
EasyChair Preprint
№ 15741

Evaluating Multiplier-Less CNNs in RISC-V
Architecture

Bruno Henrique Spies, Mathias Cirolini Michelotti,
Leonardo Londero de Oliveira and Everton Alceu Carara

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

January 20, 2025



Evaluating Multiplier-Less CNNs in RISC-V
Architecture

Bruno Henrique Spies, Mathias Cirolini Michelotti, Leonardo Londero de Oliveira, Everton Alceu Carara
Federal University of Santa Maria (UFSM)

Santa Maria, RS, Brazil
bruno.spies@ecomp.ufsm.br, mathias.michelotti@ecomp.ufsm.br, leonardo@ecomp.ufsm.br, carara@ufsm.br

Abstract—In recent years Convolutional Neural Network
(CNN) emerged as Machine Learning (ML) became a popular
approach to solve problems in distributed area computations
such as mobile devices and Internet of Things (IoT). It is well
known that local computation at edge devices is preferable over
transmitting a huge amount of data to run ML algorithms at a
central node. In this sense, RISC-V has the research community’s
attention as a flexible architecture and royalty-free alternative
for embedded processors and IoT devices. Although the latest
research on RISC-V and CNNs has been instruction set archi-
tecture (ISA) customization to speed up the convolution process,
this work investigates the impact on inference execution time
when replacing multiplication instructions by shift in multiply
and accumulate (MAC) operations. Compared to slow multi-cycle
multiplication instructions, our experiments showed inference
throughput speedup ranging from 1.45x to 1.95x with negligible
impact on memory footprint and employing only the base integer
RISC-V ISA (RV32I).

Index Terms—RISC-V, Convolution Neural Networks, shift,
MAC operation, power-of-two Quantization.

I. INTRODUCTION

Devices to support Augmented Reality (AR) and Virtual
Reality (VR) are examples of what tends to be the next
computing platform. They require computation as data is
acquired and thus establish the need for a concrete edge
AI concept. Convolutional Neural Networks (CNNs) have
emerged as Machine Learning (ML) basis in various fields
where AI is needed, particularly in image and signal process-
ing tasks. As computation moves closer to the source of data,
there is an increasing emphasis on optimizing CNNs inference
for deployment on resource-constrained edge devices, which
demands efficiency and low power.

In mobile edge inference, such as Android devices, the
CPU handles all ML computations without any additional
accelerators [1]. RISC-V is an open-source instruction set
architecture (ISA) that allows customization and extension,
where researchers have explored creating domain-specific in-
struction sets tailored for CNNs. The energy efficiency of
RISC-V-based CNN inference depends on factors such as
quantization level, hardware architecture, and optimization
techniques. Custom instruction sets, like those designed for
CNN computation, can greatly reduce execution latency and
energy consumption but may require time and engineering
efforts to validate the ISA and compilation for a new silicon-
proven architecture.

CNNs typically have a huge amount of parameters (weights
and biases) represented as 32-bit floating point values that
demand a lot of memory. Furthermore, the convolution process
is computationally intensive as it involves the CNN parameters
and plenty of repetitive multiply and accumulate operations
(MAC). Through a quantization process, it is possible to re-
duce the memory requirement and avoid the floating point unit
(FPU), however, multiplication is still needed. Multiplication
is a very power-consuming task in computational systems, and
replacing it with more computationally lightweight alternatives
such as shift operations may significantly reduce complexity,
power consumption, and in some cases execution time. In
this sense, multiplier-less CNNs development is a promising
approach whether in hardware or software implementation.

In this paper, we investigate shift advantages over multipli-
cation when RISC-V processors execute convolution neural
networks, without any kind of hardware accelerator. The
primary contributions of this paper are as follows:

1) We present the execution time impact and a lower-level
analysis of the shift advantages over multiplication in
the context of CNNs;

2) We highlight the leverage inference throughput with-
out any hardware requirement beyond the base integer
RISC-V ISA (RV32I).

II. CASE STUDY CNN MODELS

In this work we trained three different CNN models using
four popular datasets: (i) MNIST, (ii) GTSRB, (iii) CIFAR10
and (iv) SVHN. Since there is no well-established method-
ology to design CNN architectures, we tried some kind of
manual NAS (Network Architecture Search) [2] to find small
models with good accuracy. Those models are described as
follows:

• MNIST CNN: it contains a succession of (3x3 convo-
lution, 2x2 maxpool, ReLU) layers repeated two times,
followed by one fully connected classification layer con-
taining 10 neurons (Figure 1). Each convolution layer
applies 4 filters;

• GTSRB CNN: same architecture as MNIST CNN, with
convolution layers applying 16 filters and classification
layer containing 43 neurons;

• CIFAR10 SVHN CNN: it contains a succession of (3x3
convolution, ReLU, 3x3 convolution, ReLU, 2x2 max-
pool) layers repeated three times, followed by one fully



Figure 1. CNN model for MNIST and GTSRB datasets.

connected classification layer containing 10 neurons.
Each convolution layer applies 26 filters and padding =
1.

Figure 2. CNN model for CIFAR10 and SVHN datasets.

Important to note that our models have only one fully con-
nected layer, which differs from typical models where some
hidden layers present dozens or hundreds of neurons. Also,
models to classify more complex datasets such as CIFAR10,
employ hundreds of filters in convolutional layers. However,
edge computing with low memory and computing budgets,
can’t afford such requirements.

Our training process was supported by the PyTorch library
[3] and has as main goal to find weights which are power-of-
two values through quantization-aware training (QAT). Since
we want to be able to execute CNNs using integer datapaths,
once QAT is finished, all network parameters (weights and
biases) are converted to integer values multiplying them all
by a scale factor which is also a power-of-two value. The
resulting weights are integer power-of-two values that can be
multiplied using shift operations instead of multiplication. The
integer CNN accuracy depends directly on the applied scale
factor value, which also impacts the bit-width required to store
weights.

CNN models operating on color datasets (GTSRB, CI-
FAR10 and SVHN) were designed to process (train/infer) only
the images green channel to reduce weights and computations
in the first convolution layer. Table I presents the accuracy
results of floating point and power-of-two quantized CNNs.
The integer CNNs require 5-bit weights and have an almost
negligible accuracy reduction with regard to their float coun-
terparts.

Table I
ACCURACY COMPARISON.

Dataset Float (32-bits) Integer (5-bits)

MNIST 98.54% 98.01%
GTSRB 95.1% 94.49%
SVHN 95.18% 94.25%

CIFAR10 83.98% 81.55%

III. RESULTS

To evaluate multiplier-less CNNs in RISC-V architecture we
developed an integer C code composed basically of functions

that implement the colored blocks in Figures 1 and 2. We
have a Python script that automatically generates C language
parameters (weights and biases) from trained integer PyTorch
models and also specifies the sequence in which these func-
tions are applied for each model.

Even though weights bit-width is 5-bits, they are stored
in 8-bits using char type. This way it is possible to avoid
weight unpacking instructions, due to the lack of support, at
the ISA level, for sub-byte data types. Regardless dataset, the
program memory footprint (no data) is about 4.3 KiB, with a
negligible difference depending on the MAC operation (shift or
multiplication). Data memory footprint depends on the model
architecture (Figures 1 and 2) and are listed in table II. We
compiled using GCC and -O3 optimization flag in order to get
the minimum number of executed instructions.

Table II
DATA MEMORY FOOTPRINT.

Integer CNN Weights/Biases Feature maps/Vars

MNIST CNN 1.18 KiB 7.11 KiB
GTSRB CNN 26.72 KiB 30.51 KiB

CIFAR10 SVHN CNN 34.32 KiB 61.32 KiB

Following C code listings (1 and 2) present the MAC
operation implemented in convolution and fully connected
layers using shift and multiplication, respectively. Each one
is inside a loop that iterates according to the current set of
weights and input features. In convolution layers kernel points
to the current convolution kernel whereas in fully connected
layers it points to the current neuron weights. Input layer
features are pointed by receptive field. Such snippets highlight
the unique difference between the shift and multiplication
based CNNs: the MAC implementation.

Listing 1. Multiplication based MAC

weight = *kernel; // Current weight
feature = *receptive_field; // Current input feature

/* Multiplication based MAC */
acc += (feature * weight) >> SHIFT_SCALE;

kernel++;
receptive_field++;

Listing 2. Shift based MAC
weight = *kernel; // Current weight
feature = *receptive_field; // Current input feature

/* Shift based MAC */
if (weight > 0)
acc += (feature << weight) >> SHIFT_SCALE;

else if (weight < 0)
acc -= (feature << -weight) >> SHIFT_SCALE;

kernel++;
receptive_field++;

Multiplication-based MAC is trivial, weights are power-of-
two values directly multiplied by the feature. Since weights



and features are already scaled by SHIFT SCALE, the result-
ing multiplication must be re-scaled. Scale factor is a power-
of-two value applied with the left shift, likewise re-scaling
is applied with right shift. Shift-based MAC requires weights
coded as signed exponents, where sign indicates the resulting
shift sign and magnitude indicates bits to shift. Such weights
coding implies the if/else structure in listing 2 to determine
whether to add or subtract during accumulation and change
the weight sign when negative to allow shift execution.

A. Instruction count

The Imperas RISC-V instruction set simulator [4] was used
to generate instruction level accurate execution traces. This
first evaluation is in terms of ISA, where the performance
is based on the number of executed instructions. In addi-
tion to RISC-V base integer ISA (RV32I), present in any
implementation, we also consider M extension (RV32IM),
including instructions for integer multiplication and division.
We simulate the three integer CNNs (Table II) with MAC
operation implemented in three versions:

• mult sw: RV32I ISA does not contain multiplication in-
structions, so multiplication subroutines created by GCC
are used instead;

• shift: RV32I ISA contains shift instructions, which are
used rather than multiplication instructions (Listing 2);

• mult hw: this version requires RV32IM ISA, which
support hardware multiplication (Listing 1).

Figures 3 and 4 present the number of executed instructions
for the three MAC operation versions in different CNNs.
CNNs for MNIST and GTSRB datasets (Figure 3) have few
layers/filters with instruction count varying in the order of
tens of millions, whereas CNN for CIFAR10 and SVHN
datasets (Figure 4) are complex with instruction count varying
in the order of hundreds of millions. As expected, software-
implemented multiplication (mult sw) has by far the lowest
performance. Shift-based MAC has about 3% to 7% more
instructions executed than hardware multiplication (mult hw)
due to the if/else structure seen in Listing 2 and not present
in Listing 1. Bearing in mind that MAC-based shift does not
require any ISA extension, the presented drop in performance
can be considered acceptable.

Figure 3. Instruction count for MNIST and GTSRB.

Figure 4. Instruction count for CIFAR10 and SVHN.

B. Execution time

This subsection explores at a lower abstraction level, the
performance comparison between shift and multiplication-
based MAC through different RISC-V implementations.
Multiplication-based MAC showed higher performance in
terms of executed instructions. However, multiplier circuits
present latency ranging from 1 to n clock cycles, where n
is the factor bit width.

Combining execution traces from previous evaluations with
features of specific RISC-V implementations, it is possible to
infer execution time at the clock cycle level or even in seconds.
We start with RVCoreP-32IM [5], which is an extension of the
5-stages pipeline RVCoreP [6] soft processor (implementing
RV32I ISA only) to support RISC-V M extension. It is
described in Verilog HDL and focused on FPGA prototyping.
M extension is supported using a multiplier unit able to choose
between iterative radix-4 booth multiplier and DSP-based
multiplier. Multiplication operation latency for the execution
stage is 18 and 2 clock cycles for radix-4 and DSP multiplier,
respectively. Besides multiplication stalls, the pipeline also
stalls in case of load-use dependency (1-cycle penalty) due
to load instructions and missed branch prediction (3-cycle
penalty). Load-use dependency is easily detected analyzing
the executed instructions trace. Regarding branch prediction,
it is not possible to extract from the execution traces hit or
missed predictions, also its accuracy is not mentioned in [5]
[6]. Even modern branch predictors predict the vast majority of
conditional branch instructions with near-perfect accuracy [7],
we set hit prediction accuracy to 90%, meaning 10% of total
branch instructions will be penalized in 3 cycles. Increased
hit prediction accuracy favours shift-based MAC due to the
if/else structure since it is assembly implemented with branch
instructions, which are a bottleneck to pipelining.

Figure 5 presents a performance comparison between shift
and multiplication-based MAC. Bars represent shift perfor-
mance normalized with regard to MAC using radix-4 mul-
tiplier (blue bars) and MAC using DSP multiplier (grey
bars). The horizontal red line is a multiplication-based MAC
reference (radix-4 and DSP). Since the radix-4 multiplier has
18-cycles latency, shift-based MAC clearly surpasses it, which
was hidden by previous ISA-based comparisons. Concerning



Figure 5. Shift performance w.r.t. radix-4 and DSP multipliers

DSP-based MAC, shift increases the execution time by about
2% to 8%, similar to previous ISA-based comparisons. How-
ever, note that hardware multiplication requires RISC-V M
extension (RV32IM).

The second evaluation takes two SiFive cores E20 (2-stages
pipeline) [8] and E51 (5-stages pipeline) [9], both coupled
with 5-cycles latency multiplier. Besides the M extension,
both cores also implement A (atomic instructions) and C
(compressed instructions) extensions (RV32IMAC). In reason
of pipeline depth, such cores differ in load latency. E51 has 2-
cycle latency executing LW instructions and 3-cycles latency
executing LH, LHU, LB and LBU instructions. E20 has 2-
cycles latency for all load instructions. Both cores stall in
case of load-use dependency (1-cycle penalty). Branch and
jump prediction is implemented only in E51, with 3-cycles
penalty in case of missed prediction. Hit prediction accuracy
was also set to 90%. In E20 branches are predicted not-
taken, incurring no penalty in case of hit. Taken branches and
unconditional jumps incur 1-cycle penalty. Figure 6 reveals
that considering SiFive cores E51 and E20, shift-based MAC
is the best approach. All shift performance bars are below the
reference red line with execution time reduction of about 2% to
15%. Execution time experiments point out that from about 4-
cycles multiplications latency onwards, shift-based MAC may
starts to perform better.

Figure 6. Shift performance w.r.t. E51 and E20 cores multiplier

IV. DISCUSSION

Despite this work dealing only with multiplication, M
extension requires extra circuitry in order to support integer
multiplication and division instructions. In [5] authors proto-
typed in FPGA (Xilinx Artix-7) the RVCoreP implementing
RV32I and RV32IM ISAs aiming to evaluate the area impact
of M extension. They report that LUT resource utilization
increases around 52% for RV32IM (radix-4) and around 40%
for RV32IM (DSP) compared to RV32I implementation. On
top of that, RV32IM (DSP) uses 4 FPGA DSP blocks. RV32I
achieves a bit higher frequency than RV32IM (regardless of
multiplier type). It is noteworthy that in subsection III-B,
execution times were reported in clock cycles. Since M ex-
tension support reduces maximum frequency, the performance
of shift-based MAC running on RV32I implementation com-
pared to multiplication-based MAC on RV32IM can be even
better when measuring execution time in seconds. In order to
highlight that, we took FPGA implementation reports from
[5] and [6]. Table III compares inference throughput (infer-
ences/second) between shift-based MAC running on RV32I at
174MHz [6] and multiplication-based MAC (radix-4) running
on RV32IM at 169MHz [5]. CIFAR10 and SVHN present
almost the same throughput because the same CNN model
is used (Figure 2). Note that speedup gains concerns only
software changes, with a negligible memory footprint impact
on integer CNN inference code due to MAC implementation
(Listing 2).

Table III
INFERENCE THROUGHPUT.

shift [6] mult [5]
(RV32I@174MHz) (RV32IM@169MHz) Speedup

MNIST 125.3 86.1 1.45x
GTSRB 12.5 7.8 1.6x

CIFAR10 0.8 0.4 2x
SVHN 0.78 0.4 1.95x

V. CONCLUSION

The direct replacement of multiplication (*) by shift (≪)
in a high-level language, without including any type of extra
statements, likely will result in the execution time reduction.
Shift instructions typically have lower latency, but there are
exceptions, such as the Xtensa architecture [10], which does
not provide single-instruction shifts where the shift amount
is a register operand. However, when such a replacement
requires changes to the source code, such as adding flow
control statements, it is difficult to predict what happens to
performance without further investigation.

This work addressed a lower-level analysis to unveil the
shift advantages over multiplication when RISC-V processors
execute convolution neural networks, which in many cases are
hidden by instruction count. Thanks to the flexibility of the
RISC-V architecture, we showed that only the ISA base integer
(RV32I) is enough to obtain good results in terms of execution
time and accuracy of convolution neural networks.



REFERENCES

[1] G. Akkad, A. Mansour, and E. Inaty, “Embedded deep learning accel-
erators: A survey on recent advances,” IEEE Transactions on Artificial
Intelligence, vol. 1, pp. 1–19, sep 5555.

[2] G. Kyriakides and K. G. Margaritis, “An introduction to neural archi-
tecture search for convolutional networks,” CoRR, vol. abs/2005.11074,
2020.

[3] A. Paszke, S. Gross, et al., “Pytorch: An imperative style, high-
performance deep learning library,” in Advances in Neural Information
Processing Systems 32, pp. 8024–8035, Curran Associates, Inc., 2019.

[4] Imperas, “riscvovpsim - free imperas risc-v instruction set simulator,”
2024. Accessed 03/27/2024.

[5] M. A. Islam, H. Miyazaki, and K. Kise, “Rvcorep-32im: An effective
architecture to implement mul/div instructions for five stage risc-v soft
processors,” 2020.

[6] H. Miyazaki, T. Kanamori, M. A. Islam, and K. Kise, “Rvcorep:
An optimized risc-v soft processor of five-stage pipelining,” IEICE
Transactions on Information and Systems, vol. E103.D, p. 2494–2503,
Dec. 2020.

[7] C. K. Lin and S. J. Tarsa, “Branch prediction is not a solved problem:
Measurements, opportunities, and future directions,” in 2019 IEEE Inter-
national Symposium on Workload Characterization (IISWC), pp. 228–
238, 2019.

[8] SiFive Inc, “Sifive e20 core complex manual v1p0,” 2018. Accessed
08/18/2024.

[9] SiFive Inc, “Sifive e51 core complex manual v2p0,” 2018. Accessed
08/18/2024.

[10] Cadence Design Systems Inc, “Xtensa instruction set architecture (isa)
summary,” 2022. Accessed 08/18/2024.


