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Abstract 

Offensive content has become more common in the digital era due to the growth of 

social media and online communication, especially in languages like Tamil. The 

challenges of detecting such harmful content are due to the large-scale labelled 

information scarcity and the intricacy of code-switching. The hybrid architecture for 

offensive text identification described in this paper combines the most beneficial 

aspects of Kolmogorov-Arnold Networks (KAN), traditional machine learning 

classifiers, and ensemble models. Our strategy involves preprocessing of text, several 

extracted features, and tuning of hyperparameters for better performance of the model. 

We explore many different classifier performances comprising XGBoost, AdaBoost, 

Gradient Boosting, K-Nearest Neighbours (KNN), Random Forest, Support Vector 

Machine (SVM), and Logistic Regression. Extensive trials show that our hybrid system, 

particularly leveraging KAN, emerges as the best model for precisely identifying 

objectionable material in Tamil-English datasets with mixed coding. To address the 

challenges of offensive content identification in multilingual and code-mixed contexts, 

the results demonstrate the potential benefits of integrating conventional and cutting-

edge machine learning techniques. 

Keywords: Offensive text detection, neural networks, Key Attention Networks, 

traditional classifiers, code-mixed text, Tamil-English 

1 Introduction 

The rise of social media and online communication in the digital age has led to an increase in the 

prevalence of offensive content. This tendency is especially noticeable in code-mixed languages 
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like Tamil and English. Difficulty in code-switching and lack of large-scale labeled data make the 

discovery of such harmful information even more difficult to discover. In this work, we present a 

hybrid architecture that leverages the best features of standard machine learning classifiers and 

Kolmogorov Arnold Networks with ensemble models for the recognition of offensive text. It 

includes word preprocessing, feature extraction through Word2Vec representation, bag-of-words, 

Ngrams, and TF-IDF embeddings, and tuning hyperparameters for better performance. The 

experimental evaluation of different classifiers such as XGBoost, AdaBoost, Gradient Boosting, 

K-Nearest Neighbours (KNN), Random Forest, Support Vector Machine (SVM), and Logistic 

Regression proves the superiority of our proposed hybrid system in correctly identifying 

objectionable material in code-mixed Tamil-English datasets. 

 

Such use of language is very common in multilingual societies, where speakers slip in and out of 

languages to convey shades of meaning, cultural allusions, and distinctive texture with ease. In 

Tamil-English communication, code-mixing is more than just a linguistic phenomenon; it’s a 

cultural and social artifact that illustrates the dynamic interplay of language, identity, and 

community. However, because of the peculiarity of code-mixed communication, there are specific 

issues regarding content filtering and incorrect identification of language. Due to syntactic, 

morphological, and semantic complexities, traditional language processing techniques have 

comparatively higher difficulty in processing code-mixed information than monolingual text. As 

mentioned above, there is a severe scarcity of annotated datasets and resources, which makes the 

process of creating error-free and efficient algorithms for the detection of offensive content in 

code-mixed language much more complicated. 

 

This project intends to develop an ensemble of KAN, the Kolmogorov Arnold Network, along 

with conventional machine learning classification models. Codemixed text is too complex and 

detailed to be captured by a single methodology, which is why we require a combined method 

here. The purpose of this work is to overcome the drawbacks of existing approaches and improve 

the efficiency, accuracy, and applicability of the method of identifying obscene materials in text 

messages by integrating multiple approaches within the proposed framework. The text pre-

processing phase of the system is to enhance the quality and normalize the nature of code-mixed 

text data. This consists of operations ranging from tokenization, stemming, lemmatization, and 

other morphological reductions sometimes used in pre-processing known as noise reduction. 

Further, techniques of feature engineering such as Word2Vec (Word to Vector) and Term 

Frequency-Inverse Document Frequency (TF-IDF) are also used to extract the contextual and 

semantic essence that comes along with code-mixed languages. Moreover, cross-validation is 

used, and high standards for hyperparameters are required to provide better results and stability in 

different language environments. The key contributions of this work are as follows: 

 

1. To detect abusive content in Tamil-English code-mixed data, a hybrid framework including 

ensemble models, conventional classifiers, and Kolmogorov-Arnold Networks (KAN) was 

developed 

2. To address the linguistic complexity of code-mixed text, sophisticated preprocessing and 

feature extraction methods such as TF-IDF and Word2Vec are used. 
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3. Extensive tests verifying the hybrid methodology, with findings emphasizing KAN's better 

interpretability and accuracy over current techniques. 

 

This is how the rest of the paper is organized: With an emphasis on the challenges in multilingual 

and code-mixed environments, Section 2 reviews relevant works in offensive text identification. 

Section 3 explains the recommended approach, which includes the hybrid framework and feature 

engineering tools. In Section 4, experimental findings are presented and the comparative 

performance of classifiers is examined. Section 5 concludes with a discussion of the main 

conclusions, limitations, and potential directions for further research.  

2 Literature Review 

Chakravarthi et al. [1] presented an overview of the HASOC-DravidianCodeMix shared task, 

focusing on offensive language detection in code-mixed Tamil and Malayalam text. The task 

involved 16 teams in the Tamil-English track, 11 in Malayalam-English, and 14 in the Tamil-only 

track. These teams used a wide variety of diverse machine learning and deep learning models, out 

of which the best performing reported an F1-score of 0.859 for Tamil and 0.766 for Malayalam. 

The authors attributed performance enhancement to TF-IDF features combined with robust 

classifiers. 

Kumar et al. in [2] have proposed a new deep learning framework based on an ensemble of 

CNNs and Dense Neural Networks that entails state-of-the-art performance in identifying 

offensive posts in the text data of Dravidian MIoT media. Biere et al. in [3] addressed hate speech 

detection in social media, where Logistic Regression and Random Forest classifiers were deployed 

to contrast the performance. Instead, they found that the TF-IDF scores outperformed the 

performance prompted by Sentiment Polarity scores in recognition of hate speech for tweets, hence 

showing the role that TF-IDF plays in hate speech detection through platforms. 

Boishakhi et al. [4] researched the auto-classification of offensive language using multilingual 

BERT on tweet datasets, which achieved 92% accuracy, demonstrating the power of transfer 

learning models in finding hate speech. Similarly, Khan et al. [5] proposed a two-level 

classification for the detection of hate speech in Roman Urdu. In addition, Logistic Regression 

amongst all the supervised models demonstrated better performance than other algorithms in 

distinguishing hate speech over social media. 

Further work by Chakravarthi et al. [6] addressed offensive language detection in Tamil, 

Malayalam, and Kannada and code-switching and non-native script issues. This research placed 

further emphasis on the need for dataset development and shared tasks which would push the 

research forward into offensive content detection for under-resourced languages. Their study is all 

the more relevant for languages in extensive use on platforms such as YouTube and Helo. 

Baruah et al. [7] worked on the offensive language detection of code-mixed Dravidian languages 

and adapted various machine learning and deep learning methods to result in better performance. 

They also contributed to sentiment analysis and machine translation efforts in the Tamil and 

Malayalam languages, furthering the resources available for those languages. 

Ravikiran et al. [8] leveraged Transformer architectures such as XLM-RoBERTa and improved 

offensive speech detection in multilingual datasets through the selective translation and 

transliteration of mixed-script texts. This work added not just new methodologies but also the 
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validation of the effectiveness of the Transformer models across low-resource languages, hence 

underlining their potential to combat hate speech on social media. 

3 Methodology 

3.1 Data Preprocessing 

Several steps were taken in the preparation phase to clean and standardize the text data. All 

punctuation, digits, special characters, and extra spaces were removed, and the text was all 

lowercase. Additional steps, such as tokenization and stop word removal, were implemented to 

ensure consistency and relevance because the content was code-mixed. 

3.2 Feature Extraction 

Multiple features were extracted to capture essential aspects of the text. The relevance of each 

word in the corpus was calculated using TF-IDF [9], it is a relative weight that takes into account 

the number of times a word appears in a document and the number of documents in which the 

word appears. The TF-IDF score for a term t in a document d within a corpus D is calculated as 

follows: 

TF-IDF(t,d,D) = TF(t,d) × IDF(t,D) 

 

𝑇𝐹(𝑡, 𝑑) =
𝑓𝑡,𝑑

∑ 𝑓𝑡′,𝑑𝑡′∈𝑑
 

 

 

 

Figure 1:  t-SNE of TF-IDF 

is the term frequency of term t in document d, and 

𝐼𝐷𝐹(𝑡, 𝐷) = log (
𝑁

|{𝑑 ∈ 𝐷: 𝑡 ∈ 𝑑}|
) 

 

is the inverse document frequency, with N representing the total number of documents in the corpus 

D and |{d ∈ D: t ∈ d}| denoting the number of documents in which the term t appears. 
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The t-SNE(t-distributed Stochastic Neighbour Embedding) plots are used to visualize the high-

dimensional feature space in a lower-dimensional space, making it easier to identify patterns and 

clusters in the data. The t-SNE plot for TF-IDF features is given in Figure 1. 

 

Figure 2: t-SNE of BoW 

N-grams [10] are contiguous sequences of ’n’ items from text, used to extract patterns and 

contextual information. By generating overlapping word groups, documents are analysed to 

uncover phrase-level patterns and dependencies. The text data is modelled using the Bag of Words 

(BoW) [11] approach, where the 

 

Figure 3: t-SNE of Word2Vec 

data is represented in the form of sparse matrices indicating the frequency of words. In this model, 

every document is represented by a vector in which every component of the vector corresponds to 

a unique word and quantifies the occurrence of that word in the document. The t-SNE plot for 

BoW features is given in Figure 2. 

Word2Vec [12] generates low-dimensional dense vectors that represent the syntactic 

connections between words. 

In this model, the words are mapped to a high-dimensional space while retaining contextual 

relationships and meaning. The t-SNE plot for Word2Vec features is given in Figure 3. 

3.3 Traditional and Ensemble methods 

We have tried many standard machine-learning models for this classification. Due to its accuracy 

in high-dimensionality domains, the Linear Support Vector Classifier (Linear SVC) [13] was used 

for this task. To improve the classification performance, multiple decision trees were used along 
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with the Random Forest Classifier [14]. It was also examined with a logistic function for a binary 

classification in logistic regression. The K-Nearest Neighbours (KNN) [15] algorithm was 

included in our work due to its simplicity and effectiveness in non-parametric classification. We 

also looked at the AdaBoost Classifier [16] which combines several weak classifiers by re-

weighting the instances and the Gradient Boosting [17] Classifier which develops models one at a 

time in an attempt to rectify the errors of previous models. 

3.4 Kolmogorov Arnold Networks (KAN) 

Kolmogorov-Arnold Networks (KANs) [18] are a novel neural network architecture developed 

using the Kolmogorov-Arnold representation theorem. The complete flow diagram of the 

methodology is provided in Figure 4. Unlike traditional neural networks like Multi-Layer 

Perceptron (MLPs), KANs replace linear weights with univariate functions parameterized as 

splines, making activation functions learnable on edges rather than fixed on nodes. We have chosen 

KAN because it excels at function approximation, making it suitable for 

 

Figure 4: Work Flow 

complex NLP tasks. In this method, pre-processed text features serve as the input to KAN. Each 

layer of the KAN applies univariate functions to these input features, parametrized as splines. 

These functions replace traditional linear weights, capturing complex patterns in the data. The 

network combines these functions using superposition and addition to approximate the decision 

boundary between offensive and non-offensive text. The last layer of output classifies the text as 

either offensive or non-offensive. The architecture of the KAN is shown in Figure 5. It improves 

accuracy and readability, and as a result, KANs surpass MLPs in data fitting and solving partial 

differential equations. This is advantageous as doing so allows more flexibility in modelling the 

complexity of the data, especially in the case of code-switching as seen in Tamil-English text data. 
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The proposed architecture of the KAN, therefore, greatly improves performance concerning 

distinguishing between the two types of texts, which is crucial for solving intricate NLP problems. 

 

Figure 5: Architecture of KAN [18] 

4 Experimentation and Results 
 

4.1 Dataset Description 

To identify objectionable language in Dravidian languages and do sentiment analysis, this study 

makes use of the HASOC-Dravidian Code Mixed dataset, which is publicly accessible and 

manually annotated [19]. With an emphasis on code-mixed communication—which is common on 

social networking platforms—the dataset covers Tamil, Malayalam, and Kannada. The Tamil and 

Tamil-English code-mixed sub-corpus of the HASOCDravidian Code Mixed dataset was the main 

focus of this investigation. About 44,000 comments from YouTube are included in this sample. 

Natural code-mixing phenomena are evident in these remarks, which capture the distinctive 

language patterns found in user-generated content from multilingual areas. Krippendorff's alpha, a 

measure of inter-annotator agreement, was strong after a group of volunteer annotators manually 

annotated the dataset. Every comment is categorized by the annotations into a set of predetermined 

classifications, including non-offensive and several offensive types. 

A useful resource for developing and testing machine learning models for detecting foul 

language in Tamil-English code-mixed communication is the Tamil-English subset of the HASOC-

Dravidian Code Mixed dataset. By concentrating on this subset, our work contributes to the growth 

of natural language processing research in multilingual environments by bridging the resource gap 

for under-resourced languages. The study "DravidianCodeMix: Sentiment Analysis and Offensive 

Language Identification Dataset for Dravidian Languages in Code-Mixed Text" by Chakravarthi 

et al. (2022) presents the HASOC-Dravidian code mixed dataset. [19] 

4.2 Task Description 

In this work, we consider the crucial task of detecting undesirable information in bilingual mixed-

coding Tamil-English conversations. The dataset for this task is a collection of text items, further 

marked by specific categories indicating the kind of information. In the following experiments, 

employing a mixed system combining KAN, conventional machine learning classifiers, and 

ensemble models, the primary aim is to classify these texts into the respective categories by 
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capturing the textual content of the items. The dataset is organized in a tabular style, where a single 

text input and its label are represented by each row. A thorough explanation of the information and 

the categories is given below: 

1. Not Offensive: 

Text: Screenplay vera level laaa iruku.... Waiting to watch it. 

Translation: The movie’s screenplay is very good, waiting to watch it. This entry is non-

offensive and contains a congratulatory message in Tamil-English, expressing good 

wishes for the success of a movie for its screenplay. 

2. Offensive Untargeted: 

Text: Commercial kuppai bigil Ku thriller story Kaithi eh paakalam Translation: 

Instead of watching trash commercial movies, thriller movies like Kaithi can be 

watched. 

This entry contains offensive language, but it is not targeted towards any specific individual 

or group. It is a general offensive statement. 

3. Not Offensive: 

Text: Ithan padatha matum ranjith pathan vairu erum avanku aiyoo unmiya la   

solitangaleeee 

Translation: If Ranjith had watched this movie, he would have died out of jealousy. 

This entry contains offensive language directed towards a specific individual named 

Ranjith, indicating a personal insult. 

4. Offensive Targeted Insult Other: 

Text: Indha Vijay fans ku rajini mela paasam laam.... Ajith and fans mela gaandu.... 

Translation: All the Vijay fans don’t like Rajini genuinely, they just hate Ajith and his fans. 

This entry contains offensive language targeting a specific group, namely the fans of 

celebrities Vijay and Ajith. It reflects animosity and derogatory remarks towards the 

fans of these actors. 

5. Offensive Targeted Insult Group: 

Text: Jathi veri pudicha naaigala suttu thalanum, intha comment keela terinjidum! 

Translation: Caste-obsessed bi*ches should be shot down, comment down This entry 

contains offensive language targeted towards a specific group, with references to caste 

and community-based derogatory remarks. 

6. Non-Tamil: 

Text: Abe chutiyon sab la ke ussi date pe kyon laa rahe Ho be bhadawon 

This entry contains offensive language but is not written in Tamil. It is an example of 

offensive content in a different language, indicating the importance of distinguishing 

between languages in code-mixed texts. 
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The goal would be to develop a classification model that will categorize each incoming text 

into one of these pre-defined classes with a good level of accuracy. This would mean 

dealing with the subtlety of code-switching, as well as the contextual undertones of the text. 

Emphasis will be given to formulating an effective and credible procedure for objectionable 

information detection in code-mixed Tamil-English communication and serving online 

platform safety and moderation. 

 

4.3  Experimental Setup 

An experimental setting was developed to compare how well different models performed under 

various circumstances. We conducted two main experiments for the KAN model: training on the 

entire dataset and training on smaller, randomly chosen samples. In the latter, the procedure was 

carried out 100 times after 2000 data points were chosen at random. This method was selected to 

test the stability of the built model and its efficacy with a restricted amount of material, but it 

closely mimics real-world conditions where full dataset training may not be feasible. In particular, 

hyperparameter adjustment improved the performance of traditional machine learning models 

[20]. Grid search and cross-validation techniques were used to identify the hyperparameters that 

were appropriate for each model. To avoid confusion resulting from different categorizations of 

the models, a structure was devised to allow for an accurate comparison between several 

classifiers. This procedure ensured that each model was differentiated and assessed to the best of 

its capability. 

4.4  Results 

An analysis of many classifiers to detect offensive content in Tamil-English code-mixed text 

provides insightful information about the classifiers' performance on a variety of criteria. With an 

accuracy of 78.20%, Linear SVC distinguishes itself from other traditional machine learning 

models and shows its resilience in differentiating between offensive and non-offensive language. 

A balanced precision-recall trade-off is necessary to reduce false positives and false negatives in 

situations where misclassification could have major consequences. 

Ensemble methods such as Random Forest and XGBoost also show promising results. XGBoost 

demonstrates its ability to effectively optimize model parameters and capture intricate feature 

interactions with a high F1 score and an accuracy of 76.55%. However, Random Forest has a lower 

F1 score with a good accuracy of 74.89%, suggesting that hyperparameter tweaking is required to 

balance the hazards of overfitting with the likelihood of overfitting. With a 75.72% accuracy rate, 

logistic regression is a solid starting point. It does a decent job of balancing precision and recall, 

but more advanced modelling techniques or improved feature architecture could help it perform 

even better [21]. The performance metrics for each classifier are given in Table 1. 

While the overall accuracy may be quite decent, their lower precisions and F1 scores do show 

in comparisons that the tendency for false positives in models such as KNN and AdaBoost is much 

higher. This underlines the fact that apart from overall accuracy, precision, recall, and F1 scores 

need to be checked in cases where misclassifications need to be minimized. 
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Table 1: Evaluation Metrics for Different Classifiers 

Classifier Accuracy Precision Recall F1 

Score 

Logistic 

Regression 

0.7572 0.6954 0.7572 0.7028 

RandomForest 0.7489 0.7219 0.7489 0.6525 

LinearSVC 0.7820 0.7509 0.7820 0.7502 

KNeighbors 0.7324 0.6476 0.7324 0.6726 

AdaBoost 0.7472 0.6542 0.7472 0.6629 

Gradient 

Boost 

0.7558 0.6946 0.7558 0.6880 

XGBoost 0.7655 0.7137 0.7655 0.7057 

 

 

Figure 6: Confusion matrix of Linear SVC 

Figure 6 presents the confusion matrix for Linear SVC. The confusion matrix, in turn, provides 

detailed information on the classifier's performance in terms of true positives, true negatives, false 

positives, and false negatives. An illustration of the true positive rate versus the false positive rate 

for every classifier is shown by the Receiver Operating Characteristic curve (ROC). The 

performance at different thresholds is displayed by each model’s ROC curve, which is displayed 

in Figure 7. Higher values of AUC suggest better performance: the higher the area under the curve, 

the better the model’s class separation. AUC values of 0.84 and 0.82 indicate strong performance. 

As for the outliers, the maximum AUC ROC statistics of 0.82 for both Logistic Regression and 

Linear 
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Figure 7: ROC graph of all classifiers 

SVC demonstrates the highest discriminating ability. It is also established that, due to achieving 

similar levels of AUC, ensemble techniques like XGBoost and Gradient Boosting are capable of 

solving difficult classification problems. Indeed, the KAN model provides a plausible approach. 

This paper achieved a training accuracy of 72 percent in classifying data. It performs reasonably 

well when trained on the complete dataset, with a training accuracy of 42 percent and a test 

accuracy of 72.22 percent. However, when trained on smaller, randomly selected samples, it 

performs notably better. For 2000 randomly generated data points, the KAN model, using 100 

iterations, showed an approximate training accuracy of 82.48 percent and an average testing 

accuracy of 81.38 percent. The performance metrics for the KAN model under different training 

methods are given in Table 2. 

Table 2: KAN Model Performance by Different Training Methods 

Training Method Accuracy Precision Recall F1 

Score 

By Training the whole data 0.7242 0.7198 0.7223 0.6860 

By randomly choosing 2000 data 

(100 iterations) 

0.8138 0.7942 0.8025 0.8083 

 

This clearly shows that by applying the given model, there is a possibility of efficiently using 

the available resources, making it very suitable for situations with many constraints. Thus, it has 

been concluded that, with almost no difference in accuracy rates, the KAN model is a very effective 

replacement for Linear SVC, which is itself highly efficient among traditional classifiers. This is 

especially true if these elements are supported by the right training and development initiatives. 
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This demonstrates how the KAN model can be used and presents a realistic approach for 

identifying inappropriate content in Tamil-English text containing mixed code. 

5 Conclusion 

This work has presented the results of applying KAN and other traditional ML classifiers for 

obscene language identification in code-mixed Tamil-English data. Along with advanced 

preprocessing and feature extraction methods, these approaches have become a good basis for 

addressing the specifics of text with mixed codes. Several lines of further development could be 

pointed out. These include deeper CNNs and RNNs that can learn extended context 

dependencies in text. Online detection solutions, optimization for faster inference times, and 

integration of the proposed approach with widely used platforms become significant next steps. 

More research is also recommended with other code-mixed languages and domain-specific data, 

such as news articles and social media posts. Their use is recommended to be conditioned upon 

their interpretability and solving problematic aspects related to ethical norms, such as bias. The 

study ends with a clear and strong foundation for objectionable text identification in code-mixed 

Tamil-English data, leaving many avenues for deeper research and experimentation along these 

lines—some of which may find applications in many areas. 
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