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Abstract

Normalized cut is a popular spectral clustering method and
has been widely used in many applications. In this paper, we
propose a novel Fast Iterative Normalized Cut (FINC) algo-
rithm to solve the classic normalized cut problem in a fast way.
In the new method, we rewrite the classical normalized cut
problem as a new problem and propose an iterative method
with proved convergency to effectively solve the new model
without eigendecomposition. Theoretical analysis reveals that
solving the new method is equivalent to solving the classic nor-
malized cut. Extensive experimental results show the superior
performance of the new method.

Introduction
Spectral clustering is a hot topic and many spectral cluster-
ing algorithms have been proposed during the past decades.
Given a dataset, spectral clustering usually constructs a
weighted undirected graph from the pair-wise similarity ma-
trix known as the affinity matrix. The commonly-used spec-
tral clustering is normalized cut, that is formalized as a min-
cut problem to partition the vertices in a graph into several
disjoint sets such that the total weight of the set of cut edges
is minimized (Ng et al. 2002). Since it is difficult to directly
solve the discrete cluster indicator matrix, the normalized
cut is usually solved in a two-stage process: 1) relax the dis-
crete cluster indicator matrix into continuous one and solve
the relaxed problem with eigendecomposition, and 2) obtain
the final discrete cluster indicator matrix with k-means or
spectral rotation. However, there is no guarantee on the con-
vergence since the two stages aim to solve different objective
functions. Recently, Chen et al. proposed an iterative method,
named as Direct Normalized Cut, to directly solve the k-way
normalized cut model without relaxation (Chen et al. 2018).
However, their method is slow since it employs an inner iter-
ative method to solve the cluster indicator matrix object by
object, i.e., assign the cluster membership for one object by
fixing the cluster memberships of all other objects.

In this paper, we propose a novel Fast Iterative Normalized
Cut (FINC) algorithm to solve the classic normalized cut
problem. In the new method, we rewrite the classical normal-
ized cut problem as a new problem and propose an iterative
method with proved convergency to effectively solve the new
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model without eigendecomposition. Theoretical analysis re-
veals that solving the new method is equivalent to solving
the classic normalized cut. Moreover, the new method is
able to simultaneously obtain the cluster memberships of
all objects so we can use parallel technique to accelerate it.
Experimental results on 5 real-life datasets show the superior
performance of the new method.

Proposed Method
Given the undirected weighted graph G = (V, E) in which
the vertices V represent n samples X = {x1, · · · ,xn} and
the edges E is associated with the affinity matrix A. Suppose
the vertices V in G is partitioned into c components and let
Y ∈ Ψn×c be the cluster indicator matrix, in which yil = 1
indicates that xi is assigned to the l-th cluster. In this paper,
we propose to solve a new problem as follow

max
Y∈Ψn×c, s∈Rc×1

c∑
l=1
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where s ∈ Rc×1 contains c balance parameters in order to
balance the volume of these clusters. Problem (1) can be
solved with an alternative optimization approach as follows.

Update Y with s Fixed When s is fixed, it is difficult to
directly solve problem (1) so we rewrite it as a new problem

max
Y∈Ψn×c
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where
αl =

1√
yT
l LAyl
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and propose an iterative method to solve Y in problem (2)
with with fixed s. In each iteration, αl is updated according
to Eq. (3) after Y is updated. Suppose the optimal solution
of Y in the r-th iteration is Yr, Yr+1 is solved from the
following problem

max
Y∈Ψn×c
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where η > 0 is a constant used to make Y different from
Yr in order to jump out some stationary point and can be



updated according to

η = max
l

(s2
l + 2αlsl)dii (5)

It can be verified that problem (4) has the following optimal
solution

yij =< j = arg max
j′∈[1,c]

(M(j′))iyr
j′ > (6)

where < . > is 1 if the argument is true or 0 otherwise and
M(l) is defined as

M(l) = 2αlslA− s2
lDA + ηI (7)

Note that all rows of Y can be simultaneously solved, we
can use the parallel technique to accelerate this procedure.

Update s with Y Fixed When Y is fixed, it can be verified
that problem (1) is independent between different sl, so we
can solve the following problem individually for each sl. It
can be verified the following optimal solution of sl

sl =

√
yT
l Ayl

yT
l DAyl

(8)

Optimization Algorithm If we construct a k-nn affinity
matrix A, the new algorithm needs O(r1(nkc + r2nkc))
time to iteratively solve s and Y, where r1 is the number
of iterations to update s and r2 is the average number of
iterations to update Y. Here, the discrete solution Y con-
verges very fast due to its limited solution space so r2 is
usually very small. Therefore, isc has a time complexity of
O(nkc). The convergency of the above algorithm is ensured
(see supplemental file for proof).

Connection to the classic normalized cut
Substituting sl in Eq. (8) into problem (1) gives

max
Y∈Ψn×c
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which is exactly the normalized cut problem. Therefore, solv-
ing problem (1) is equivalent to solving the classic normalized
cut problem.

Experiments on Real-World Datasets
Benchmark datasets
Five real-world benchmark datasets were used in these exper-
iments, i.e., the Corel, ORL, segment, USPS20 and uspst
datasets. In this experiment, we compared FINC with 4 opti-
mization methods for solving the normailized cut problem,
including Normalized Cut (NCut) (Ng et al. 2002), Multi-
class Spectral Clustering (MSC) (Yu and Shi 2003), improved
spectral clustering (ISC) (Chen et al. 2017) and DNC (Chen
et al. 2018). To perform fair comparisons on all five datasets,
we first constructed a sparse 10 nearest neighbors affinity
matrix for each of the first 8 datasets to run all comparison
methods. We ran each of these methods on each dataset 100
times and selected the best clustering result according to their
objective functions. Finally, we used the clustering results

Table 1: Average accuracies by 5 spectral clustering methods
on 5 datasets. The best result on each dataset is highlighted in
bold.

MethodMetric corel ORL segment USPSdata uspst

NCut
ACC 0.177 0.593 0.565 0.728 0.656
NMI 0.280 0.779 0.544 0.756 0.742
RI 0.962 0.975 0.848 0.938 0.924

MSC
ACC 0.178 0.535 0.509 0.675 0.643
NMI 0.272 0.728 0.511 0.753 0.734
RI 0.956 0.967 0.812 0.927 0.924

ISC
ACC 0.113 0.340 0.450 0.466 0.484
NMI 0.173 0.560 0.423 0.392 0.418
RI 0.958 0.959 0.773 0.854 0.863

DNC
ACC 0.167 0.553 0.571 0.560 0.630
NMI 0.262 0.748 0.569 0.628 0.621
RI 0.955 0.970 0.829 0.905 0.907

FINC
ACC 0.188 0.625 0.600 0.764 0.700
NMI 0.289 0.784 0.565 0.793 0.762
RI 0.963 0.973 0.868 0.945 0.933

in terms of accuracy (ACC), normalized mutual information
(NMI) and rand index (RI) to evaluate the clustering results.
A careful examination of the results in Table 1 shows that the
new method outperforms almost all other methods. Although
FINC solves the same normalized cut problem which is also
used by NCut, MSC, ISC and DNC, it outperfotmances them
on almost all results, indicating the superior performance of
the new optimization method.
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