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Abstract—The oLJ13 N13IC is the name of the minimal
icosahedral cluster with 13 particles where ”oLJ” states that
it is the global minimum for the Lennard Jones potential, and
the suffix ”N13IC” represents the family of the particle-centered
icosahedral lattice. It is well known from the early work M. R.
Hoare and P. Pal (1975, Physical cluster mechanics: statistical
thermodynamics and nucleation theory for monatomic systems)
and J. A. Northby (1987, Structure and binding of Lennard-Jones
clusters: 13 ≤ n ≤ 147), and has been found experimentally in
xenon clusters (1981, Echt, et al.) and sodium clusters (2005,
Haberland, et al.), and is related with so-called magic numbers.
It has been considered as a plausible global minimum but not a
true global minimum. As far as I know, this is the first formal
proof of global optimization of it.

Except for the global optimal clusters of 2, 3 and 4 particles
that satisfy the classic strong criterion of global optimality, the
clusters with more particles are just putative global minimal
clusters due to the lack of criteria or techniques that determine
their global optimality. The article proofs the global optimality for
the oLJ13 N13IC cluster by using a novel discrete combinatorial
approach on the Euler characteristic and a linear prediction of
the good pair potential of Lennard Jones.

Index Terms—Optimization, Minimization, Discrete, Formal
Methods, Modelling, Operational Research, Combinatorial Op-
timization, Numerical Methods

I. INTRODUCTION

The global optimality of the clusters with more than five
particles under like Van der Waals potentials is an open prob-
lem. The research of atomic microclusters is relevant by the
scientific and technological applications, even in the emerging
fields of nanotechnology, superconductivity, quantum compu-
tation, and molecular design by the novel machines based
on microscopy by Atomic Forces or Tunneling Effect. There
is a huge literature, particularly about Lennard Jones’s clus-
ters [27], [19], [18], [28], [24], [25], [2], [8], [22], [34], [10],
[37], [23], [16], [3], [36], [17], [6], [20], [7], [33], [21], [21],
[30], [39], [38], [31], [1], [32], [9], [11].

The oLJ13 N13IC is well known from the early work
of [19], [18], [28] and is experimentally related as the
configuration with 13 particles of the so-called magic numbers:
1, 13, 55, 147, 309, ..., (1/3)(2r + 1)(5r + 5r2 + 3)),
where r = 0, 1, 2, 3, . . .) [12], [13], [15]. It has been
considered as a plausible global minimum but not a true global
minimum. As far as I know, this is the first proof of the global
optimality of it. The global optimality of clusters is related to

all the possible geometrical shapes of the clusters, which are
unknown, and the classical optimality conditions of nonlinear
optimization theory cannot respond to global optimization but
local optimization.

The article presents in section II the global optimization
problem for clusters under LJ, the section III proofs the global
optimality of oLJ13 N13IC, and the last section IV gives the
conclusions.

II. THE PROBLEM OF THE GLOBAL MINIMAL CLUSTERS
UNDER POTENTIAL OF LENNARD JONES

The well-known properties [29] for a good pairwise poten-
tial function PT of the particles’ pair distance r are:

1) limr→0+ PT(r) = ∞.
2) limr→∞ PT(r) = 0−.
3) PT′(r∗) = 0 and PT′′(r∗) > 0.
4) PT(r∗) < 0, it means the potential has a basin.

where r∗ is the optimal distance.
The Euclidian distance function D : R3 × R3 →

[0,∞) for any point particles pi, and pj is given by

D (pi, pj) =
√

(xi − xj)
2
+ (yi − yj)

2
+ (zi − zj)

2 where
pi = (xi, yi, zi) , pj = (xj , yj , zj) ∈ R3.

The Potential of Lennard Jones is denoted by LJ, hereafter.
The pairwise formula of LJ (see [27] and [35]) is

LJ(d) =
1

d12
− 2

d6
,

where d is the Euclidian distance between a pair of particles,
and the optimal distance between a pair of particles is one
(see fig. 1).

Arbitrary local minimal clusters are denoted as lLJn =
{pi ∈ R3|i = 1, . . . , n}, and the putative minimal clusters
are denoted as oLJn.

The complete potential of a cluster is

LJ(pLJn) =
∑

1≤i<j≤n

LJ(D(pi, pj))

where pLJn is an arbitrary cluster (with or without minimiza-
tion) with n particles, and pi, pj ∈ R3.

The open problem is to determine the global minimum
cluster of LJ (oLJn) for n ≥ 5.



Fig. 1. Lennard Jones Potential vs d.

Any putative global minimal cluster of LJ (pLJn) with n ≥
5 satisfies: LJ(lLJn) > LJ(pLJn) where lPTn in a large set of
clusters (C).

The set C generally is big and has clusters generated
by some method, which is far from being exhaustive or
guaranteeing that it corresponds with the one with the lowest
potential over all possible clusters, known or unknown, i.e.,
the mechanism of the algorithms for determining the putative
minimal oLJn is as follow:

1) Creation. Build randomly cLJn, a cluster with n parti-
cles from an ad-hoc Research Space.

2) Minimization. lLJn = argmin LJ(cLJn);
3) Elitism. if LJ(lLJn)¡LJ(oLJn) then oLJn=lLJn.

However, the global requires:

LJ(lLJn) > LJ(oLJn), ∀lLJn. (1)

Where ∀ demands the result from any clusters.
The difficulties to estimate the optimal clusters are the big

number of configurations, and that ∇(PT(oLJn)) is zero for
n = 2, 3, and 4, meanwhile ∥∇(PT(lPTn))∥ ≈ 0 for n ≥ 5.
This is because any cluster with more than 5 particles has
diagonals, i.e., it is impossible to arrange more than five
particles in R3 with equals size links between all them.

In this work, the center of mass of a cluster is used to detect
a 3D convex graph as the nucleus and the seed for structuring
the cluster’s layers. It is similar to the seed and structures
of Hoare [18] and the bonded atom interactions (B set) and
the nonbonded atom interactions (NB set) of Maranas [25].
The list of known cores [9], [18], [33], [35]. The tables I
and II depict the cores studied in this work. The type of kernel
sometimes is added to the name of the minimal clusters, by
example, lLJ13 N13IR means the local minimal cluster of LJ
with nucleus N13IR and 13 particles.

There is a difference in this work over the sets B and NB of
Maranas. Here, they correspond to the one type of particles,
therefore the bound to separate them is fixed. The selection
of the value 1.3 for defining the set B (bonds) come from the
differentiation of the diagonals and the primary links or bonds,
i.e., the upper bound 1.3 of the bonds is less than

√
2 ≈ 1.

4142, the distance of the diagonal of a square of side 1.
The set B(lLJn) set of the bonds correspond to the pair

of particles at distance less than 1.3, and the set NB(lLJn)
correspond to the pair of particles at distance greater or

TABLE I
NUCLEUS (I)

Nucleus Figure

N4T
Tetrahedron

N5QP Quadrangular
Pyramid

N5BT
Bi-tetrahedron

N5T Triangular
Star

N6OC
Octahedron

N6TP Triangular
Prism

N8CB
Cube

N8TBP Triangular
Biprism



TABLE II
NUCLEUS (II)

Nucleus Figure

N10 Pentagonal
Prism IR

N10 Pentagonal
Prism IC

N12IR Pentagonal
Prism, two pentagonal
pyramids with central
vacancy

N12IC
Icosahedron
central vacancy

N13IR Pentagonal
Prism, two pentagonal
pyramids with central
particle

N13IC
Icosahedron with central
particle

N13CPA
close-packed-ABA (hcp)

N13CPA
close-packed-ABC (fcc)

equals than 1.3. This classification of the links of a clus-
ter allows to divide the contributions to the potential as
LJ(lLJn)=LJ(B(lLJn))+LJ(NB(lLJn)).

Definition 2.1: A numerical minimal cluster or minimal
cluster complies ∥∇(LJ(lLJn))∥ ≈ 0 and LJ(lLJn+λd)) >
LJ(lPTn)), ∀ λd ∈ R3n, and 0 ̸= λ ≪ 1. This means that
the potential grows in any small direction and lLJn is a fixed

Fig. 2. lLJ173 with lumps.

Fig. 3. lLJ2054 without noticeable shape.

point for the function arg min LJ.
The good local optimal clusters are minimal clusters that

they satisfy:
1) The graph (lPTn, B(lPTn)) is connected, i.e, Vertices of

(B(lPTn)) are the vertices of lPTn.
2) The graph (lPTn, B(lPTn)) ⊂ Kn (complete graph of n

vertices) such that 3 ≤ grad(v) ≤ 12, where grad(·) is
the grade of the vertices (v) with respect B(lPTn), and
n ≥ 3.

Remark 2.2: The optimal clusters comply that they station-
ary points of argminLJ(lPTn) where min is a deterministic
minimization procedure, such as CGB (Restarted Conjugate
gradient [4]) or L-BFGS-B (Limited-memory of the Broyden-
Fletcher-Goldfarb-Shanno algorithm (LBFGS-B [5], [26])).
Note that the procedures CBG and L-BFGS-B are deter-
ministic because under the same initial data and precision,
they give the same answer. There are non-deterministic min-
imization procedures as The Exponential Tunneling Method
see [14]. The minimization of clusters with n ≥ 5 achieves
∥∇(LJ(lLJn))∥ ≈ 0 by adjusting the distances of set B around
1, so the gradient of each particle reaches vector equilibrium
near 0.

Remark 2.3: The local optimal clusters with vertices of
(B(lPTn) less than the vertices lPTn cannot be global optimal
cluster, i.e., they have distant particles or particles with less
than 3 bonds, by example, clusters with the linear or flat
configurations have greater potential than any good minimal
clusters, also configurations with lumps or without regularity
as in Figure 2, and Figure 3. The potential contribution is
significant when a particle is added or adjusted to connect
with triangular, rectangular, pentagonal, or hexagonal faces,
i.e., its vertex’s grade becomes ≥ 3. The upper limit of the
grade of a particle is 12, it is because the kissing spherical
configuration in 3D is an icosahedron (see fig. 5). Figure 4
depicts examples of good minimal clusters (lLJ13, and lLJ16)
and no good minimal cluster (lLJ17).



a) lLJ13. b) lLJ16.
c) lLJ17.

Fig. 4. Good minimal clusters: a) Hexagonal Prism with central particle,
LJ(lLJ13)=−32.6979, b) Octagonal Prism, LJ(lLJ16)=−29.5174. No good
minimal cluster: c) Heptagonal Prism with 3 perpendicular particles at its
center, LJ(lLJ17) −43.7004.

a) lLJ12 N12IC. b) oLJ13 N13IC.

Fig. 5. Spheres of influence for LJ(lLJ12 N12IC)=-33.5975, 12 red spheres
with ratio 0.4954, and LJ(oLJ13 N13IC)=-44.3268, 13 red spheres with ratio
0.4819.

a) oLJ38 N6OC. b) lLJ38 N7PBP.

Fig. 6. LJ(oLJ38 N6OC)=-173.9284, |B(oLJ38 N6OC)| = 144, and
LJ(lLJ38 N7PBP)=-173.2524, |B(lLJ38 N7PBP)| = 147.

a) lLJ13 N4T. b) lLJ13 N8CB.

Fig. 7. LJ(lLJ13 N4T)=-40.7585, |B(lLJ13 N4T)| = 38, and
LJ(lLJ13 N8CB)=-36.9739, |B(oLJ13)| = 32.

a)
lLJ13 N12HEXPRISC.

b) lLJ13 N6TP.

Fig. 8. LJ(lLJ13 N12HEXPRISC)=-26.5658, |B(lLJ13 N12HEXPRISC)| =
22, and LJ(lLJ13 N6TP)=-33.8578, |B(lLJ13 N6TP)| = 28.

TABLE III
EULER CHARACTERISTIC AND THE REGULAR POLYHEDRONS WITH 12

VERTICES

figure V E F LJ
Icosahedro (N12IC) 12 30 20 -33.5975
N12IR 12 25 15 -41.5552
N12CPA ABA 12 24 14 -28.9988
N12CPA ABA 12 24 14 -28.9544
N12HEXPRIST 12 24 14 -26.3282*
N12HEXPRISC 12 18 8 -22.5729

* Unstable, not minimizing

III. THE GLOBAL OPTIMALITY OF THE OLJJ13 N13IC

The equation 1 with n = 13 by the remark 2.3 can focus
on good local minimal cluster of LJ. For any clusters the
number of links correspond to the number of links of Kn,
i.e.

(
n
2

)
links. For any cluster with 13 particles the numbers

of links is 78. The oLJ13 N13IC has LJ(oLJ13)= -44.3268,
with LJ(B(oLJ13))= -41.0877, and LJ(NB(oLJ13))= -3.2391,
where |B(oLJ13)|=42 (bonds), and |NB(oLJ13)|=78-42=36
(diagonals).

The following condition is necessary but sufficient, for a
putative global minimal cluster oLJn, there is not a good
minimal cluster (lLJn) such that |B((lLJn))| > |B(oLJn)|.

The counter example is the well-known oLJ38 N6OC
versus lLJ38 N7PBP where |B(oLJ38 N6OC)|=144 and
|B(lLJ38 N7PBP)|=147 (see fig. 6).

The set B(oLJ13 N13IC) consists of 12 bonds of 0.96381
(towards the central particle) with LJ(0.96381)= -0.93873 and
30 bonds of 1.0134 (for the faces of the icosahedron) with
LJ(1.0134)= -0.99411. The set NB(oLJ13 N13IC) consists
of 30 diagonals of 1.6397 with LJ(1.6397)= -0.10026 and 6
diagonals of 1.9276 with LJ(1.9276)=-0.03861.

Taking the distances that contribute more to the po-
tential, LJ(B(oLJ13)) ≈ 42*(LJ(1.0134))(=-41. 753) and
LJ(NB(oLJ13)) ≈ 36*(LJ(1.6397)) (= -3. 6094). From this a
linear model to approximate LJ for clusters with 13 particles
using the (b=|B|) is

J(b) = −0.89384b− 7.8203. (2)

The linear model (eq.2) predicts that there is a cluster with
41 bonds, such that J(41)= -44. 468 < LJ(oLJ13).

There is no a good minimal cluster of LJ with 41 bonds. The
icosahedron is the regular polyhedron with the great number



TABLE IV
CLUSTERS OF LJ WITH 13 VERTICES

LJ(Cluster) E
LJ(oLJ13 N13IC)=-44.3268 42
LJ(lLJ13 N13IR) = -41.5552 37
LJ(lLJ13 N13CPA ABA= -40.9215 36
LJ(lLJ13 N13CPA ABC=-40.8845 36
LJ(lLJ N13HEXPRIST)=-37.3292 36
LJ(lLJ N13HEXPRISC)=-32.6979 30

a) oLJ12 N7PBP. b) oLJ13 N13IC.

Fig. 9. LJ(oLJ12 N7PBP)=-37.9676, |B(oLJ12)| = 36, and
LJ(oLJ13 N13IC)=-44.3268, |B(oLJ13)| = 42.

of faces. The Euler characteristic (V − E + F = 2) depicts
the configuration of the regular polyhedrons with 12 particles
in the table III. Adding a particle at the center of the regular
polyhedron in table III, the local good minimal clusters of LJ
with the great number of bonds are obtained (see table IV).
oLJ13 N13IC is the cluster with the putative global minimal
LJ.

Taking any particle from the icosahedral surface of the
oLJ13 N13IC, the oLJ12 N13IC with 36 bonds is obtained
(see fig. 9). The upper pentagonal face (green) offers 5 bonds
if a particle is added to it, but in reality, if a particle is
added, it has 6, not 5 bonds, and the global optimal cluster
oLJ13 N13IC is recovered after minimization. The other good
minimal cluster configurations with 13 particles (see table IV)
do not have the possibility to create a cluster of 41 bonds. On
the other hand, figures 7, and 8 depicts good minimal clusters
that were created by adding particles to the cores of table I or
II that do not have 42 bonds because they have quadrangular
faces. The cluster lLJ13 N4T has 38 bonds which is greater
than the number of bonds of the cluster lLJ13 N13IR, i.e.,
there are no good minimal clusters with more than 38 bonds,
but oLJ13 N13IC. Finally, the Euler characteristic has no other
solutions with a larger number of edges for 12 vertices on an
spherical surface and there is no other way to accommodate
13 vertices to obtain a figure with more than 42 bonds with
minimal potential. Therefore, oLJ13 N13IC is the unique and
true global minimal of LJ with 13 particles.

IV. CONCLUSIONS

The global optimization of the clusters has just started.
The oLJ13 N13IC is now the unique and true global optimal
cluster of LJ with 13 particles. More clusters with other good
pairwise potential, as the Morse Potential, will study in the
future.
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