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Abstract 

In this paper we will explore TensorFlow.js, a JavaScript 
library for using machine learning in browsers. The main goal 
is to compare and classify different species of dragonfly based 
on their visual characteristics by using machine learning 
models and this paper prepares the ground. The study 
investigates the effectiveness of TensorFlow.js for analyzing 
and classifying images in real time and shows the potential of 
Artificial Intelligence to assist in ecological studies, 
biodiversity conservation, and entomological research. Based 
on that classification, images can be stored in a back-end 
application, by having a store confirmation button in the front-end application. The system should 
use a camera to capture images, classify them using a convolutional neural network (CNN) model, 
and store the classified images. The performance of the system will be evaluated based on 
accuracy, speed, and scalability.  
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Introduction 

The rapid advancement of AI has opened the door for more efficient and automated processes in 
various fields like medicine, education, tourism [Ktona et al., 2023; Kika et al., 2023; Ktona et al., 
2022; Koroveshi et al., 2021], biodiversity from environmental monitoring to wildlife protection 
[Reynolds et al., 2025; Olawade et al., 2024; Xhina et al., 2023], and so on. One type of application 
is the real-time classification and detection of different species of insects, such as dragonflies, 
using AI image recognition technologies. Dragonflies, with their diversity and ecological 
significance, serve as an ideal subject for studying the potential of real-time image classification 
in biodiversity research. 

This literature review explores the different usage of TensorFlow.js, a powerful JavaScript library, 
for creating real-time image classification and object detection system. The focus is on comparing 
various dragonfly species by leveraging pre-trained models and custom datasets. TensorFlow.js 
offers huge opportunity to run machine learning models directly in the browser through the 
development of lightweight, real-time solutions without consuming extensive server-side 
infrastructure, and offering more data privacy as the row data are processed on client browser. 



The main goal of this literature review is to contribute to the growing field of real-time wildlife 
monitoring through innovative AI techniques and provide a clear path for implementing similar 
solutions in various ecological fields. 

This paper is organized in “Background” section that mentions different AI technologies. Then a 
comparison between them according to our needs, following up with the limitations of each of 
them. Also describing actual role of IA and possible improvement by having a look at similar 
systems.   

1. Background   

Convolutional Neural Networks (CNNs) are a special class of deep neural networks created to 
handle grid data structures, such as images, with remarkable success. One of the first works in 
CNNs dates to 1989. It was the development of the LeNet-5 architecture, which paved the way for 
modern image classification tasks (LeCun et al., 1989). 

CNNs are applied in different domains, from medical image analysis (Tajbakhsh et al., 2016) to 
autonomous driving systems (Tran et al., 2021). CNNs have also been applied to classify and detect 
various animal species from images (Tannous et al., 2023). Their flexibility in recognizing 
different patterns has made CNNs the most used architecture for image classification tasks in 
academic research and practical applications. 

TensorFlow.js is a JavaScript library developed by Google. It can be used for both training and 
deploying machine learning models in the browser. This way, it powers users with machine 
learning features without the need for server-side infrastructure. This feature is very useful for real-
time applications, such as the live monitoring of species, where fast data processing is a key point.  

TensorFlow.js gives you the possibility to deploy pre-trained models as well as training new 
models directly within the browser environment. This is how TensorFlow significantly reduces 
latency and improves the user experience. It sustains a variety of tasks, among them, image 
classification, object detection, and natural language processing, making it one of the best tools 
for different types of application. 

One of the main advantages of using TensorFlow.js is the fact that it can be integrated into new 
and existing web-based applications with minimal effort. As we already know, Web-based 
applications can easily incorporate real-time image classification and object detection 
functionalities without the need of an external server or expensive infrastructure. This gives us a 
lightweight application for real-time environmental monitoring and wildlife tracking, as is the case 
in the dragonfly species classification explored in this thesis. 

TensorFlow.js also allows us to use trained models for object detection tasks on other platforms 
such as e.g., MobileNet, COCO-SSD (Rivera, 2020) These models, trained on TensorFlow or other 
platforms, can be improved by using the dragonfly image dataset through the technique of transfer 
learning (Zhuang et al., 2021; He et al., 2021; Hosna et al., 2022) However, the ability to train 
models directly within the browser offered by TensorFlow offers the AI developer unique 
opportunities to interact with and customize the application. 



2. Comparison between TensorFlow.js and other Machine Learning Frameworks for Web-
Based Applications 

TensorFlow.js is one of the most powerful frameworks for web-based applications but, as in all 
fields, here too there exist competitors. Each has their own distinctive features. Let’s try to wrap 
up the differences among them, as well as their advantages and drawbacks.  

 TensorFlow.js vs. TensorFlow (Python-based) - TensorFlow (the Python-based library) is 
practically the predecessor of TensorFlow.js. (Abadi et al., 2016). It offers a comprehensive 
ecosystem, lots of tools, libraries and pre-trained models. All these features make it one of 
the most perfect frameworks for complex machine learning tasks. TensorFlow offers a lot 
of flexibility and power by easing the training process for large models and manipulating 
large datasets. However, it is a server-side framework and it requires sending information 
from client to server, processing it on the server side and sending the result back to the 
client. as a result, it requires considerable bandwidth and expose the end user to security 
concerns. On the other hand, TensorFlow.js’s ability to run directly in the browser without 
requiring server-side processing provides us with enhanced security features and 
significantly less resources needed for the network and server-side. This is perfect for 
applications that require real-time inference without reliance on a network connection.  

 TensorFlow.js vs. PyTorch (Python-based) - PyTorch is another powerful deep learning 
framework. Its main strength is dynamic computational graph, and it is very easy to use. 
While it offers competitive tools for training models, it is still a server-side framework 
(Paszke et al., 2019). This constrains force developers to a usforcinger web-based 
framework such as ONNX or simply using it as a backend, thus creating the same drawback 
as TensorFlow (Python-based). On the other hand, TensorFlow.js natively supports real-
time deployment within the browser. This feature makes it more efficient for web-based 
applications that require low-latency predictions. 

 TensorFlow.js vs. Keras.js - Another frontend library in this field is Keras.js (Smilkov et 
al., 2019). It offers a lightweight solution for the interface. The main drawback of this 
framework is that it cannot train the models by themselves. Instead, it relies on pretrained 
models on Keras (Python-based). Meanwhile, TensorFlow.js is more versatile due to its 
functionality in supporting both model training and interface. Furthermore, it also offers 
the functionality to use pre-trained models on TensorFlow (Python-based). This extended 
capability makes it far more competitive than Keras.js  

 TensorFlow.js vs. ONNX.js - ONNX.js is a Javascript library for running ONNX models 
on browsers and on Node.js (Goh et al., 2023). It has adopted WebAssembly and WebGL 
technologies to provide an optimized ONNX model inference runtime for both CPUs and 
GPUs. With ONNX.js, web developers can score pre-trained ONNX models directly on 
browsers with various benefits including a reduction in server-client communication and 
protection of user privacy, as well as offering an install-free and cross-platform in-browser 
ML experience. The main drawback compared with TensorFlow.js is that it cannot train 
new models on the web. In addition, the lack of active maintenance is a downside because 
this library is in process to be replaced by the “ONNX Runtime Web” library. 



3. Existing Methods for Species Identification and Their Limitations 

Species identification is a challenging task. It is crucial in ecological studies, especially when 
dealing with biodiversity monitoring, conservation efforts and environmental protection. Manual 
methods for species identification are derived from field-based knowledge. It requires experts or 
taxonomists to visually inspect different species and classify them based on physical 
characteristics, behavior or other distinguishing features. This method requires one of the 
following techniques. 

Field Observations - This method requires the expert to observe species in the wild. This 
assumes that experts master a sharp knowledge of the visual characteristics, behavior and ecology. 
In some situations, for specific species, it could be effective, but it is a time-consuming task. It is 
also limited by the physical location of the habitat and its level of accessibility. Due to these 
limitations the study by McClinton et al. (2022) uses both field observations (on-the-ground data) 
and remote sensing tools to identify the most significant threats to critically endangered or rare 
plant species in Nevada. 

Morphological Identification – Physical characteristics are the focus of this technique 
including -but not limited to- size, color, shape, etc. (Juan Liu et al., 2015). Yang et al. (2022) 
developed a convolutional neural network method. Morphological and molecular data for species 
identification are integrated into the morphology-molecule network (MMNet). This is extremely 
difficult, especially for species that mimic others or for species at different life stages. Furthermore, 
it has been proven extremely difficult for closely related species. All of these complications can 
lead to non-feasible usage of this methodology in the field. 

Taxonomic Keys - These are dichotomous keys that allow the user to determine the identity of 
items using a sequence of alternative choices (Dalton et al., 2024). Dichotomous keys always give 
two mutually exclusive choices in parallel statements. The user makes a choice about a particular 
characteristic of an organism and is led to a new branch or couplet of the key. This technique is 
complex, especially for non-experts and field-amateurs.  

Despite the constant improvements that are leading to better and faster classification, these 
techniques have proven to be prone to errors and is overall a slow process. Another huge limitation 
is the level of expertise required for this task. All these limitations lead to the lack of scalability 
and efficiency of these techniques. 

4. Role of Machine Learning in Biodiversity Monitoring 

Over the last number of years, machine learning (ML) has dramatically improved species 
identification, offering a highly performant process (Dalton et al., 2024). Another benefit is that it 
can be scalable very easily. The latest improvements in ML also offer a higher level of accuracy 
than that offered by traditional methods. This latest development in ML enabled large-scale 
biodiversity monitoring by significantly reducing costs. Applying machine learning in biodiversity 
monitoring requires various techniques and areas, which includes image recognition and 
classification, audio analysis and environmental data processing. 

4.1 Advantages of ML for Biodiversity Monitoring 



Image Recognition and Classification - One of the most useful applications of machine 
learning is Convolutional Neural Networks (CNNs) for image-based identification. This important 
feature is also applied in species identification. The application of CNN in combination with 
camera traps, drones or smartphones has been very useful for image-based species identification. 
Based on these techniques, many models have been designed, such as ResNet, Inception, and 
MobileNet. They offer an automatic species identification in large datasets, which would have 
been impossible to process and analyze manually.  

Object Detection - Image classification is a very useful feature, but it is not enough. Object 
detection models like YOLO (You Only Look Once) and Faster R-CNN, can distinguish and 
precisely locate multiple species in a single image. Working beyond image classification, these 
models can distinguish different species in addition to identifying their precise location within the 
image. This data can be used for other biological analysis regarding animal behavior, their density 
per square meters, or biodiversity distribution (Redmon et al., 2016). 

Environmental Data Integration - Machine learning can be used to predict species 
distribution and monitor biodiversity over time based on environmental changes. These 
environmental changes can include -but are not limited to- climate change, soil pollution, 
vegetation type, etc. Some techniques like Random Forests and Gradient Boosting are used to 
develop models that predict species frequency or their presence based on environmental factors 
(Elith et al., 2006).  

By using a combination of machine learning and existing ecological data, we could achieve some 
advantages as set out below: 

Scalability - Machine learning models do not have the limitations faced by human experts. 
They can process huge datasets, examine millions of images or other electronic data far faster and 
without complaining. This makes it possible to monitor large areas that have multiple species to 
monitor. 

Automation - Machine learning algorithms can offer real-time species identification. This leads 
us to automatic selection. So, while using camera traps or live audio recordings we can instantly 
gather results from the field about the species we are interested in.  

Accessibility - By simplifying the selection process through machine learning, we can settle in 
this process also non-expert but enthusiastic naturalists. This is important when many citizens are 
invited to contribute to their local environment. 

Improved Accuracy - Machine learning models, when trained properly and highly tuned with 
real life datasets, especially those that are considerably large, can offer astonishing levels of 
accuracy in species identification. They always surpass the field expert.  

That being said, while machine learning in biodiversity can be a very powerful tool, there are also 
some limitations which include: 



Data Quality and Quantity - Machine learning models must be provided with large, high-
quality datasets for training. In some cases, such datasets may be difficult to provide. This can 
jeopardize the creation of new models for new or rare species. (Tabak et al., 2018). 

Model Generalization - One model trained in specific environmental data may not perhaps be 
useful in gathering new environment data or similar species beyond its particular dataset. This 
limitation requires our models to be frequently tuned with new data.  

Bias in Training Data - There are some cases when training data is biased regarding habitat or 
environmental conditions. Machine learning could wrongly develop new models based on biased 
predictions. This could lead to potentially incorrect classifications for that species. 

One famous tool for developing, training and deploying machine learning models in web browsers 
is TensorFlow.js. It is built by the same team that previously built the TensorFlow (Python-based) 
library, which is why they share so many common features. However, they have their differences 
too. TensorFlow supports a number of programming languages, including Python and 
Java.TensorFlow.js is built only on JavaScript, this way it can be widely used via the web-browser. 
This feature makes it the perfect framework for real-time machine learning applications. This 
model enables us to empower environmental monitoring and ecological research.  

Real-Time Inference - The capability to operate on the front-end, offering real-time inference 
without the need of a back-end server support makes it one of the perfect tools in this field. 
Processing machine learning models directly on the front-end eliminates the latency required by 
other back-end-based competitors. This way it offers immediate feedback from machine learning 
predictions. It is this feature that gives TensorFlow.js a huge advantage in ecological monitoring 
where data captured by cameras could be processed in real time.  

4.2TensorFlow.js approach 

Browser-Based Deployment - The main advantage of TensorFlow.js is the fact that it can run 
machine learning models directly in the web-browser or on Node.js. This makes it usable on almost 
all mobile devices that have their own operating system, such as smartphones or other portable 
devices. It eliminates the necessity for a cutting edge back-end infrastructure like the cloud and 
makes it the perfect tool for processing machine learning models on devices with reduced 
resources. TensorFlow.js enables lightweight web applications to be powered with real-time 
application processing, making it accessible on any device with a web browser. This factor is the 
main reason for such a huge expansion in ecological monitoring projects. 

No Server-Side Dependency - TensorFlow.js runs on the client-side, in this way it does not 
require a cutting edge back-end environment. All it needs is simply a normal back-end to host it 
as a normal web application. All calculations are made on the client-side, making it in practice a 
real-time and low-latency application. This feature is extremely beneficial in scenarios where data 
is generated and manipulated in the field and thus perfectly matches our case. It also keeps 
maintenance and operational costs at an extremely low level, because we can use many small 
devices to minimize server bottlenecks.  



Ease of Integration with Web Technologies - TensorFlow.js is practically a JavaScript Library. 
This way it can perfectly be integrated into web technologies with other JavaScript libraries, 
HTML5 and CSS3. It makes it possible for developers to easily incorporate machine learning 
models into web-based interfaces, providing developers an easy way to create intuitive 
applications with which to interact. For example, in ecological studies where we need to process 
locally data captured in the field and send the results back to the server, TensorFlow.js offers a 
platform to develop real-time applications. 

Support for Pre-Trained Models - TensorFlow.js is created by the same team that created 
TensorFlow(python-based). All models created with other machine learning are also compatible 
with TensorFlow.js. Therefore, pre-trained models (such as MobileNet, COCO-SSD, or PoseNet) 
that are already optimized can be easily used in TensorFlow.js by simply importing them into the 
web browser.  

Cross-Platform Compatibility - A wide range of platforms support TensorFlow.js from 
computer browsers to smartphones, leading to the use of that kind of application across diverse 
environments. This feature is crucial for ecological research as it offers the possibility to use the 
system in both environments, in field settings and laboratory conditions.  

5. Applicability of TensorFlow.js with Biodiversity Monitoring 

Artificial intelligence applications, especially those in machine learning frameworks built on 
TensorFlow.js for real-time ecological research are becoming the normal standard nowadays. Next, 
we will take a look at some interesting types of machine learning used for monitoring biodiversity 
and species identification. 

Camera Trap Species Identification - One very serious work on this field is that of Tabak et al. 
(2018) who applied deep learning algorithms to camera trap images. The purpose was to identify 
wildlife species in real-time, quite the same idea that we aim to achieve in our work. Their system 
offers automatic classification of the animals directly from camera traps, in this way eliminating 
the need for expert classification. TensorFlow.js, can be perfectly used in such scenarios to power 
a browser-based system with real-time identification features from camera trap images. This 
feature will speed up the process and make research more economically feasible and faster than 
traditional methods. 

Insect Species Detection - When it comes to insect species detection, the identification process 
is far more difficult due to their small size and similar appearances across species. By using a 
combination of machine learning models and high-resolution images we could achieve our goal. 
TensorFlow.js is a very powerful tool for implementing this kind of real-time system in mobile 
applications or web platforms, providing researchers the possibility to collect and analyze data in 
the field. In this way it contributes to a more accurate assessment of biodiversity. 

6. Conclusion 

TensorFlow.js is a powerful tool for creating real-time applications for ecological research. It is 
especially valuable in species identification and biodiversity monitoring. Its feature to power in-
browser machine learning, without the need for a cutting-edge server-side infrastructure makes it 



a very popular tool used in real-time applications. The case studies presented here are a perfect 
example that shows the power of machine learning in ecological research. It becomes more crucial 
when it comes to automated species identification in real-time. More and more ecological research 
projects use web-based technologies in combination with machine learning, so it is expected to 
lead to an exponential growth of TensorFlow.js usage, making the entire process more accessible, 
scalable and efficient. Additionally, the veteran tool in this field, CNN, is a consolidated solution 
since it runs on the server-side and can be used for more complex solutions such as high-resolution 
images with complicated features. The accuracy level of both TensorFlow.js and CNN are 
identical, as both have been built by the same team behind TensorFlow (python-based); that being 
said, CNN can run faster because it is generally sustained by a more powerful hardware 
infrastructure. The advantage of TensorFlow.js is that it offers low latency. As system availability 
and accuracy improves and models are becoming more and more accurate, it is expected that this 
technology will play a pivotal role in global conservation efforts and ecological research. 
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