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Abstract. This paper builds and implements multifactor stochastic volatility 

models where the main objective is step ahead volatility prediction and to de-

scribe its relevance for the equity markets. The paper outlines stylised facts from 

the volatility literature showing density tails, persistence, mean reversion, asym-

metry and long memory, all contributing to systematic data dependencies. As a 

by-product of the multifactor stochastic volatility model estimation, a long-sim-

ulated realization of the state vectors is available. The realization establishes a 

functional form of the conditional distribution, which is evaluated on observed 

data convenient for step ahead predictions. The paper uses European equity for 

relevance arguments and illustrational prediction purposes. Multifactor SV mod-

els empower volatility visibility and predictability enriching the amount of infor-

mation available for equity market participants. 

Keywords: Stochastic Volatility, Markov Chain Monte Carlo (MCMC) Simu-

lations, Projection-Reprojection 

1 Introduction 

This paper builds and assesses multifactor scientific stochastic volatility (SV) models 

for the prediction of equity market volatility. Volatility is a measure of dispersion 

around the mean return of an asset. When the price returns are tightly bunched together 

(or spread apart), the volatility is small (large). The use of all volatility models entails 

prediction characteristics for future returns. A volatility model has been used interna-

tionally to predict the absolute magnitude of returns, quantiles and entire densities. A 

special feature of asset volatility is that it is not directly observable. The unobservability 

of volatility makes it difficult to evaluate the forecasting performance of volatility mod-

els. However, knowledge of the empirical properties of future prices is important when 

constructing risk management strategies, i.e.d portfolio selection, derivatives and hedg-

ing, market making and market timing. For all these activities, the predictability of vol-

atility is essential for success. Modern portfolio theory (MPT) suggests that volatility 

creates risk. Portfolio studies have shown that when volatility increases, risk increases, 

and portfolio returns decreases. An equity risk manager therefore would want to know 

the likelihood of future asset and portfolio movements. If a portfolio manager adds 

more assets to his portfolio, the additional assets diversify the portfolio if they do not 

covary (correlation less than 1) with other assets in the portfolio. Hence, generally, 
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portfolios imply risk reduction through diversification suggesting asset allocation im-

portance. Mean-variance analysis and the Capital Asset Pricing Model are natural ex-

tensions of the portfolio analysis. An equity derivative trader wants to know the vola-

tility that can be expected as contracts mature for both pricing and general risk man-

agement activities. The most important use of derivatives is a risk-reduction technique 

known as hedging, which requires a sound understanding of how to value derivatives 

and an understanding of which risks should and should not be hedged. Generally, for 

hedging, an equity risk manager will want to know the contract volatility approaching 

maturity. The only parameter that requires estimation in the Black-Scholes Model is 

the volatility. This volatility estimate also may be of use in estimating parameters (u 

and d) in a binomial model. Ceteris paribus, higher (lower) volatility increases (de-

creases) derivative prices. Therefore, market participants will sell (buy) both call and 

put option contract positions that are not part of speculative or hedge positions, if pre-

dicted volatility is declining (increasing). In contrast, a portfolio manager may want to 

buy (sell) a stock or a portfolio before its volatility falls (rises). Finally, a market maker 

can change his bid-ask spread believing future volatility changes. Normally, the equity 

markets show that the bid-ask spread increases (decreases) when volatility rises (falls). 

Stochastic volatility models have an intuitive and simple structure and can explain 

the major stylized facts of asset, currency and commodity price changes. The motiva-

tion for stochastic volatility is the observed non-constant and frequently changing vol-

atility.  Time-varying volatility is endemic in financial markets and market participants 

who understand the dynamic behaviour of volatility are more likely to have realistic 

expectations about future prices and the risks to which they are exposed. The SV im-

plementation is an attempt to specify how the volatility changes over time. Bearing in 

mind that volatility is a non-traded instrument, which suggests imperfect estimates, the 

volatility can be interpreted as a latent variable that can be modelled and predicted 

through its direct influence on the magnitude of returns. Risks may change through time 

in complicated ways, and it is natural to build multifactor stochastic models for the 

temporal evolution in volatility. The implementation adapts the MCMC estimator pro-

posed by Chernozhukov and Hong [9], claimed to be substantially superior to conven-

tional derivative based hill climbing optimizers for this stochastic class of problems. 

Moreover, under correct specification of the structural models the normalized value of 

the objective function is asymptotically 2 distributed (and the degrees of freedom is 

specified). The paper focuses on the Bayesian Markov Chain Monte Carlo (MCMC) 

modelling strategy used by Gallant and McCulloch [18] and Gallant and Tauchen1 [14], 

[19] implementing multivariate statistical models derived from scientific considera-

tions. The method is a systematic approach to generate moment conditions for the gen-

eralized method of moments (GMM) estimator [24] of the parameters of a structural 

model. Moreover, the implemented Chernozhukov and Hong [9] estimator keeps model 

                                                           
1 The methodology is designed for estimation and inference for models where (1) the likelihood is not avail-

able, (2) some variables are latent (unobservable), (3) the variables can be simulated and (4) there exist a 

well-specified and adequate statistical model for the simulations. The methodologies (General Scientific 

Models (GSM) and Efficient Method of Moments (EMM)) are general-purpose implementation of the 

Chernozhukov and Hong [9] estimator. 
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parameters in the region where predicted shares are positive for every observed 

price/expenditure vector. Moreover, the methodology supports restrictions, inequality 

restrictions, and informative prior information (on model parameters and functionals of 

the model). This article is organized as follows. Section 2 describes the SV methodol-

ogy. Section 3 presents stylized facts and section 4 concretizes these facts from sto-

chastic volatility models showing two examples, one index and one asset. Section 5 

summarizes and concludes. 

 

2 Theory and Methodology 
 

2.1  Stochastic Volatility Models 

The SV approach specifies the predictive distribution of price returns indirectly, via the 

structure of the model, rather than directly. The SV model has its own stochastic process 

without worries about the implied one-step-ahead distribution of returns recorded over 

an arbitrary time interval convenient for the econometrician. The starting point is the 

application of Andersen et al. [2] considering the familiar stochastic volatility diffusion 

for an observed stock price St given by 

( )( )1, 2, 1, 1, 2, 2,
t

t t t t t t

t

dS
c V V dt V dW V dW

S
= + + + +         (1) 

where the unobserved volatility processes Vi,t , i = 1,2, is either log linear or square root 

(affine). The W1,t and W2,t are standard Brownian motions that are possibly correlated 

with corr(dW1,t, dW2,t) = . Andersen et al. [2] estimate both versions of the stochastic 

volatility model with daily S&P500 stock index data, 1953-December 31, 1996. Both 

SV model versions are sharply rejected. However, adding a jump component to a basic 

SV model greatly improves the fit, reflecting two familiar characteristics: thick non-

Gaussian tails and persistent time-varying volatility. A SV model with two stochastic 

volatility factors show encouraging results in Chernov et al. [8]. The authors consider 

two broad classes of setups for the volatility index functions and factor dynamics: an 

affine setup and a logarithmic setup. The models are estimated using daily data on the 

Dow Index, January 2, 1953-July 16, 1999. They find that models with two volatility 

factors do much better than do models with only a single volatility factor. They also 

find that the logarithmic two-volatility factor models outperform affine jump diffusion 

models and provide acceptable fit to the data. One of the volatility factors is extremely 

persistent and the other strongly mean reverting.  

 

This paper’s SV model applies the logarithmic model with two stochastic volatility 

factors [8]. The model is extended to facilitate correlation between the mean and the 

stochastic volatility factors. The correlation applies the Cholesky decomposition for 

consistence. The main argument for the correlation modelling is to introduce asym-

metry effects (correlation between return innovations and volatility innovations). The 

formulation of a general SV model for price change processes (yt) therefore becomes 
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        (2) 

 

where Wi.t,i =1,2 and 3 are standard Brownian motions (random variables). The param-

eter vector is . The r’s are correlation coefficients from a Cholesky decomposition2; 

enforcing an internally consistent variance/covariance matrix. Early references are Ros-

enberg [32], Clark [10], Taylor [36] and Tauchen and Pitts [35]. References that are 

more recent are Gallant et al. [15], [18], [20], Andersen [1], Durham [12], Shephard 

[34], Taylor [37], and Chernov et al. [8]. The model above has three stochastic factors. 

Even jumps with the use of Poisson distributions for jump intensity are applicable 

(complicates estimations considerably). The paper applies a computational methodol-

ogy proposed by Gallant and McCulloch [17] and Gallant and Tauchen [19], [20] for 

statistical analysis of a stochastic volatility model derived from a scientific process3. 

Intuitively, the approach may be explained as follows. First, a reduced-form auxiliary 

model is estimated to have a tractable likelihood function (generous parameterization). 

The estimated set of score moment functions encodes important information regarding 

the probabilistic structure of the raw data sample. Second, a long sample is simulated 

from the continuous time SV model. Using the Metropolis-Hastings algorithm and par-

allel computing, parameters are varied in order to produce the best possible fit to the 

quasi-score moment functions evaluated on the simulated data. An extensive set of 

model diagnostics and an explicit metric for measuring the extent of SV model failure 

are useful side-products. The scientific stochastic volatility model cannot generate like-

lihoods, but it can be easily simulated. 

 

2.2  The unobserved state vector using the nonlinear Kalman filter 

From the prior SV model estimation, a by-product is a long simulated realization of the 

state vector  ,
1

ˆ , 1,2
N

i t
t

V i
=

=  and the corresponding  
1

ˆ
N

t t
y

=
 for .̂ =   Hence, by calibrating 

the functional form of the conditional distribution of functions  given  
1

ˆ
t

y  =
; evaluating 

                                                           
2 For the Cholesky decomposition methodology see [4] 
3 See www.econ.duke.edu/webfiles/arg for software and applications of the MCMC Bayesian methodology. 

All models are coded in C/C++ and executable in both serial and parallel versions (OpenMPI). 

http://www.econ.duke.edu/webfiles/arg
http://www.econ.duke.edu/webfiles/arg
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the result on observed data  
1

n

t t
y

=
; generating predictions for , , 1,2i tV i =  through Kalman 

filtering yt, very general functions of  
1

t
y  =

 can be used and a huge dataset is available. 

An SNP model is estimated on the ˆ
ty . The model represents a one-step ahead condi-

tional variance 2ˆ
t of 1

ˆ
ty +  given  

1

t
y  =

. Regressions are run of 
,

ˆ
i tV on 2ˆ

t , ˆ
ty  and ˆ

ty  

and lags (generously long) of these series. These functions are evaluated on the ob-

served data series  
1

t
y  =

, which give values 
, , 1,2i tV i =  for the volatility factors at the 

original data points. 
 

3 Stylized facts of volatility 
Modelling and forecasting market volatility have been the subject of vast empirical and 

theoretical investigation over the past two decades by academics and practitioners. Vol-

atility, as measured by the standard deviation or variance of returns, is often used as a 

crude measure of total risk. The volatility is not directly observable making it difficult 

to evaluate the forecasting performance. A good volatility model must be able to cap-

ture and reflect the stylized facts. Moreover, a good volatility model should predict 

volatility for success. The task of forecasting volatility conditional on previously ob-

served data is akin to filtering in Markov-Chained Monte-Carlo (MCMC) analyses4. 

Eliciting dynamics from observables are the one-step-ahead conditional volatility 

0 1( | )Var y x− , where ( )1 1,...,Lx y y− − −= . The volatility can be obtained from standard re-

cursions for the moments of the normal [26]. Filtered volatility is one-step-ahead con-

ditional standard deviation evaluated at data values ( ) ( )0 1 11 ,...,
| | 0,...,

t Lk x y y
Var y x t n

− − −− =
= , 

where yt denotes data and yk0 denotes the kth element of the vector y0, k =1,…,M. The 

volatility application involves estimating an unobserved state variable conditional on 

all past and present observables. Hence, filtering obtains [16], where y* is the contem-

poraneous unobserved variable and x* is the contemporaneous and lagged observed 

variables. Applications are portfolio optimization/minimization, option pricing and 

hedging. 

 

3.1  Tail Probabilities, the Power Law and Extreme Values 

The distribution of financial time series (returns) exhibits fatter tails than those of a 

normal distribution. The distribution for the latent volatility is more lognormal than 

normal. Hence, financial variables are four times more likely to experience big moves 

than the normal distribution would suggest. The power law, as an alternative to assum-

ing normal distributions, asserts that it is approximately true that the value of a variable, 

, has the property that when y is large ( )Prob y Ky  − =  where K and  are constants. 

A quick test is a plot of ( )ln Prob y     against ln y. Evidence that the power law to hold 

is that this logarithm of the probability of the series changing more than y standard 

deviations is approximately linearly dependent on ln y for 3y  . Furthermore, the 

                                                           
4 Filtered volatility is a data-dependent concept and the dynamic system must be sampled at the name fre-

quency as the data to determine the density. 
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extreme value theory (EVT) estimates the tails of the volatility distributions [21]. EVT 

is a way of smoothing the tails of the probability distribution of daily changes. Value 

at Risk (VaR) and Expected Shortfall (ES) can be calculated and reflect the shape of 

the tail of the distribution. High confidence levels VaR and ES are available from EVT.   

 

3.2  Volatility clustering 

Volatility show clustering of periods of volatility, i.e. large (small) movements fol-

lowed by further large (small) movements (shock persistence). In the financial litera-

ture, the lumpiness is called volatility clustering. Hence, a turbulent (tranquil) trading 

day (period) tends to be followed by another turbulent day (period). The implication is 

that volatility shocks today will influence the expectation of volatility for many periods 

in the future (shock persistence) and there are time varying return fluctuations in the 

markets. 

 

3.3  Volatility exhibits persistence 

The clustering of large and small movements (of either sign) from price movement 

processes is a well-documented feature in equity markets. To make a precise definition 

of volatility persistence let the expected value of the variance of returns k periods in the 

future be defined as ( )
2

t t k t kE r + +−  where r is the return and  is the mean. The forecast 

of future volatility then depends upon information in today’s information set such as 

today’s return. Volatility is said to be persistent if today’s return has a large effect on 

the forecast variance for many periods in the future. A measure of the persistence of 

volatility is the half-life. That is, the time it takes for the volatility to move half way 

back towards its unconditional mean following a deviation from it and can be expressed 

as 2 2

| 1|

1
:

2
t k t t tk h h  + += − = − . Alternatively, SV model volatility persistence can 

be studied by inspection of correlograms (Q-statistics) or the Breusch-Godfrey La-

grange multiplier test. Significant Q-statistics and 2 statistics suggest persistence. 

 

3.4  Volatility is mean reverting 

Mean reversion in volatility is generally interpreted as meaning that there is a normal 

level of volatility to which volatility will eventually return. In contrast, volatility clus-

tering (persistence) implies that volatility comes and goes. Hence, mean reversion in 

volatility means that very long forecasts of volatility should all converge to the same 

normal level of volatility, no matter when they are made. The implicit interpretation is 

that mean reversion in volatility shows that current information has no effect on the 

long run forecast. Hence, periods of high volatility will eventually give way to more 

normal volatility, and similarly, periods of low volatility will be followed by a rise in 

volatility. More precisely, mean reversion implies that current information has no effect 

on the long run forecast. Hence, |lim 0,t k t
k

p for all t +
→

= , and which is also expressed 

as 
2

|lim ,t k t
k

p h for all t+
→

=   . Furthermore, note that option prices are generally 

viewed as consistent with mean reversion. That is, under simple assumptions of option 
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pricing, the implied volatilities of long maturity options are less volatile than short ma-

turity options (loser to long run average volatility). 

 

3.5  Volatility asymmetry (leverage) 

For equity market returns, it is plausible that positive and negative shocks have a dif-

ferent impact on volatility. This asymmetry is sometimes ascribed to a leverage effect 

and sometimes to a risk premium effect. For the leverage effect, as the price of a stock 

rises, its debt-to-equity ratio decreases, lowering the volatility of returns to equity hold-

ers.   For the risk premium effect, news of increasing volatility reduces the demand for 

a stock because of general risk aversion among market participants. Hence, the stock 

value decline is normally followed by an increase in volatility as forecasted by news. 

Alternatively, price movements are negatively correlated with volatility suggesting that 

volatility increases (decreases) if the previous day returns are negative (positive) [6], 

[11]. Moreover, these authors also state that leverage effect happens because the fall 

(rise) in stock price causes leverage and the financial risk of the firm to increase (de-

crease). 

 

3.6  Long Memory in Volatility 

Financial time series exhibit long memory or persistence for volatility. Bailie et al. [3] 

states “The presence of long memory can be defined in terms of the persistence is con-

sistent with an essentially stationary process, but where the autocorrelation takes far 

longer to decay than the exponential rate associated with the ARMA process”. The 

stochastic volatility (SV) models use long memory for modelling persistence. The au-

tocorrelations for squared returns provide insights into the long memory characteristics 

of volatility measures. If the autocorrelations remain positive for very long lags, the 

long memory effect is present [22]. Moreover, explicit SV model volatility must exhibit 

the characteristics of long memory. 

4 European Examples: FTSE100 index and Equinor asset 

The daily analyses cover the period from the end of 2010 until November 2019, a total 

of 9 years and 110 consecutive months giving 2,325 returns for the two series. Price 

series are non-stationary and stationary logarithmic returns from all three series are 

therefore used in the analysis. Any signs of successful SV-model implementations for 

the markets indicate non-predictive market features and a minimum of weak-form mar-

ket efficiency. Consequently, the markets are applicable for enhanced risk management 

activities. 

 

4.1 Equity Summaries 

Summary statistics for the two time-series are presented in Table 1. Both the FTSE100 

spot index and the Equinor spot price series have small positive average returns (posi-

tive drift). The standard deviation for the index (portfolio) 0.928 is naturally lower than 

the single asset Equinor asset 1.587 (the index elements have a positive correlation less 

than 1), reporting lower risk. The maximum (3.9) and minimum (-6.2) numbers confirm 
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lower risk for the FTSE100 index relative to the asset Equinor (a maximum of 8,7 and 

a minimum of -7.6). The FTSE index reports a negative skewness coefficient indicating 

that the return distributions are negatively skewed. In contrast, the asset Equinor reports 

a positive skewness suggesting a positively skewed distribution (more extreme positive 

price movements). The kurtosis coefficients are relatively high positive for both series 

(> 0), indicating a relatively peaked distributions with heavy tails. The FTSE100 series 

is peakier than the Equinor series suggesting that the FTSE100 index has more obser-

vations close to the unconditional mean. The JB normal test statistics [25] suggest non-

normal return distributions. In contrast, the quantile normal test statistics suggest more 

normal distributed returns. Serial correlation in the mean equation is strong and the 

Ljung-Box Q-statistic [28] is significant for both series. Volatility clustering using the 

Ljung-Box test statistic for squared returns (Q2) and ARCH statistics seems to be pre-

sent. The ADF [13] and the Phillips-Person test statistics reject non-stationary series 

and the KPSS [27] statistic (12 lags) cannot reject stationary series. The RESET [31] 

test statistic, covering any departure from the assumptions of the maintained model, is 

not significant (stability). Finally, the BDS [7] test statistics report highly significant 

data dependence for all integrals (m). Figure 1 reports prices and returns and correlo-

gram for the returns and squared/absolute returns. The correlogram for returns show 

only weak dependence while the correlogram for squared and absolute returns indicate 

substantial data dependence. The price change (log returns) data series (top), show that 

the level of volatility seems to change randomly but shows a time varying nature typi-

cally for financial markets. 

 

 

 

 

 

 

 

 

 

Table 1. Characteristics from the European Equity Markets 

Mean (all)/ Median Maximum / Moment Quantile Quantile Jarque - Serial dependence

M (-drop) Std.dev. Minimum Kurt/Skew Kurt/Skew Normal Bera Q(12) Q2(12)

0.01117 0.04470 3.9429 3.4296 0.19367 4.1806 1081.5630 29.347 789.21

0.91763 -6.1994 -0.35950 -0.04916 {0.1236} {0.0000} {0.0030} {0.0000}

BDS-Z-statistic (e  = 1) KPSS Ph-Perron Augmented ARCH RESET

m=2 m=3 m=4 m=5 I + Trend I + Trend DF-test (12) (12;6)

10.0916 13.3062 15.2696 17.0384 0.02397 -45.09650 -44.6335 305.916 44.0178

{0.0000} {0.0000} {0.0000} {0.0000} {0.7238} {0.0000} {0.0000} {0.0000} {0.0000}

Mean (all)/ Median Maximum / Moment Quantile Quantile Jarque - Serial dependence

M (-drop) Std.dev. Minimum Kurt/Skew Kurt/Skew Normal Bera Q(12) Q
2
(12)

0.01240 -0.02732 8.6859 2.4184 0.24559 5.4668 523.7562 18.050 475.30

1.58765 -7.6262 0.15990 0.01852 {0.0650} {0.0000} {0.1140} {0.0000}

BDS-Z -statistic (e = 1) KPSS Ph-Perron Augmented ARCH RESET

m=2 m=3 m=4 m=5 I + Trend I + Trend DF-test (12) (12;6)

10.8927 12.5739 13.8733 14.9152 0.03720 -47.15972 -35.2619 208.747 7.790726

{0.0000} {0.0000} {0.0000} {0.0000} {0.3645} {0.0000} {0.0000} {0.0000} {0.2538}
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Fig. 1. FTSE100 Index (London) and Equinor Asset Prices (Oslo) for the period 2010 – 2019 

4.2  The Stochastic volatility models for the European equities 

The ty  is the percentage change (logarithmic) over a short time interval (day) of the 

price of a financial asset traded on an active financial market. The SV model imple-

mentation establishes a mapping between the statistical and the scientific models. The 

adjustment for actual number of observations and number of simulations is carefully 

logged for final model assessment. The SV model from equation 1 is estimated using 

efficient method of moments (EMM). The BIC [33] optimal SV model from parallel 

runs are reported in Table 2. The mode, mean and standard deviation are reported. For 

the two equity markets, a factor SV model produces acceptable model test statistics, 

reported at the bottom of Table 2. The objective function accuracy is -5.2 and -4.7 for 

the FTSE100 index and the Equinor asset, respectively, with associated 2 test statistics 

of 0.26 (4 df) and 0.20 (3 df). The MCMC log-posterior are reported in Figure 2. The 

model does not fail the test of over identified restrictions at the level of 10%, the chains 

are choppy, and the densities are close to normal, all factors suggesting that the SV 

model is appropriate for the two equity markets. The long-simulated realization of the 

state vector, as a-by product of the estimated SV model, establishes a functional form 

of the conditional distribution. The SNP methodology obtains a convenient representa-

tion of one-step ahead conditional variance  2

1 1
ˆ ˆ ˆ

t

t tof y given y 
 + =

. Running regressions 

for 
iV  on 2ˆ ˆ ˆ, | |t ty and y  and a generous number of lags of theses series, we obtain cal-

ibrated functions that give predicted values of  
1

| , 1,2
t

itV y t =
=  on the observed data se-

ries. Figure 3, reporting the last 60 days in 2019, shows the two latent volatility factors 

for the observed data points. The plots indicate that 
1V   is slowly moving while 

2V  is 

moving considerably faster. It is quite clear that the slowly persistent factor V1, leads 

the re-projected yearly volatility for both series. Figure 3 also reports the ordinary least 

square number for R2 for FTSE100 index (Equinor asset) at a level of Vi, where i=1,2  
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Table 2. Scientific Stochastic Volatility Characteristics:  -parameters 

Fig 2. MCMC posterior chain from 250 k optimal SV model (R = 75.000) 

Fig. 3. Conditional Volatility from Observables and Kalman Filtered Volatility (daily) 

Fig. 4. FTSE100 index (top) and Equinor Stock (bottom) Factor Volatility Paths (last 60 days) 

  

FTSE100 Index Scientific Model Equinor Asset Price Scientific Model

Parameter values Scientific Model. Standard Parameter values Scientific Model. Standard

 Mode Mean error  Mode Mean error

a0 0.017578 0.022952 0.013395 a0 -0.023438 -0.016096 0.035251

a1 0.011719 0.002120 0.021067 a1 -0.054688 -0.062437 0.023304

b0 -0.324220 -0.344770 0.056698 b0 0.484380 0.308630 0.199130

b1 0.939450 0.934230 0.015442 b1 0.828120 0.802790 0.088097

c1 0 0 0 c1 0 0 0

s1 0.134770 0.129250 0.015180 s1 0.179690 0.167230 0.039989

s2 0.136720 0.130550 0.041149 s2 0.148440 0.139710 0.059609

r1 -0.785160 -0.731250 0.066906 r1 -0.531250 -0.377280 0.203640

r2 0.511720 0.446280 0.139440 r2 0.656250 0.513340 0.256090

Distributed Chi-square (no. of freedoms) 2 (4) Distributed Chi-square (no. of freedoms)2 (3)

Posterior at the mode -5.2477 Posterior at the mode -4.6865.

Chi-square test statistic {0.2628} Chi-square test statistic {0.1962}



11 

of 96.2% (82%) and 46.8% (51.3%), respectively. Obviously, the slowly moving V1 

factor, showing persistence, is the main contributor to yearly volatility. V2 moves much 

faster showing strong mean reversion, absorbing shocks. 

 

4.3 Volatility characteristics for the European Equities 

The volatility factors in Figure 3 and 4 seem to model two different flows of information 

to the equity markets. One slowly mean reverting factor provides volatility persistence 

and one rapidly mean reverting factor provides for the tails [8]. The   factor for the 

FTSE100 index is clearly moving slower than for the Equinor asset. In contrast to the 

crash of 1987 which was attributed to a large realization of the mean reverting factor 

2V , the period 2011 to 2019 does not show large realization of 2V , but rather much more 

to the slowly moving  factor 1V . In accordance with the plots, the period from 2011 to 

2019 seems to show slow and persistent changes to volatility. However, for the Equinor 

asset oil shocks have shown some major contributions to volatility. For example, the 

shock in May 2019 is only temporary and the volatility from the shock, show strong 

mean reversion ( 2V ). 

 

Comparing Figure 1 and 3, the two synchronous plots show that when returns be-

come wider (narrower) volatility increases (decreases). Moreover, turbulent (wide re-

turns) days tend to be followed by other turbulent days, while tranquil (narrow returns) 

tend to follow other tranquil days (clustering). As should be expected, the volatility is 

clearly higher for the Equinor asset than for the FTSE100 index. Furthermore, the vol-

atility seems to increase more from negative returns than from positive returns. Vola-

tility densities for the FTSE100 index and the Equinor asset series suggest lognormal 

densities. As suggested above, the density for Equinor shows both narrower and higher 

volatility density than the FTSE100 index. Furthermore, the power law 

( )( )x Kx  − =Prob  providing an alternative to the normal distributions, seems approx-

imately true for the volatility. Finally, Figure 5 reports the correlogram for the FTSE100 

index and the Equinor asset. The correlograms indicates substantial dependence sug-

gesting both clustering and persistence as well as making volatility predictions more 

relevant. 

 

 

 
Fig. 5. Conditional Volatility from Observables and Kalman Filtered Volatility (daily) 
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Tail properties, the Power law and Extreme values. The power law, an alternative 

to assuming normal distributions, is applied to the reprojected volatility ( )( )1 2V V
e

+
for 

the FTSE100 Index and Equinor asset. The power law asserts that, for many variables, 

it is approximately true that the value of the variable, , has the property that when x 

is large ( )x Kx  − =Prob  where K and  are constants. The relationship implies that 

( )ln ln lnProb x K x  = −   , and a test of whether it holds by plotting ( )ln Prob x      

against ln x . The values for ln(x) and ln[Prob(v > x)] for the FTSE100 index and the 

Equinor asset show that the logarithm of the probability of a change by more than x 

standard deviations is approximately linearly dependent in ln(x) for x ≥ 3. Hence, for 

both the FTSE100 index and the Equinor asset the power law holds for the re-projected 

volatility. Regressions show the estimates of K and  are as follows: for FTSE100 

(Equinor) 2.274K e−=  and 2.147 =    ( 0.379K e−=  and 3.369 = ). A probability estimate of 

a volatility greater than 3 (6) standard deviations is ( )2.1470.103 3 0.0097 0.97%− =  

( )( )2.1470.103 6 0.0022 0.22%− =  and ( )3.3690.685 3 0.0169 1.69%− =  ( )( )3.53690.685 6 0.0016 0.16%− =  

for the FTSE100 index and the Equinor asset, respectively.  The extreme value theory 

takes us a bit further. Setting the u to the 90 percentiles of the filtered volatility series 

of FTSE100 (u=15.55) and Equinor (u=21.65). The FTSE100 index reports optimal  

= 1.648 and  = 0.119 with an associated maximum value for the log-likelihood func-

tion of   -341.6. The Equinor series reports optimal  = 1.3067 and  = 0.0514 with an 

associated maximum value for the log-likelihood function of -278.3. The probability 

that the FTSE100 index re-projected volatility will be greater than 20 (30) is 0.9634% 

(0.025%). The VaR with 99% (99.9%) confidence limit is 19.92 (25.67). Hence, the 

99.9% VaR estimate is about 0.892 times lower than the highest historic re-projected 

volatility. The 99% (99.9%) expected shortfall (ES) estimate is 22.38 (28.92). Further-

more, for the FTSE100 index, the unconditional probability for a volatility greater than 

15.5356 (u) is equal to 0.46%. Similarly, the probability that the Equinor asset re-pro-

jected volatility will be greater than 20 (30) is 37.07% (0.9%). The VaR with 99% 

(99.9%) confidence limit is 24.85 (28.45). Hence, the 99.9% VaR estimate is about 

1.005 times higher than the highest historic filtered volatility for the Equinor asset. The 

99% (99.9%) ES estimate is 26.265 (30.068). Finally, for the Equinor asset, the uncon-

ditional probability for volatility greater than 21.798 (u) is equal to 0.68%. As Var and 

ES are attempts to provide a single number that summarizes the volatility tails giving 

the market participants an indication of the risk to which they are exposed. The 

FTSE100 index shows that a daily volatility greater than 20 is only 0.9634% while the 

Equinor asset, as a single asset, shows that a daily volatility greater than 20 is 37.06%. 

Hence, EVT and the power law, reporting VaR and ES values, summarises tail proper-

ties that indicate the risk for the market participants. For market participants, inverting 

the unconditional probability for volatility and setting a 1% limit for the change of un-

conditional probability, will list associated investments alternatives. 

 

Volatility clustering. The BDS independence test statistic [7] is a portmanteau test 

for time-based independence in a series. The probability of the distance between a pair 

of points being less or equal to epsilon (e) should be constant (cm(e)). The BDS test 
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statistics, where e is one standard deviation and the number of dimensions is 10, reports 

that for both the FTSE100 index and the Equinor asset, the data strongly rejects the 

hypothesis that the observations are independent. The FTSE100 index shows a higher 

BDS dependence than the Equinor asset. Moreover, the SV model reports volatility 

serial correlation with the SV coefficient b1. The correlation is much stronger for the 

FTSE100 index (b1 =0.94) then for the Equinor asset (b1 =0.83). The b1 > 0.8 will ac-

commodate volatility clustering. This is also visible in the above Figure 3 showing 

longer periods of high/low volatility for the FTSE100 index than for the Equinor asset 

(choppier).  

 

Persistence in Volatility. Figure 4 reports the autocorrelation and partial autocorre-

lation functions up to 20 lags for the FTSE100 Index and the Equinor asset. The pattern 

of temporal dependence is different for the two volatility factors, V1 and V2. V1 shows 

strong temporal dependence while V2 shows close to zero temporal dependence. The 

re-projected volatility ( )( )1 2V V
e

+
 has inherited the temporal dependence from V1, sug-

gesting strong persistence in volatility. The correlograms show that FTSE100 index 

show higher correlation for the first lags, 0.940 versus 0.824 for the Equinor asset. 

However, from lag nine and higher the Equinor asset show higher serial correlations. 

Running the Breusch-Godfrey serial correlation LM test (Godfrey, 1988) also report 

strong serial correlation up to lag 20 of 1869.76 (2(20)={0.000}) and 1399.42 

(2(20)={0.000}) for the FTSE100 index and the Equinor asset, respectively. Hence, 

the re-projected volatility for both the FTSE100 index and the Equinor asset, show 

strong volatility persistence. 

 

Volatility is mean reverting. A battery of unit root tests together with a variance 

ratio test (martingales) are used to test for mean reversion for the re-projected volatility. 

For example, the FTSE100 index (Equinor) report an ADF statistic of -9.4 (-7.7). 

Hence, the ADF statistics report significant mean reversion at the 1% level. Further-

more, all unit-root test statistics suggest stationary and mean reverting series. The over-

lapping variance ratio test [29], examines the predictability of time series data by com-

paring variances of differences in the data (returns) calculated over different intervals. 

If we assume the data follow a random walk, the variance of a period difference should 

be times the variance of the one-period difference. The FTSE100 index (4.399) and the 

Equinor asset (5.588) both reject that the volatility is a martingale, suggesting mean 

reversion. 

 

Asymmetry in Volatility. The asymmetry and the leverage effects are the negative 

correlation between the shocks of return and the subsequent shocks on volatility. Hence, 

after a negative return shock, we expect volatility to increase while after a positive 

shock on returns we should observe a decrease in volatility. Studying the volatility 

changes following return shocks gives some information regarding this proposition. 

Dividing the volatility from positive and negative returns show for the FTSE100 index 

(Equinor asset) an average increase in volatility from negative shocks of 2.057 (1.912) 

and from positive shocks of -1.875 (-1.897). Hence, negative return shocks increase 
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average volatility while positive return shocks decrease average volatility. To statisti-

cally test for the change in volatility from negative and positive returns, we run an OLS 

regression on the change in daily volatility on returns and lagged returns. For the 

FTSE100 index (Equinor asset) the regression reports a coefficient from the returns 

equal to -2.206 (-0.071) and -2.823 (-1.671) for lagged returns, all significant at the 5% 

level. That is, the two series show that negative returns seem to increase volatility while 

positive returns seem to reduce volatility. Furthermore, the correlation coefficients be-

tween returns and synchronous (and lagged) re-projected volatility is -0.541 (-0.683), 

and -0.0164 (-0.6831) for the FTSE100 index and the Equinor asset, respectively, sug-

gesting negative return asymmetry for both series. 

 

Long memory. Long memory is associated with both clustering and persistence. By 

using fractional differencing with traditional ARMA specifications, the ARFIMA 

model allows for flexible dynamic patterns for the re-projected volatility. For the 

FTSE100 index, the ARFIMA (2,d,0) model specification estimate d = 0.3043 suggests 

slow autocorrelations and partial autocorrelations decay (hyperbolically). For the Equi-

nor asset, the ARFIMA (2,d,0) model specification estimate d = 0.3571 suggests the 

same slow autocorrelations and partial autocorrelations decay. The ARFIMA model 

therefore specifies two slowly decaying series with long-run dependence (long 

memory).  

 

4.4  Step Ahead Volatility Predictions for European Equities 

The SNP methodology obtains a convenient representation of one-step ahead condi-

tional variance  2

1 1
ˆ ˆ ˆ

t

t tof y given y 
 + =

. Running regressions for itV  on 2ˆ ˆ ˆ, | |t ty and y    

and a generous number of lags of theses series, we obtain calibrated functions that give 

step ahead predicted values of  
1

| , 1,2
t

itV y t =
=  at the data points. A static forecast for 

the FTSE100 index and the Equinor asset is done in Figure 6. The estimation period is 

from 2010 to January 1st, 2019 and the static forecasting period from January 1st, 2019 

to November 8th 2019. For a “good” measure of fit, using the Theil inequality coeffi-

cient (bias, variance and covariance portions) the bias and variance should be small so 

that most of the bias is concentrated on the covariance proportion. The covariance pro-

portion for re-projected volatility for the FTSE100 index (Equinor asset) is 0.966 

(0.918). For the main contributor to re-projected volatility for both series, factor V1, the 

covariance portion of the Theil inequality coefficient is even higher. 

 

Fig. 6. Static Forecasts for the FTSE100 Index and the Equinor Asset 2019. 
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5 Summary and Conclusions 

The main objective of this paper has been to characterize a good volatility model by its 

ability to forecast and capture the commonly held stylized facts about equity market 

volatility. The stylized facts include such things as heavy tails, persistence, mean re-

version, asymmetry (negative return innovations suggest higher volatility), and long 

memory. The characteristics indicate substantial data dependence in the volatility. The 

paper shows that the re-projected volatility contains all these characteristics and that 

this data dependence suggests an ability for volatility predictions to enhance risk man-

agement, portfolio timing and selection, market making and derivative pricing for spec-

ulation and hedging in equity markets. 

 

The paper has used the Bayesian M-H estimator and a stochastic volatility representa-

tion for European financial equity markets. The methodology is based on the simple 

rule: compute the conditional distribution of unobserved variables given observed data. 

The observables are the asset prices and the un-observables are a parameter vector, and 

latent variables. The inference problem is solved by the posterior distribution. Based 

on the Hammersley-Clifford [23] theorem, p(,x|y) is completely characterized by 

p(|x,y) and p(x|,y). The distribution p(|x,y) is the posterior distribution of the param-

eters, conditional on the observed data and the latent variables. Similarly, the distribu-

tion p(x|,y) is the smoothing distribution of the latent variables given the parameters. 

The MCMC approach therefore extends model findings relative to non-linear optimiz-

ers by breaking the “curse of dimensionality” by transforming a higher dimensional 

problem, sampling from p(1,2), into easier problems, sampling from p(1|2) and 

p(2|1) (using the Besag [5] formula). 

 

Although price processes are hardly predictable, the variance of the forecast error is 

clearly time dependent and can be estimated by means of observed past variations. The 

results suggest that volatility can be forecast. The stochastic volatility models are there-

fore an area in empirical financial data modelling that is fruitful as a practical descrip-

tive and forecasting device for all participants/managers in the financial services sector, 

together with a special emphasis on risk management (forecasting/ re-projections and 

VaR/ES), portfolio management and derivative innovations. Irrespective of markets 

and contracts, Monte Carlo Simulations should lead us to more insight into the nature 

of the price processes describable from stochastic volatility models. Finally, static pre-

dictions of the re-projected volatility suggest a relatively good fit. 
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