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Abstract: Many water utilities are currently struggling to manage their aging infrastructure. Water 
mains are a key component of water systems, as they convey drinking water to billions of end-users 
worldwide. However, as they are usually buried underground, their visual inspection and condition 
assessment can be cumbersome. Furthermore, water main failure may lead to significant challenges 
for utilities and end-users, such as service interruption, capacity reduction, as well as high replacement 
and rehabilitation costs. Accordingly, various researchers have sought to develop statistical methods 
to predict water main condition.  Previous studies have developed models for single systems, applying 
a range of statistical and machine learning methods, from linear regression to artificial neural networks.  
The objective of the present study is to compare the applicability and accuracy of a few machine-
learning algorithms, such as Random Forest, Logistic Regression and Decision Tree to predict whether 
a pipe is going to fail or not (Classification). Data from two Canadian municipalities has been collected 
(Saskatoon, Saskatchewan and Waterloo, Ontario). A number of features are taken into consideration, 
such as diameter, age, material, and the number of previous failures. The results show a moderate to 
high accuracy of classification models although in some cases the performance of models is relatively 
low. Thus, deeper data mining approaches with higher concentrations on the most influential attributes 
would increase the reliability of the models. 

1 INTRODUCTION 

Water networks are among the most essential infrastructure worldwide, as they convey potable 
water to billions of end-users.  Water distribution networks are reported  to make up approximately 
80% of total expenditures associated with the water industry (Kleiner and Rajani, 2001). According 
to ASCE (2017), approximately 240,000 incidents occur annually in the US, leading to around 1$ 
trillion in rehabilitation backlog required to improve the condition of water network components. A 
recent 2018 study found that 16% of installed pipes were beyond their useful life whereas a similar 
study in 2012 found 8% were beyond their useful life, and many utilities are lacking adequate fund 
to replace all of them (Folkman, 2012, 2018). Moreover, in  US and Canada, overall water main 
failure is reported to have surged between 2012 and 2018, from 11 to 14 Failures/year/100 mile, 
respectively (Folkman, S. 2018). It was also reported that the rate of failure for Cast Iron (CI) and 
Asbestos Cement (AC) pipes increased by 40% during the aforementioned 6-year period. It should 
be noted that these two types of pipes account for almost 41% of all installed pipe in US and 
Canada. Furthermore, in 2017, the ASCE report card was prepared and given grade D to drinking 
water infrastructure in the USA as opposed to D- in 2009. Canada Infrastructure Report Card 
(2016) also reported that 29% of potable water infrastructures in very poor, poor or fair condition 
with a cost of $60 billion to replace. This is comparable to the 25% found in the latest 2019 report 
(“Canada Infrastructure Report Card” 2019). 
 
In Canada, 59% of pipes were reported to be less than 40 years old and only 9% above 80 
(“Canada Infrastructure Report Card” 2019). However, if reinvestment is not increased in Canada, 
the condition of core infrastructure may worsen, increasing the cost and risk of service interruption 
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(“Canada Infrastructure Report Card” 2016). Mirza (2007) found that Canada had an estimated 
$123 billion total infrastructure backlog, $31 billion of which was related to water and wastewater 
networks.. In 2016, the Canada Infrastructure Report Card reported that 24.2$ billion is needed to 
maintain the water network in Canada. Water main deterioration may lead to service interruption, 
decrease in hydraulic capacity in the network and declining the quality of water flowing within the 
network (Kleiner and Rajani, 2001). Confronting these consequences, water network agencies are 
striving to develop new strategies to tackle the challenges pertinent to this important infrastructure. 
This highlights the importance of predictive models to plan and enhance the more efficient 
rehabilitation/maintenance operations (Dawood et al. 2020).  
 
In recent decades, many studies have been conducted in order to find an appropriate method to 
assess the condition of water distribution networks (Giraldo-González and Rodríguez, 2020). A 
variety of physical and statistical models, as well as data-driven and machine learning algorithms 
have been utilized to predict the deterioration process of water main. For instance, Artificial Neural 
Networks (Al-Barqawi and Zayed, 2008; Jafar et al., 2010), Gradient Boosting Algorithm (Snider 
and McBean, 2018) and Random Forest (Shirzad and Safari, 2019) have been used to evaluate 
the condition of water networks. Physical models, on the other hand, are more comprehensive, 
however, acquiring data required for these models may be costly, therefore these models are 
justifiable only for transmission networks, where cost of failure is significant (Giraldo-González and 
Rodríguez, 2020; Kleiner and Rajani, 2001). Statistical models, however, employ historical records 
to recognize an explicit failure patterns, and then utilize these patterns to predict the probability or 
rate of failure in the future (Kleiner and Rajani, 2001). These models can link the finding pattern to 
the pipe features such as age, diameter, material, etc. (Giraldo-González and Rodríguez, 2020). 
This study focuses on three types of classification models: Decision Tree, Random Forest, and 
Logistic Regression.  

2 Literature Review 

Since the deterioration of water mains is an intricate process, attempts to forecast the failure of 
water pipes focus primarily on statistical models (Lei, J. and Saegrov, S. 1998). Statistical models 
utilize historical failure data in order to define patterns that are assumed to continue in the future.  
Kleiner and Rajani (2001) categorized these models to deterministic and probabilistic models. 
Using  different attributes associated with water pipes, these models may estimate the probability 
of failure, rate of failure, and age at first and subsequent failures (Kleiner and Rajani, 2001; Park 
et al., 2011). Thus, comprehensive data would, undoubtedly, increase the accuracy of the models 
(Kleiner and Rajani, 2001). Nevertheless, the development process of such models for evaluating 
the condition of water mains is quite complex since failures typically occur as a result of different 
independent variables (Dawood et al. 2019). 

The present study focuses on statistical deterministic models, using machine learning classifiers. 
Deterministic models predict specific rate of failure, or pipe age at failure based on  historical failure 
rates (Kleiner and Rajani, 2001). They even can predict whether a pipe failed or not by associating 
them to machine learning models. These models require pipes to be partitioned into homogeneous 
groups that have similar characteristics. Such features could be material, size, soil characteristics 
and pipe vintage. This partitioning, however, imposes a challenge on the analysis process. That 
is, creating homogeneous groups may lead to unduly small groups. Simultaneously, these groups 
should be large enough  for the statistical analysis to be reliable (Kleiner and Rajani, 2001).  

There are a variety of machine learning classifiers, among which Decision Tree, Random Forest 
and Logistic Regression are employed in this study. The application of these models in previous 
studies are briefly described below. 

2.1 Decision Tree 

Decision Tree (DT) can be used either for classification or regression problems. Harvey and 
McBean (2014) applied DT to the prediction of sewer pipe failure in Guelph, ON, and compared it 
to Support Vector Machines. In this case, DT showed a 77% higher accuracy. Syachrani et al. 
(2013) also compared this type of model to regression and neural networks. Again DT 
outperformed other methods in terms of accuracy. However, DT has not been applied frequently 
for water distribution failure prediction, being more common for sewer systems (Oliveira et al. 
2007). A DT model forecasts target labels with application of some predictive rules that are shaped 
in a structure similar to a tree (Syachrani et al. 2013). Rule building initiates from the root of the 
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Figure 1 – Concept of decision tree algorithm (Syachrani et al. 2013) 

tree where the dataset is assigned. This process continues by roots split into branches, which are 
known as decision nodes. This splitting process will not typically stop until the detection of only 
one class in a node which is called leaf. Figure 1 depicts the concept of the DT algorithm (Syachrani 
et al. 2013). 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 

2.2 Random Forests 

Random Forest is a specific classification and regression algorithm based on the mixture of several 
decision trees (Breiman 2001). This algorithm has been used in several water-related studies 
(Chen et al., 2017; Shirzad and Safari, 2019; Zhu and Pierskalla, 2016). Sadler et al. (2018) 
reported that the traditional DT is prone to over fitting while applying it to the training data. The 
randomness of the Random Forest prevents over-fitting and leads to better model performance. In 
the conventional decision tree approach, the dataset is separated into smaller parts by using the 
best variable splitter, whereas Random Forest changes the splits while choosing random 
predictors. This makes Random Forest a more robust algorithm than DT. There is no assumption 
for Random Forest when splitting samples, and it clusters everything automatically (Vitorino et al. 
2014). 

2.3 Logistic Regression 

Logistic Regression is a specific form of generalized linear model regression (Robles-Velasco et 
al. 2020; Vladeanu and Koo 2015). It can be used to calculate the probability of a sample pertaining 
to one class (Chang et al. 2019). Or in this case, can be used to classify binary values, such as 
broken and none broken pipes. 

3 Methodology 

3.1 Data cleaning 

The first step in developing a statistical predictive model is to clean and prepare the data. Cleaning 
facilitates the subsequent modelling steps since many outliers and inconsistent entries are 
removed. Thus, the accuracy of the predictive models can be enhanced.  The case study datasets 
include pipe diameter, pipe length, age at failure, month of failure, and material. In the present 
study, only pipes with a length of 200m or less were considered, as well as an age of 80 years or 
less, since less information is available for older breaks.  

Data on water main and breaks is generally available in two separate datasets, an inventory and a 
main break register. These datasets were merged, allowing for the identification in the inventory of 
pipes that have failed or not.  

In order to account for the impact of different monthly weather condition, the month at time of break 
was defined as a binary value (0 or 1) for each month.  Furthermore, although there is a range of 
materials within the datasets, the most common materials were used in the analysis, Asbestos 
Cement (AC), Cast Iron (CI), Ductile Iron (DI), Polyvinyl Chloride (PVC) and Polyethylene (PE), 
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focusing on CI pipes. Each material was also treated as a binary value, and 0 or 1 was assigned to 
each material. Table 1 and  

 

Table 2 which are provided in section 4 show the most important attributes that have been used in 
this analysis. 

3.2 Classification of Broken and Non-Broken Pipes 

Three different machine learning algorithms were applied to both datasets, Random Forest 
Classifier, Logistic Regression Classifier, and Decision Tree. Each model was applied to the 
Saskatoon and Waterloo data separately, which includes five types of materials; AC, CI, PVC, PE, 
and DI. The datasets were divided into training set (70%) and test set (30%). Accuracy was 
evaluated on the test set, as well with a 5-fold cross validation approach. Such an evaluation (Cross 
Validation) indicates accuracy among different portions of data. In addition to accuracy, precision, 
recall and F-1 score were also calculated. These classification metrics present the prediction power 
of the applied classification models. 

Once the models were developed for each system, the Saskatoon model was tested on Waterloo 
data. This allows for the comparison of the models, and evaluation of their applicability under other 
conditions. There are many environmental factors that contribute to pipe failure, such as 
temperature, soil type, etc. which vary among different systems. Thus, Waterloo and Saskatoon 
have different characteristics within their water networks that are not currently included in the 
dataset.  

Since homogeneity is reported to be significantly important while making a predictive model 
(Shamir and Howard 1979), Cast Iron (CI) pipes were also analyzed separately for Saskatoon and 
Waterloo.  

4 Case Study Systems  

The data for this analysis was collected from the cities of Saskatoon, Saskatchewan and Waterloo, 
Ontario. Water main inventories, as well as water main breaks were used to predict pipe failure. 
Main break data is available for 2000 to 2019. Saskatoon and Waterloo water networks consist of 
1,188 KMs and 433 KMs of water mains, respectively. This includes a variety of materials such as 
Cast Iron (CI), Asbestos Cement (AC), Ductile Iron (DI), Polyvinyl Chloride (PVC), Polyethylene 
(PE), High-density polyethylene (HDPE) and Flexible Polyvinyl Chloride (FPVC). However, the 
final materials included in the analysis are Cast Iron (CI), Ductile Iron (DI), PVC, Polyethylene (PE) 
and Asbestos Cement. Table 3 shows the proportion of each material within both network after 
data cleaning. AC and CI pipes account for almost 48% of the Saskatoon network, 564 km. In 
Waterloo, CI pipe makes up around 30% of the network, 128 km. Thus, this report focuses primarily 
on Cast Iron pipes. The most important attributes employed in the analysis for both city of 
Saskatoon and Waterloo (Table 1 and Table 2). 
 
There are also different pipes with different ages in the inventory. The distribution of age versus 
cumulative length of pipes for both networks is provided in the given figures (Figure a) and (Figure 
b). It should be noted that the age distribution has been narrowed down, in order to improve the 
accuracy of the model. 
 
 
 

Table 1: Summary of input attributes for Waterloo 

Attribute Count Mean STD Min Value Max Value 

Diameter (mm) 28869 200.84 64.31 40 600 
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Figure 2b: Distribution of age versus cumulative length of 
pipe (Saskatoon) – Age/Thousands Meters 

Figure 2a: Distribution of age versus cumulative length 
of pipe (Waterloo) - Age/Thousands Meters 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2: Summary of input attributes for Waterloo 

Attribute Count Mean STD Min Value Max Value 

Diameter (mm) 

 
6884 202.06 70.15 25 150 

Length (m) 6884 46.50 52.25 0.10 5.80 

Age 
6884 34.44 18.10 2 20 

Break Month : Jan – Dec  
(Binary Variable) - - - 0 1 

PVC 6884 0.58 0.49 0 0 

Asbestos Cement 6884 0.00 0.05 0 0 

Cast Iron 6884 0.27 0.44 0 0 

 

Length (m) 
28869 30.49 39.61 0.20 199.97 

Age (years) 28869 27.37 19.61 0 80 

Break Month: Jan – Dec 
(Binary Variable) 28869 - - 0 1 

PVC 28869 0.54 0.50 0 1 

Asbestos Cement 28869 0.32 0.47 0 1 

Cast Iron 28869 0.13 0.34 0 1 

PE 28869 0.00 0.05 0 1 

Ductile Iron 28869 0.00 0.05 0 1 
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PE 6884 0.00 0.02 0 0 

Ductile Iron 6884 0.15 0.36 0 0 

 

Table 3: Proportion of each type of material in both networks 

Saskatoon  Waterloo 

Material Percentage 
Length 

(km) 
 

Material Percentage 
Length 

(km) 

Asbestos Cement 
(AC) 

38.12% 335.5 
 Asbestos Cement 

(AC) 
0.25% 0.80 

Cast Iron (CI) 15.02% 132.2 
 

Cast Iron (CI) 25.05% 80.17 

Ductile Iron (DI) 0.14% 1.2 
 

Ductile Iron (DI) 15.16% 48.53 

Poly Ethylene (PE) 0.13% 1.1 
 

Poly Ethylene (PE) 0.07% 0.21 

PVC 46.60% 410.1 
 

PVC 59.48% 190.39 

Total 100% 880.07 
 

Total 100% 320.10 

 

5 Results  

5.1 Classification Metrics 

Several primary classification metrics can be employed in order to analyze the reliability of 
classifiers. These include accuracy, precision, recall and F-1, and are calculated using a confusion 
matrix. The confusion matrix not only indicates the general accuracy of the model, but 
demonstrates the incorrect and correct prediction of a classifier. This matrix includes the number 
of True Positive (TP), True Negative (TN), False Positive (FP) and False Negative (FN) as defined 
in Table 4.  

 

Table 4: Document Classification (Ikonomakis, et al. 2005) 

True Positive True positive labels in the main dataset 

True Negative True negative labels in the main dataset 

False Positive False prediction of positive value 

False Negative False prediction of negative value 

Considering these terms, the following evaluation metrics can be calculated. 

- Accuracy: This metric can be used to evaluate True results (negative and positive) compared 
to all results (TP, TN, FP and FN). It is straightforward to understand and typically used for 
evaluation of datasets including balanced classes (Negative or Positive value of target labels 
are relatively equal). When imbalanced classes are available in the dataset, accuracy alone 
could result in misinterpretation (Harvey and McBean 2014). 
 

- Precision: This metric can be used to evaluate Positive results and the accuracy of positive 
prediction. When positive results are influential in the analysis, this metric would be helpful. 
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- Recall: This metric is employed for evaluation of actual positive classification. When the 
importance of positive target is important, recall can be used. 
 

- F-1: In order to have better understanding of accuracy of the classifiers, precision and recall 
could be combined. This combination would result in F-1 which is a reliable indicator, showing 
the accuracy of classification models. This metric also can be used in a case that target label 
has imbalanced values. Table 5 shows the equations for each of these metrics. 

Table 5: Evaluation metrics (Syachrani et al. 2013) 

Accuracy 
(TP+TN) / (TP+FP+FN+TN) 

Precision (P) 
(TP)/(TP+FP) 

Recall (R) 
(TP)/(TP+FN) 

F-1 
2 * ((P*R) / (P+R)) 

5.2 Classification Results 

Evaluation metrics of the classification models applied to Saskatoon and Waterloo are provided in 
Table 6. The Random Forest classifier outperformed other models in both networks in the first step 
(dataset including different materials) with general accuracy of 77% and 97%, respectively. 
However, F-1 score for Waterloo and Saskatoon is higher for Logistic Regression model. 
Moreover, after applying cross validation to test the models, Logistic regression indicated better 
accuracy with 60% of accuracy and 83% recall. In waterloo, however, Logistic Regression did not 
show a significant improve after cross validation method. Random Forest found age and length to 
be the most important predictors with 43% and 41% contribution, respectively. However, Decision 
Tree considered age as the most important contributor with 75% weight. The significant difference 
between F-1 score in both case studies indicates the dependency of the predictive models on each 
specific site factors. It can be seen F-1 score shows higher accuracy for Saskatoon dataset. The 
analysis carried on with applying models to Cast Iron (CI) pipes in Saskatoon. Interestingly, with 
partitioning the dataset into specific material type, the accuracy of the models increased relatively. 
For instance, Random Forest Accuracy surged from 77% in the first step to 81%, and Decision 
Tree from 74% to 81%. In this step Random Forest and Decision Tree represented a better 
performance comparing to Logistic Regression. Recall and Precision are almost same for all three 
classifiers. In this case, F-1 score for Saskatoon is relatively higher, indicating the higher reliability 
of classifiers for Saskatoon network. In this preliminary study, age and length found to be the most 
important attributes affecting the prediction results. Overall, the results demonstrate somewhat 
reliability of machine learning classifiers for forecasting whether a pipe fails in the future. However, 
according to previous studies (Andreou S. A. 1986; Clark et al. 1982; Shamir and Howard 1979) 
many other factors may have significant impact on water main failure, which are not available in 
this study. These factors could be soil resistivity, temperature, soil type and other operational and 
environmental features. Additionally, the importance of partitioning data into homogenous groups 
can be noticed clearly from the result, as the accuracy of the models is clearly improved by 
grouping them by material. Decision Tree and Random Forest classifiers seem to be appropriate 
methods for evaluation and prediction.  

 

Table 6: Comparison of classifiers – (Saskatoon - Waterloo) 

Classification Models Comparison - (Saskatoon - All types of materials)  

Model Accuracy CV Accuracy CV Precision CV Recall CV F1 

Random Forest 77% 56% 65% 77% 71% 
Logistic 

Regression 
66% 60% 67% 83% 74% 

Decision Tree 74% 57% 65% 79% 71% 

Classification Models Comparison - (Saskatoon - Cast Iron Pipes)  

Model Accuracy CV Accuracy CV Precision CV Recall CV F1 

Random Forest 81% 69% 75% 85% 80% 
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Logistic 
Regression 

69% 68% 74% 85% 79% 

Decision Tree 81% 70% 76% 85% 80% 

Classification Models Comparison - (Waterloo - All types of materials)  

Model Accuracy CV Accuracy CV Precision CV Recall CV F1 

Random Forest 97% 94% 73% 40% 38% 
Logistic 

Regression 
96% 95% 78% 34% 41% 

Decision Tree 96% 94% 62% 35% 39% 

Classification Models Comparison - (Waterloo - Cast Iron Pipes)  

Model Accuracy CV Accuracy CV Precision CV Recall CV F1 

Random Forest 92% 92% 77% 59% 65% 
Logistic 

Regression 
92% 90% 73% 49% 58% 

Decision Tree 93% 90% 73% 53% 60% 

 

In order to evaluate the performance of classifiers, same process has been done for Waterloo, and 
the results are provided in Table 6. Although the general accuracy of the models is relatively high 
in the first step (dataset including different materials), after cross validation, the prediction power 
of models decreased significantly. As it can be seen, recall and F-1 scores for all types of material 
are not satisfactory. However, after partitioning data and applying the same models to only CI 
pipes, the accuracy of models in prediction somewhat improved. This again emphasizes the 
importance of partitioning pipes in homogeneous classes. In this section of analysis length and 
age with 30% and 36% contribution – according to feature importance analysis in open source 
tools - seemed to be the most important factors that may affect the prediction results. However, 
this results are not finalized and they are site-specific. Hence, more analysis is required to prove 
the reliability of the models. As it can be seen F-1 score for Waterloo after cross-validation method 
increased, which emphasize the importance of partitioning data into homogeneous groups. 

6 Summary and Conclusions 

The present study focused on failure prediction of water pipes considering pipe age, length, 
material, and month of failure. Results show that classifiers can provide useful and moderately 
accurate predictions of pipe failure. However, there are many other attributes that may contribute 
to failure and could be taken into consideration to increase the reliability of the model. Other 
significant factors could include soil type, previous rate of failure, temperature, and soil resistivity. 
Next steps of this project involve including other variables as well as other Canadian cities to the 
analysis. 
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