses and additionally
there is a third relation added to connect the two
clauses with the and relation and to also make the
subject of the coordinated clause explicit. Sen-
tence A becomes
running:(subj:A dog , prep_on:concrete)
holding:(subj:A dog , dobj:a blue ball )
and:(conj_and:A dog is running ... and ,

conj_and:A dog is holding ...)

Is this complementary relation really useful in
the way it is presented? If we run the two sen-
tences but with disjunction instead of conjunction,
i.e. A dog is running on concrete or is holding a
blue ball., we will observe a similar kind of rep-
resentation: the two clauses are successfully sep-
arated and there is a third complementary relation
added which connects the two clauses with or:
holding:(subj:A dog , dobj:a ball )
running:(subj:A dog , prep_on:concrete )
or:(conj_or:A dog is running ... or ,

conj_or:A dog is holding a ball)

This means that the representations for disjunc-
tion and conjunction look alike except for the or
and and, which remain “un-decoded” into some
deeper semantic notion. Ideally, we would like the
representation to show us that in the first pair the
two clauses co-occur and are both true while in the
second pair only one of the clauses can occur and
be true. For this specific pair the inference relation
is not influenced by the presence of coordination
as the inference boils down to the easy entailment
blue ball → ball. If, however, sentence B of the
pair were the sentence The dog is holding a ball,
it would make a difference if there is conjunction
or disjunction in A and if the representation can
reliably show us what contexts are instantiated in
which case.

Negation
We can look at the third and probably most com-
plex phenomenon of the ones we chose: negation.
It seems that for such more complex phenomena
of natural language ProPs is not offering a more
complete semantic structure. This is the case with
the pair A = There is no cyclist performing a jump
on a bicycle. B = A cyclist is performing a jump
on a bicycle. For the first sentence we get the rep-
resentation

Exists:(subj:no cyclist performing
a jump on a bicycle )

and for the second one the following:
performing:(subj:A cyclist,

dobj:a jump on a bicycle )

Sentence A encodes existence but in a insuffi-
cient way because no cyclist is claimed to exist.
But if there is no cyclist, he/she does not exist.
The representation is not dealing with negation
in a usable way for semantic tasks because it is
left unprocessed in a way that it almost conveys
a counter-to-logic notion. If we tried to compute
the inference relation between the two pairs, we
would have to do our own post-processing of the
representations to account for the fact that in A the
cyclist does not exist while in B it does. The sen-
tences could not be compared directly.

4.2 AMR

Abstract Meaning Representation (AMR) is a rel-
atively recent semantic representation (Banarescu
et al., 2013) where the meaning of a sentence is
encoded as a rooted, directed graph. The represen-
tation is based on manual annotation of the struc-
tures and is thus expensive. The automatic cre-
ation of AMRs (AMR parsing) has been strongly
pursued, however AMR parsing accuracy is still in
the high 60%, as measured by the SMatch score,
and a significant improvement is needed in order
for it to positively impact a larger number of ap-
plications (Flanigan et al., 2014; Wang and Xue,
2017). Standard AMR ignores function words,
tense, articles, plurality, and prepositions which
means that some important information for the
semantic processing remains unavailable. Addi-
tionally, AMR has limited expressive power for
universal quantification and negation (Bos, 2016;
Stabler, 2017) and does not make a distinction
between real and irrealis events (in the example
The boy faked the illness. the representation com-
mits to the existence of a non-existing illness).
For some engineering applications, tense, plural-
ity and quantification may not matter, but for other
applications it is obviously important.

Abstract Meaning Representation (AMR) is
strongly biased towards English, as pointed out
in the original report, and annotation efforts have
mostly focused on English. However, in order to
train parsers on other languages, methods based
on annotation projection, which involves exploit-



ing annotations in a source language and a paral-
lel corpus of the source language and a target lan-
guage have been used (Damonte and Cohen, 2017;
van Noord et al., 2018). We used the Damonte
et al online demo http://cohort.inf.ed.
ac.uk/amreager.html to check our under-
standing of the system, but removed their align-
ments, and also corrected details of the represen-
tations if they were obviously incorrect.

Passive
For the easy passive voice examples AMR delivers
the desired result, the graphs for the pair
# ::snt A guitar is being played

by the man
(v2 / play-08

:ARG1 (v1 / guitar)
:ARG0 (v3 / man))

# ::snt A man is playing a trumpet
(v2 / play-08

:ARG0 (v1 / man)
:ARG1 (v3 / trumpet))

As can be seen, the AMR normalizes the pas-
sive alternation, so that the man is the ARG0 and
the instrument the ARG1 in both cases. Whether
the pairs contradict depend on assumptions about
(a) whether reference is made to the same man at
the same time, which is enforced by SICK, and
(b) whether it is possible to play two instruments
at once.

Coordination
The first sentence in the coordination pair gets:
# ::snt A dog is running on concrete

and is holding a blue ball .
(v4 / and

:op1 (v2 / run-01
:ARG0 (v1 / dog)
:location (v3 / concrete))

:op2 (v5 / hold-01
:ARG1 (v7 / ball

:mod (v6 / blue))
:ARG0 v1))

The second is the same, other than missing
the blue modifier on ball. Graph subsumption,
whereby a more specific graph entails a more gen-
eral one would give the expected entailment rela-
tion. However, as we will see, and as should hope-
fully be obvious anyway, subsumption on AMR
graphs is not an appropriate way of detemining in-
ference relationships.

Exchanging and for or produces an AMR that
differs only in the coordination operator at the root
of the graph. Without further interpretive rules,
there is no way of differentiating the entailments

of conjunction and disjunction; namely that for a
conjunction both conjuncts must be true, whereas
for a disjunction at least one must be. Such an
interpretaive rule would be to transform the AMR
into a more conventional logical formula, perhaps
along the lines of (Bos, 2016) or (Stabler, 2017),
where the coordination operators are translated to
their corresponding propositional connectives.

Negation
For negation we get

# ::snt There is no cyclist performing
a jump on a bicycle .

(v1 / cyclist
:polarity -
:ARG0-of (v2 / jump-07

:location (v3 / bicycle)))

# ::snt A cyclist is performing
a jump on a bicycle .

(v2 / jump-07
:ARG0 (v1 / cyclist)
:location (v3 / bicycle))

Both AMRs treat perform as a kind of light
verb, simplifying perform a jump to jumping. The
first AMR also makes use of an inverted role: the
cyclist is the ARG0 of the jump, but the order
of arguments is inverted. It is not entirely clear
whether inverted roles are pure syntactic sugar,
to ease the annotation task for relative clause and
other verbal noun modifications like cyclist per-
forming a jump. If so, de-inverting the role would
give:

There is no cyclist performing
a jump on a bicycle .
(v2 / jump-07

:ARG0 (v1 / cyclist
:polarity -)

:location (v3 / bicycle))

This would seem to imply that there is a jump-
ing on a bicycle, but just not one being performed
by a cyclist. This certainly describes one situation
under which the sentence would be true, but not
the only one: there could also be no jumping at
all, or no bicycles involved. It would be a push to
describe these three distinct scenarios as being dif-
ferent interpretations or readings of the sentence.
Rather there is just one interpretation (it is not the
case that a cyclist is peforming a jump on a bi-
cycle), and three things that could be missing to
make it true (no jumping, not by a cyclist, not on
a bicycle).

The normalized AMR contradicts the second
sentence only under SICK-specific interpretive
constraints that the sentences/captions describe the

http://cohort.inf.ed.ac.uk/amreager.html
http://cohort.inf.ed.ac.uk/amreager.html


only significant state of affairs depicted in a pic-
ture. One says that there is just one jump on a bicy-
cle, but not being performed by a cyclist, whereas
the other says that this jump is being performed
by a cyclist. However, the contradiction should be
stronger than that: under no reasonable interpre-
tive conditions can both sentences be true.

It would therefore appear that role inversion
needs to be more complicated than argument in-
version. The desired, strong, contradiction can
be mantained if, while de-inverting the arguments,
and polarity marking remain at their initial level
within the AMR, thus normalizing the first sen-
tence to
There is no cyclist performing
a jump on a bicycle .
(v2 / jump-07

:polarity -
:ARG0 (v1 / cyclist)
:location (v3 / bicycle))

But even here, it is still apparent that AMR infer-
ence cannot be reduced to simple graph subsump-
tion. The positive AMR is the same as the negative
other than the presence of polarity marker. Un-
der the assumption that more specific graphs entail
more general ones, this would mean that the pos-
itive entails the negative. So, inference requires
first translation AMRs to logical formulas, where
the negative polarity is cashed out as a boolean op-
erator taking scope over a certain formula.

4.3 GKR
To ease comparison, we will (a) use the string for-
matted rather than the graphical version of GKR
output, and moreover (b) reformat it using an
AMR-style representation of graphs. This in-
volves writing the concept and context graphs as
two separate graphs, using concept variables to
link them. The property graph is folded into the
concept graph as semantically relevant morpho-
syntactic features associated with concept nodes.

Passive
For A guitar is being played by the man. we get:
(play_5 / play

:tense present
:sem_subj (man_8 / man

:cardinality singular
:specifier definite)

:sem_obj (guitar_2 / guitar
:cardinality singular
:specifier indefinite))

(t / _context
:head play_5
:introduces man_8, guitar_2

:relative_polarity veridical)

Aside from the additional tense, cardinality, and
specifier features, the concept graph is parallel to
that for AMR. The difference lies in the context
graph, which in this case is not very interesting. It
asserts that all the concepts in the concept graph
are instantiated within a veridical, top-level con-
text. As with AMR and PropS, the passive and
active alternations are normalized to make them
similar.

Coordination
For A dog is running on concrete and is holding
a blue ball, with most of the property graph om-
mited for brevity, we get:
(and_7 / _group

:sem_subj (dog_2 / dog)
:is_element (hold_9 / hold

:sem_obj(ball_12 / ball
:amod(blue_11 / blue)))

:is_element (run_4 / run
:pmod (concrete_6 / concrete

:pspec on)))

(t / _context
:head and_5
:introduces dog_2, hold_9, ball_12,

blue_11, run_4, concrete_6
:relative_polarity veridical)

Once again the concept graph is similar to the
full AMR, the differences being that the subject is
not distributed over the conjuncts, and the preposi-
tional specifier of the locative modifier on concrete
is preserved in the property graph. The group
concept can be viewed as the union of the running
and holding concepts.

As with the passivization examples, the context
structure here is not very interesting. However,
this changes if and is replaced by or. The con-
cept structure remains unchanged, but two addi-
tional disjunctive contexts are introduced
(t / _context

:head or_5
:disjunction (or_1 / _context

:head hold_9
:introduces ball_12, blue_11
:relative_polarity averidical)

:disjunction (or_2 / _context
:head run_4
:introduces concrete_6
:relative_polarity averidical))

The disjunction relation between the higher level
context t and the disjunct context or 1 imposes an
averidical relative polarity: the head concept of
or 1 may or may not be instantiated. However,
at least one of the two disjunct heads needs to be
instantiated. With that we get a useful distinctive



modeling of conjunction and disjunction, which
can directly be used in further semantic tasks. As
was pointed out before, the accurate representation
of such semantic phenomena is of great impor-
tance in cases where the inference relation within a
pair is based on the co-existence or not of different
concepts.

Negation
The role of GKR’s context structure becomes
more apparent with negation. For There is no cy-
clist performing a jump on a bicycle we get:
(be_2 / be

:tense present
:sem_subj (cyclist_4 / cyclist
:cardinality no
:rel_subj (perform_5 / perform

:sem_obj(jump_7 / jump
:pmod (bicycle_10 / bicycle

:pspec on)))))

(t / _context
:head be_2
:relative_polarity veridical
:not (c1 / _context
:head cyclist_4
:introduces perform_5, jump_7,

bicycle_10
:relative_polarity anti_veridical)

The expletive-be construction is not eliminated
from the concept structure in the way that AMR
does; this is to support the tense distinction be-
tween there is and there was. The progressive
participle modification of cyclist is treated along
the lines of a reduced relative clause: c.f. cy-
clist performing a jump and cyclist that is per-
forming a jump. This introduces an (inverted) rel-
ative subject role, which indicates that cyclist 4 is
both modified by perform 5, but also acts as its
subject. Apart from the cardinality property on cy-
clist 4, the concept structure marks no difference
between the negative and positive versions of the
sentence (There is a cyclist performing a jump on
a bicycle).

The difference is marked in the context struc-
ture, where the determiner no introduces a second
anti-veridical context c1 whose head is cyclist 4.
Within the context c1 the head concept cyclist 4
of a cyclist performing a jump on a bicycle has an
instance, for which to be true there must also be an
instance of a jump and a bicycle. However, c1 is
anti-veridical with respect to the top level, speaker
committment, context t, which means that the con-
cept is asserted to be uninstantiated in t. The non-
instantiation of cyclist 4 does not rule out the pres-
ence of any jumps, bicycles, or cyclists; only that

if any jumps on bicycles are going on then they are
not being done by cyclists. The positive version of
the sentence, on the other hand, places cyclist 4
in a veridical context. This leads to a direct con-
tradiction between the two, since one claims that
cyclist 4 is instantiated while the other claims it is
uninstantiated.

5 Conclusions

There has been a resurgence of meaning represen-
tation languages, spear-headed perhaps, by AMR
and the multiple projects using it. Despite the
large amount of work on this simplified represen-
tation, its semantics does not seem to have the
same level of consensus amongs researchers as
does the syntax of Universal Dependencies. The
different semantic representations seem more dif-
ferent amongst themselves.

Bos (Bos, 2016) and Stabler(Stabler, 2017)
want to see AMR graphs as fragments of First-
order Logic or Higher-Order Logic, respec-
tively, via translations and propose to augment
AMR along these lines. Enhanced Depen-
dencies++ (Schuster and Manning, 2016) and
ProPs(Stanovsky et al., 2016) instead want to ex-
tend the reach of the syntactc annotations, without
aiming for a fully semantic representation. The
representation formalisms described as scoped
DRS in (van Noord et al., 2018) seems the clos-
est to the GKR we advocate in this paper. Their
boxes are like contexts, but they seem to insist on
a semantics based on individuals, instead of sub-
concepts. While we share the use of contexts to
deal with modal notions, it is not clear to which
extent they see their use of nested boxes as going
beyond first-order logic or not.

The work on GKR is only starting, hence tem-
poral phenomena, coreference resolution and im-
plicative behaviour, for example are, so far, only
stubbed. But the data in SICK is simplified exactly
along these dimensions. Thus we expect SICK
representations to be very much equivalent in the
three systems we compare. The representation of
negation is very different though: the AMR graphs
for No dog is emerging from a lake and There is no
dog emerging from a lake are not the same.
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