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Abstract:
Wind turbines (WTs) stand as one of the main sources of renewable energy, playing a crucial
role in achieving sustainability objectives and increasing the proportion of renewable energy
in the global energy matrix. Nevertheless, WTs are often exposed to various types of stresses
during their operation in external environments. This scenario negatively affects the operation of
WTs, accelerating their aging and leading to critical failures. Consequently, the costs associated
with operation and maintenance (O&M) actions increase, while the financial appeal of such
power sources diminishes. To address these issues, WT condition monitoring techniques have
become indispensable, aiming to detect failure patterns prior to the occurrence of the failure
event. However, most of the papers found in literature focus on forecasting critical failures based
on the detection of incipient failures. The primary drawback of this approach lies in the fact
that there are no viable models that allows to infer the evolution of a incipient failure into a
critical one. In this paper, a novel methodology is developed for predicting the time until critical
failure occurrence. This methodology relies on simple machine learning (ML) methods that are
fed with WT’s supervisory control and data acquisition (SCADA) system data, eliminating the
need for complex sensor hardware. It is expected that this method will provide a valuable tool
for energy companies to optimize their O&M processes.
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1. INTRODUCTION

In 2020, wind turbines were in the third position among
renewable technologies in terms of installed capacity and
in the second position when considering power genera-
tion. Furthermore, they accounted for nearly 20% of the
entire renewable energy production IRENA (2022). The
increase of wind based energy generation in the world
energy matrix can be attributed to growing environmental
concerns, that aim at replacing conventional fossil fuel-
based energy sources with renewable and environmentally
friendly alternatives Jin et al. (2021).

Both onshore and offshore WTs operate in harsh external
environments, being subjected to adverse climate condi-
tions such as excessive sunlight, sand, rain, wind and elec-
trical discharges. These challenging environmental factors
may lead to abnormal operation due to mechanical or elec-
trical stresses. In severe conditions, this situation might
escalate to energy supply interruption, causing financial
losses Tang et al. (2020).

Traditionally, wind turbines are composed by four primary
components the rotor, the nacelle, the tower, and the foun-
dation, as illustrated in Figure 1. Due to the operational

characteristics of WTs they are among the energy sources
related to the highest failure rates Qiao and Lu (2015). A
failure can be concentrated in one of the WT’s components
or can occur in a generalized way. Regarding the WT’s
rotor, that is the focus of this paper, Scheu et al. (2019)
defines seven critical failure modes. Some of these FM
are related to material failures, such as cracks, chipping
and deterioration, whereas others are related to the aging
process, such as wear out and fatigue. Moreover, these
failure modes affect the rotor’s components in different
manners, the rotor’s blades are prone to adjustment errors,
whereas the rotor’s axis is prone to fatigue, for example.

These aspects contribute to the increase in the O&M costs
of wind farms, which can diminish their financial appeal.
The O&M costs of wind farms are responsible for between
11% and 30% of the levelized cost of electricity (LCOE)
of such enterprises, increasing as the WT ages. Moreover,
the O&M costs associated with offshore wind farms are
traditionally higher than those found for onshore wind
farms, because the former are often located in remote and
hard to access areas and their maintenance actions involve
complex coordinating labor and transportation of spare
parts IRENA (2012).



Figure 1. Generic structure of a Wind Turbine. From:
Wang et al. (2017)

Condition monitoring of WTs is essential to reduce the
occurrence of faults, diminishing undesirable costs and
avoiding unplanned supply interruptions. Condition mon-
itoring (CM) in wind turbines are capable of continuously
or periodically assessing the state of the WT’s parameters
to identify potential behavioral changes that could indicate
an potential failure. This monitoring enables maintenance
actions to be taken before critical failure occurs, thereby
mitigating its adverse consequences Qiao and Lu (2015).
Condition monitoring approaches can be implemented in
three different ways:

• Condition monitoring based on sensor systems de-
signed for specific purposes, as can be found in refer-
ences Gong and Qiao (2015); Chen et al. (2016);

• Condition monitoring based on data from the WT
SCADA system, such as in Zhang and Wang (2014);
Santolamazza et al. (2021); Vidal et al. (2018);

• Condition monitoring based on a combination both
methods in order to improve the monitoring perfor-
mance, such as in Morshedizadeh et al. (2023); Feng
et al. (2011).

Based on the previous information, in this paper, an
innovative intelligent approach based on SCADA data is
presented to predict faults in WT’s rotor. This approach
is able to identify the specific time window during which
a fault is most likely to occur. Several machine learning
techniques were assessed to compose the methodology,
and the final model’s performance was validated using
data obtained from 58 wind turbines. The authors expect
that the methodology provides a tool for the electric
sector towards increasing power generation predictability,
reducing corrective maintenance actions, reducing machine
downtime and elevating power generation rates.

2. DATA DESCRIPTION

For this work, data gathered over a two-year period (2017
- 2018), at two different wind power plants, were used
to compose the dataset for the methodology. This data
was extracted from both the SCADA system and the
maintenance history records of 58 wind turbines. The
methodology proposed in this paper relies on supervised
learning techniques, which indicates that the dataset must

Table 1. Type of maintenance processes

Maintenance events Frequency

Unscheduled Corrective 80.1%

Preventive 13.7%

Requested by the Customer 3%

Scheduled Corrective 2.87%

Inspection with shortage 0.235%

Predictive 0.0281%

be composed by pairs of inputs and corresponding desired
outputs. In this context, the SCADA system data was
employed as the input, while the maintenance history data
was employed as the desired output.

The SCADA system comprises measurements collected
at 10 minutes interval from several sensors installed in
the WTs and provided 609 features for each one of the
WTs. For each measurement collected by the sensors, four
parameters are calculated are provided to the operator:
maximum and minimum value, mean value and standard
deviation.

The historical data contains information regarding WT
failures and unavailability events, indicating the machine
that suffered the defect, the date of the outage, the du-
ration of the outage and the affected system. The infor-
mation regarding the date in which the failure happened
was used to create an dataset in which the target output
was the time remaining to the fault. Considering that
the SCADA data present a 10-min resolution, the input
dataset will also have samples with 10-min resolution.
Therefore, the time remaining to failure was obtained for
each one of the samples.

For instance, if a failure happened in instant t, for each
sample, the time remaining until instant t was used as tar-
get output. Considering an classification approach, these
targets were grouped in time intervals. In this paper,
four time intervals were used as output: less than seven
days, between seven and third days, between third and
sixty days and over sixty days. This intervals were defined
together with the maintenance team, which indicated that
they were appropriate periods of time for preventive ac-
tions.

Furthermore, considering that interventions by the mainte-
nance team are only required for failures that led to supply
interruption periods greater than one day, only this type
of failure was considered. The analysis of the maintenance
history data revealed that a significant portion of the
faults were related to unscheduled maintenance events.
The percentage for each type of maintenance is presented
in Table 1.

The methodology that is proposed in this paper aims
to prevent the occurrence of unscheduled maintenance
events, that are usually associated with the greatest costs.
Therefore, only the instances associated with unscheduled
maintenance events were included in the analysis.

Furthermore, based on the dataset analysis, it was verified
that the rotor was the WT’s subsystem most prone to
failure - representing approximately 30% of the faults for
both power plants considered. Moreover, this subsystem
was among the systems that led to greater operation
downtime. These characteristics were considered when



selecting the system as a focus for this paper. Nevertheless,
the model can be generalized and adapted to other systems
in wind turbines.

3. FAULT PREDICTION IN WIND TURBINES

The methodology proposed in this paper intends to per-
form predictive diagnosis of failures in WTs. Hence, this
methodology must be able to identify if the analyzed sub-
system presents any abnormal behavior, and must indicate
the expected time until the occurrence of a failure. As
previously stated, the implementations will concentrate on
failures associated with the rotor, however, any WT sub-
system might benefit from such methodology. The pipeline
of the proposed methodology is depicted in Figure 2.

Figure 2. Pipeline of the proposed methodology

3.1 Data Processing

Before training the ML model, it is necessary to pre-
process the dataset, in order to remove errors and identify
if any transformation is required for the data. Moreover,
it is important to have test and validation datasets, that
allows the trained model’s performance assessment when
considering unknown samples. With this intend, the orig-
inal dataset was divided into three, one for training, one
for test and one for validation purposes. Considering the
two-year data available, the division between the datasets
was made as follows:

• Training dataset: One year data, containing the entire
year of 2017;

• Validation dataset: Two-month data, containing Jan-
uary and February of 2018;

• Test dataset: Ten-month data, containing data from
March until December of 2018.

An entire year of data was employed to construct the train-
ing set, enabling the model to learn the seasonal behavior
of the faults. The distribution of faults within each of
the datasets is illustrated in figures 3, 5, and 4. In these
figures, the WT identification is presented in the vertical
axis, and the color bar describes the time remaining to the
fault in days. Consequently, the lighter the color, the closer
the fault is to happening. In Figure 3, for instance, wind
turbine WTG13 suffers two faults during the analyzed
period, one occurring between March 19th and April 2nd

and the other one between August 20th and September
3rd.

As previously explained, the failure data was used as target
output for the learning model. In Figure 6 is depicted an
example of the targets that were considered. In this figure,

Figure 3. Training dataset fault distribution

Figure 4. Validation dataset fault distribution

Figure 5. Test dataset fault distribution

each time the line intersects the horizontal axis, represents
the occurrence of a failure. In this example, six failures are
identified. The initial failure occurred between May and
June of 2017. Along the vertical axis, which indicates the
time until failure in days, it is observed that the second
fault took place 90 days after the first one, happening in
September of 2017. Similarly, the third fault occurred 45
days after the second, and so forth.

Figure 6. Target definition



3.2 Feature Engineering

Prior to the model selection, a feature engineering process
was executed towards identifying the features that best
characterize the dataset. Feature selection is a process as
important as the model selection one, because the quality
of the dataset determines the level of difficulty that the
model will encounter when modeling the data. Multiple
techniques for feature selection exist, and they can be used
individually or combined with each other. The methods
that were used in this paper will are showcased in the
following sections in order of implementation.

Correlation Threshold Feature Selection The initial fea-
ture selection method applied to the data was the cor-
relation threshold feature selection method. Within this
method, features were either included or excluded from the
dataset based on their correlations. The aim of this tech-
nique is to maintain only those features that exhibit low
correlations with each other, thereby eliminating highly
correlated features. This analysis is useful for mitigating
model overfitting and training bad conditioning.

Time Series Feature Extraction Subsequently, the TS-
Fresh feature extraction method was implemented to elim-
inate temporal features, including lags and trends. This
technique was executed using three distinct time windows
for the analysis of lags and trends. These time windows
were determined considering that a minimum of two days
is typically needed to organize a team for intervention in
a wind turbine. As a result, time windows of one week,
three weeks, and six weeks were chosen, representing short,
medium, and extended time intervals, respectively.

SelectKBest Following the procedures that eliminated
undesired features, the SelectKBest method was employed
to select the best features present in the dataset. In this
study, the value of k was set to 150. Considering their
distinct characteristics, each subsystem of the WT will
have different features with more of less relevance for the
failure process.

Sequential Feature Selection Finally, after narrowing
down the original features to 150 selected features, the
sequential feature selection method is applied to elimi-
nate features that have weak influence over the model’s
response.

3.3 Model Selection

To perform the time until critical failure identification,
a classification approach was developed. Therefore, the
result of the method will indicate the time interval with
the highest probability of critical failure occurrence. The
schematic for the classification approach is presented in
Figure 7.

As depicted in the in Figure 7, the classification method
works in three stages that are serially concatenated. In
each stage, an simple random forest (RF) model imple-
mented in Python performs a binary classification, indi-
cating if the input sample with WT data represents a
state that will lead to a critical failure within the time
period that is being evaluated. The RF model was chosen

Figure 7. Classification approach

Table 2. Metrics for the first stage classification

Class Precision Recall F1- Score Accuracy

< 60 0.829 0.923 0.873
0.867≥ 60 0.915 0.813 0.861

for its classification capabilities, which offer a combination
of high accuracy and a minimal number of adjustable pa-
rameters. In this study, priority was given to selecting the
simplest machine learning method, towards concentrating
on the feature engineering process. Furthermore, the RF
model could be substituted by other classification methods
with comparable levels of accuracy without negatively
affecting the approach.

The logic for each stage of the proposed approach is
presented as follows:

• For the first stage, the RF model verifies if a failure
will occur in less than 60 days. If the classification
returns true, the method follows to the next stage, if
not, it outputs that this state might lead to a critical
failure in a period greater than 60 days.

• In the second stage, the binary RF classification
model inquires if the critical failure will occur in less
than 30 days. If true, the method follows to the next
stage; if false, the result indicates that the critical
failure will occur between 30 and 60 days.

• Finally, the last classification stage analyzes whether
the WT will present a critical failure in less than 7
days. If the result is true, this is the output of the
model; if not, the model returns that a critical failure
is likely to happen between 7 and 30 days.

These time intervals were defined together with an main-
tenance team, based on their daily needs in maintenance
planning.

4. RESULTS AND DISCUSSIONS

The results presented in this section were analyzed based
on different classification metrics. These metrics were: pre-
cision, recall, F1-score, accuracy. In the following subsec-
tions, the classification results are presented for each time
interval that was considered.

4.1 First stage

For the first classification stage, that indicates if a critical
failure will or not occur within 60 days, the model’s accu-
racy was 86.7%. The metrics for this stage are presented
in Table 2.



Table 3. First stage classification - Confusion
Matrix

Predicted label
< 60 ≥ 60

True label
< 60 8499 711
≥ 60 1756 7636

Table 4. Metrics for the second stage classifi-
cation

Class Precision Recall F1- Score Accuracy

< 30 0.792 0.957 0.867
0.832≥ 30 0.921 0.667 0.773

Table 5. Second stage classification - Confusion
Matrix

Predicted label
< 30 ≥ 30

True label
< 30 5598 253
≥ 30 1467 2937

Table 6. Metrics for the third stage classifica-
tion

Class Precision Recall F1- Score Accuracy

< 7 0.716 0.719 0.717
0.856≥ 7 0.904 0.903 0.904

The confusion matrix is presented in Table 3. According
to it, out of the 18602 samples that were analyzed in the
test phase, 8499 were correctly categorized as over 60 days
and 7636 were correctly classified as having less than 60
days until the critical failure. In contrast, 2,467 samples
were wrongly classified within one of the classes.

More than twice the number of samples were misclassified
as having less than 60 days remaining. This type of error is
less harmful than wrongly classifying samples that would
occur in less than 60 days as greater than 60 days. In
the former case, the maintenance team will anticipate the
maintenance actions, while in the latter case, maintenance
actions would not take place, even though a failure could
occur.

4.2 Second stage

The second classification stage usually presents results
with lower accuracy than the first stage because there is
an error propagation from the first part of the method.
For the test dataset, the second stage classification model
presented 83.2% of accuracy. The metrics for this stage are
presented in Table 4.

Analyzing the confusion matrix presented in Table 5 it is
inferred that 10255 samples were passed from phase one
to phase two. The other 8347 samples were classified as
critical failures that might occur in a time interval greater
than 60 days. Once again, the number of samples wrongly
classified as under 30 days, while being truly over 30 days,
was significantly greater than the opposite case. Which
indicates that the method is conservative in terms of safety.

4.3 Third stage

In Table 6, is shown that the accuracy for the final
classification stage is 85, 6%.

Table 7. Final stage classification - Confusion
Matrix

Predicted label
< 7 ≥ 7

True label
< 7 1288 504
≥ 7 511 4762

The final classification stage’s confusion matrix is illus-
trated in Table 7. According to this figure, 4762 samples
were correctly classified as over than 7 days until critical
failure, whereas 1288 were truly identified as a failure
probably occurring in less than 7 days. The number of
misclassified samples was balanced, in contrast to what
was observed for the previous stages of classification.

4.4 Discussion and future work

All of the classification stages presented high levels of accu-
racy, surpassing 80%. It was verified that, the initial stage
demonstrated higher accuracy compared to the subsequent
stages. This situation could be attributed to error propa-
gation across the method’s stages. Nevertheless, the levels
of accuracy obtained for last stage remains competitive for
this type of application.

In terms of other metrics, both the first and second stages
exhibited lower precision for the true class and lower recall
for the false class, which demonstrates that the method is
conservative. In the final classification stage, the method’s
performance for predicting failures that will occur in less
than 7 days was comparatively lower than that of the
previous stages. This may have occurred because less
samples from this class were available. However, the stage’s
overall accuracy is still over 85%, without the need of
synthetic samples.

The proposed methodology could be easily implemented
within an operational environment, as an autonomous
monitoring software. This software would receive measure-
ments collected from the SCADA system. It is important
to highlight that in this scenario, the machine learning
techniques integrated into the software must be adjusted
to the data specific to the locally installed WTs. Fur-
thermore, updates to the machine learning training are
necessary whenever there are modifications to the configu-
ration of the WTs. Lastly, it’s important to emphasize that
the computational effort associated with machine learning
techniques, such as the RF model, is primarily a concern
during the training phase of the method, when parameter
adjustments are made. In the case of the RF model, even
this training phase is brief due to the limited number
of parameters. Following the training phase, during the
operational phase, machine learning models demonstrate
a respectable response speed.

For future work, this methodology could be assessed for
different WT subsystems. Additionally, this paper only
evaluated the incidence of critical failures without dis-
tinguishing between different types of failure modes that
might lead to these events. As part of future work, incor-
porating the analysis of failure modes into the dataset and
integrating it into the model would be valuable to further
assist the maintenance planning process.



5. CONCLUSIONS

This paper presented a methodology for time to fail-
ure prediction using machine learning techniques based
on SCADA and maintenance history data. One of the
method’s first contributions relies in the use of SCADA
data, that dismisses the necessity of using high cost hard-
ware for implementing customized CM systems. Further-
more, another contribution consists in the implementation
of an intelligent approach with high accuracy levels that
uses simple ML models instead of high complex ones.
Most of the work is dedicated to dataset preprocessing,
manipulation, and framing the problem as a classification
task. Moreover, another important aspect of the paper is
the fact that real data extracted from wind farms was
used, and no synthetic samples were needed to validate
the results. Demonstrating the validity of the method for
practical applications.

The main contribution of the proposed methodology is the
fact that it provides the time until critical failure as a
result, not only identifying the presence of an incipient
failure. Incipient failures often evolve to critical failures,
which is why most of the papers found in literature
focuses on forecasting the occurrence of the former. The
issue with this approach is that there is no recognizable
pattern that can be used to determine when a critical
failure will occur after the occurrence of an incipient
one. As a result, this conventional methodology is not
particularly effective to support maintenance planning. To
overcome this limitation, the methodology introduced in
this paper is capable of determining the time until the
occurrence of a critical failure without the prior knowledge
of incipient faults occurrence. Therefore, being a valuable
tool for companies in the electric sector, optimizing their
maintenance processes, and, consequently, reducing the
O&M costs.
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