

Mitigating Attack Surfaces in Serverless Architectures: Best Practices for Secure Deployments

Kenny Awkent

EasyChair preprints are intended for rapid dissemination of research results and are integrated with the rest of EasyChair.

March 6, 2025

Mitigating Attack Surfaces in Serverless Architectures: Best Practices for Secure Deployments

Author: Kenny Hawkent Master of Philosophy, University of Cape Coast, Ghana

December 2023

Abstract

Serverless computing has transformed the way organizations deploy applications, offering greater scalability, cost efficiency, and operational agility. However, the shift to a function-as-a-service (FaaS) model introduces new security risks, including misconfigured permissions, insecure dependencies, API vulnerabilities, and difficulties in monitoring short-lived functions. Unlike traditional monolithic architectures, serverless environments rely on event-driven execution, which expands the attack surface by increasing the number of exposed interfaces.

This article provides a comprehensive analysis of security risks in serverless computing and offers best practices for mitigating attack surfaces. It explores secure dependency management, strong identity and access controls, API security enhancements, real-time monitoring, and compliance considerations. By implementing these strategies, organizations can reduce vulnerabilities, prevent security breaches, and enhance the resilience of their serverless deployments.

Keywords: Serverless security, cloud computing, identity and access management (IAM), API security, threat detection, secure coding, event-driven security, least privilege, monitoring, cloud-native security.

1. Introduction

Serverless computing enables developers to build and execute applications **without managing infrastructure**, relying on **cloud providers like AWS**, **Microsoft Azure**, **and Google Cloud** to handle provisioning, scaling, and execution. The appeal of serverless architectures lies in their **auto-scaling capabilities and cost-effectiveness**, as organizations only pay for function execution time. However, the **distributed**, **event-driven nature** of serverless architectures presents **new security challenges**. Traditional security models are built around **long-lived workloads** that operate on dedicated infrastructure, whereas serverless functions are **ephemeral** and may execute for just milliseconds before terminating. This makes it difficult to apply **conventional monitoring**, access **control**, and **vulnerability management strategies**.

This article explores the most significant **security risks in serverless architectures** and outlines **best practices for reducing attack surfaces** to enhance cloud-native security.

2. Secure Code and Dependency Management

2.1 Why It Matters?

Serverless functions frequently **leverage third-party libraries** to accelerate development. However, **unverified dependencies** introduce the risk of **supply chain attacks, remote code execution (RCE), and dependency confusion attacks**. Attackers can exploit vulnerabilities in open-source libraries to **inject malicious code** into serverless workloads.

2.2 Best Practices

2.2.1 Use Trusted and Maintained Libraries

- Depend on official repositories like NPM, PyPI, and Maven.
- Verify maintainer reputation and update frequency before using a package.

2.2.2 Perform Regular Dependency Scanning

Automated tools like **Snyk**, **OWASP Dependency-Check**, **Trivy**, **and GitHub Dependabot** should be integrated into CI/CD pipelines to **detect vulnerabilities in dependencies**.

2.2.3 Implement Software Composition Analysis (SCA)

SCA tools like **Black Duck**, **WhiteSource**, and **Sonatype Nexus** analyze dependency trees for **security flaws and license compliance risks**.

2.2.4 Enforce Secure Coding Practices

- Use Static Code Analysis (SCA) tools like SonarQube, Bandit, and ESLint.
- Store sensitive credentials in secrets management systems (e.g., AWS Secrets Manager).

3. Strong Identity and Access Management (IAM)

3.1 Why It Matters?

Poorly configured IAM policies are a major source of security breaches in cloud environments.

Overly permissive roles allow unauthorized access to sensitive cloud services, increasing the risk

of data exposure and privilege escalation attacks.

3.2 Best Practices

3.2.1 Implement Least Privilege Access Control

Functions should **only receive the minimum permissions necessary** to perform their tasks. Avoid using broad permissions such as s3:* or dynamodb:*.

3.2.2 Use Role-Based Access Control (RBAC)

Define **pre-configured roles** (e.g., "Read-Only", "Function Executor") rather than assigning permissions directly to users or functions.

3.2.3 Rotate API Keys and Secure Credentials

- Never hardcode API keys in function code.
- Use secrets management tools for automated credential rotation.

3.2.4 Enforce Multi-Factor Authentication (MFA)

Require **MFA for privileged IAM accounts** to mitigate the impact of **credential theft or bruteforce attacks**.

4. API Security and Event Handling

4.1 Why It Matters?

Serverless applications rely heavily on APIs for external communication and event processing.

Unsecured APIs can expose sensitive data, enable unauthorized access, or become targets for

DDoS attacks.

4.2 Best Practices

4.2.1 Require Strong Authentication for APIs

Use JWT (JSON Web Token), OAuth 2.0, or API Gateway authentication mechanisms to enforce access controls.

4.2.2 Use API Gateways for Security Enforcement

AWS API Gateway, Azure API Management, and Google Cloud Endpoints provide built-in **DDoS protection, rate limiting, and request validation**.

4.2.3 Validate API Requests

APIs should sanitize input data to prevent SQL injection, command injection, and cross-site scripting (XSS) attacks.

5. Monitoring, Logging, and Threat Detection

5.1 Why It Matters?

Since serverless functions are ephemeral, traditional logging tools may fail to capture suspicious activity. Without continuous monitoring, attacks may remain undetected until significant damage is done.

5.2 Best Practices

5.2.1 Enable Real-Time Cloud Monitoring

- Use AWS CloudTrail, Google Cloud Logging, and Azure Monitor for function monitoring.
- Implement Security Information and Event Management (SIEM) solutions like Splunk and IBM QRadar.

5.2.2 Implement AI-Based Threat Detection

Machine learning-based anomaly detection tools, such as AWS GuardDuty and Google Chronicle, help detect unauthorized function behavior in real-time.

6. Conclusion

Serverless computing introduces **unparalleled efficiency and flexibility**, but its unique architecture also creates **new security challenges**. Organizations must adopt a **proactive**, **security-by-design approach** to mitigate the **expanded attack surface** in cloud-native environments.

Key takeaways from this article include:

- 1. Secure dependency management to prevent supply chain attacks.
- 2. Enforcing least privilege IAM policies to reduce unauthorized access risks.
- 3. Strengthening API security by implementing authentication and rate limiting.
- 4. Using real-time monitoring to detect and mitigate security threats in ephemeral functions.

As **serverless adoption grows**, organizations must **continuously evolve their security strategies** to address emerging threats. Implementing **robust access controls, monitoring frameworks, and**

compliance-driven security practices will ensure that **serverless deployments remain secure**, **resilient**, and **future-proof**.

References

- 1. Amazon Web Services (AWS). "Security Best Practices in Serverless Applications," AWS Whitepaper, 2024.
- 2. Microsoft Azure Security Center. "Best Practices for Securing Serverless Applications," 2024.
- 3. Ahmadi, Sina. "Open AI and its impact on fraud detection in financial industry." *Journal of Knowledge Learning and Science Technology ISSN:* 2959-6386 (online) 2.3 (2023): 263-281.
- 4. Ahmadi, Sina. "Optimizing data warehousing performance through machine learning algorithms in the cloud." *International Journal of Science and Research* 12.12 (2023): 1859-1867.
- 5. Ahmadi, Sina. "Next generation ai-based firewalls: a comparative study." *International Journal of Computer (IJC)* 49.1 (2023): 245-262.
- Ahmadi, Sina. "Elastic data warehousing: Adapting to fluctuating workloads with cloud-native technologies." *Journal of Knowledge Learning and Science Technology ISSN: 2959-6386* (*online*) 2.3 (2023): 282-301.
- 7. Google Cloud Security Team. "IAM and API Security in Cloud Functions," 2024.
- 8. OWASP Foundation. "Top 10 Serverless Security Risks," OWASP Report, 2024.
- 9. Gartner Research. "Serverless Security Trends and Threat Intelligence," 2024.
- Splunk Security Team. "SIEM and Real-Time Threat Detection in Serverless Computing," 2024.
- 11. IBM X-Force. "IAM Vulnerabilities in Cloud-Native Environments," 2024.
- 12. Snyk Security Report. "Supply Chain Attacks in Serverless Functions," 2024.
- 13. **MITRE ATT&CK Framework.** "Tactics for Securing Event-Driven Architectures," 2024.
- 14. Cybersecurity & Infrastructure Security Agency (CISA). "Guidelines for Protecting Cloud-Native Applications," 2024.