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Abstract. Aquatic species like zebra and quagga mussels are invasive
in United States waterways and cause ecological and economic damage.
Due to the time-consuming nature of conventional early detection meth-
ods, there is a need for automated systems to detect and classify invasive
and non-invasive species using a video-based system without any human
supervision. We present a video classification model for rapidly recog-
nizing invasive and non-invasive mussel larvae from plankton or water
sample videos.
Many recent video recognition models are transformer-based and use
a combination of spatial and temporal attention, often with large-scale
pre-training. We present a model with a CNN-based patch encoder and
transformer blocks consisting of temporal attention with LSTM that is
end-to-end trainable and effective without pre-training. Based on de-
tailed experiments, the Attention-LSTM model significantly improves
over state-of-the-art video classification models, classifying invasive and
non-invasive larvae with 99% balanced accuracy. Our code is available at
https://anonymous.4open.science/r/AttLSTM-10CF/

Keywords: Recognition · Video Recognition · Attention-LSTM · Trans-
former · Aquatic Invasive Species · Dreissenid · Quagga Mussel · Zebra
Mussel

1 Introduction

Zebra and Quagga mussels are native to Eurasia but have become widely intro-
duced and invasive into North American waters causing ecological disruption[24].
These organisms fight for resources causing the extinction of other freshwater
mussels[26]. Dreissenid mussels spread rapidly, forming large colonies and re-
stricting water flow and impeding power generation from water systems, clog-
ging pipes, and other machinery[8]. In the United States, dreissenid cause several
hundred million in damages to power plants, water systems, and industrial wa-
ter intakes annually. dreissenid mussels are relatively easy to detect, but they
spread quickly laying millions of eggs a year. Once adult zebra mussels have es-
tablished a presence in a water body, with reproducing adults present,eradicating
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or controlling their growth is populations is not possible and impacts on water
infrastructure are imminent. That means it is imperative to monitor the pres-
ence of such invasive species at the larval stage[17]. The conventional methods of
detecting veliger presence are to collect plankton or water samples and then ex-
amine the selection using cross-polarized light microscopy[17] or environmental
DNA[27]. Both of these methods are costly, time-consuming, and require human
experts. For this reason, it is vital to develop an automated procedure to visually
monitor the veliger of invasive species from water sample videos.

Fig. 1. Example of invasive dreissenid and non-invasive species larvae in our dataset.
There are four different organisms in this image, with the first six columns containing
images of two different invasive larvae (three for each organism) and the following six
containing images of two different non-invasive larvae.

This research aims to classify invasive dreissenid and non-invasive larvae
from videos of water samples. We track objects in the video across frames and
then extract a cropped image for each tracked object from each frame in which it
appears. Every object has a sequence of images that must be classified as invasive
or non-invasive. A set of invasive and non-invasive images are shown in Figure
6. Previously invasive species recognition[6] has been done using a VGG-based
CNN and an autoencoder-based feature fusion strategy. Invasive organisms often
have very distinguishable movement compared to non-invasive larvae[25], which
makes it crucial to model both spatial features and temporal relations between
different frames. This paper introduces an Attention-LSTM-based model for end-
to-end video-based classification of invasive and non-invasive organisms.

1.1 Attention-LSTM

Recognition is a fundamental challenge in computer vision, both in image and
video recognition. Based on the success of transformers in natural language
processing[32], many transformer-based architectures have been proposed for
image and video recognition[10,21,1]. The Video Vision Transformer has shown
to be effective at classifying videos in multiple video recognition datasets[1] using
a space-time attention transformer.

But transformer-based models are generally more effective when large datasets
are available for pre-training[32,10]. On the other hand, LSTMs have been known
to be very efficient in modeling sequential information[15,9]. CNN-based archi-
tectures have also proven to be good at extracting spacial features[11,9]. Another
recent development is the Sequencer[30] architecture by Tatsunami et al. that
used Bi-directional Long-Short-Term Memory (LSTM) for image classification.
The authors have conducted detailed experiments showing that the Sequencer
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outperforms Vision Transformers with comparable parameters on ImageNet1k.
This indicates that the recurrence mechanism of LSTM can model long-range
sequences in the same way self-attention layers can.

Multi-Head
Attention BiLSTM

Layer Norm

Layer Norm

MLP

MLP Head Class

Attention-LSTM Transformer Encoder

Fig. 2. The Attention-LSTM transformer. Fig. 3. An LSTM unit.

Our architecture is based on a novel Attention-LSTM transformer block com-
bining bi-directional LSTM and multi-head attention layers. The introduction of
the LSTM layer and self-attention are efficient for modeling fine-grained features
in the video. We propose a hybrid model for video classification that extracts
features from the video frames using a ConvNet. We use transformer blocks
to encode the spatial features, consisting of layers of multi-head attention and
Bi-LSTM. The sequential output of multi-head attention and Bi-LSTM are com-
bined and passed to a feed-forward network. Then, we perform layer normaliza-
tion similar to the Vision Transformer Encoder. To perform classification, we
attach a global average pooling layer at the end of transformer blocks and pass
the output to a linear classifier with a softmax activation function. We test our
model on classifying invasive larvae from water sample videos and compare it
with state-of-the-art video classification models.

2 Related Work

Invasive dreissenids mussels have been spreading in the United States for decades,
but application of machine learning in this area has been limited. Tracking inva-
sive species[7] is generally done manually using a microscope with cross-polarized
light[17]. Due to the rapid spreading of invasive dreissenid larvae[28], it is nec-
essary to use a video-based recognition system to check for Zebra and Quagga
mussel larvae early and often[22]. Our invasive species recognition is based on
video samples collected from the Colorado River, Davis Dam (AZ)[31].
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Since the introduction of ConvNets[20] there has been a lot of research work
on classifying underwater images. Many of these underwater object recognition
frameworks are based on popular CNN models like AlexNet[20], ResNet[16] etc.
But the classification of dreissenid veligers has some unique challenges due to
microscopic size and features that are hard to distinguish even by human anno-
tators. And dreissenid veligers can also be rare, depending on the season. As a
result, there needs to be more data imbalance in recognizing invasive larvae. Our
dataset is created from a video of water samples, where invasive and non-invasive
larvae often have different types of movement. So, we have decided to treat this
problem as a video classification problem using cropped frames taken from the
video. The annotation is done by experts inspecting the tracked objects on the
video and the cropped images. In the next section, we will look at recent video
classification approaches and provide the background for our video recognition
framework that achieves state-of-the-art in our Quagga mussel dataset.

Since the success of ConvNets[20,14] in widespread Computer Vision prob-
lems like Image classification[20], Object Detection[13] and Segmentation[2],
there has been growing interest in applying them to Video recognition. Due to
the massive growth of online video-based data, several large video datasets have
emerged, like Kinetics[18], Moments-in-time[23] etc. Unlike images, videos re-
quire modeling spatial features and temporal relations between other frames[33].
This makes it challenging to apply traditional CNN-based frameworks for Video
classification.

More recently, transformer-based networks[32] have achieved state of the art
in several key areas of machine learning, including text summarizing[12], image
classification[10], segmentation[4], detection[5] etc. Transformers are based on
two main ideas: 1. Self Attention mechanism to model long-term dependencies
between sequences. and 2. Pre-training on a large dataset and then fine-tuning
on a smaller dataset, which significantly improves the accuracy for fine-tuned
tasks[19]. Generally, transformer-based video recognition frameworks feed frame-
level patches to the transformer with temporal attention or use a combination
of spatiotemporal attention, often using CNN to create patches[1,3].

The recently introduced Vision Transformer (ViT) by Dosovitskiy et al.[10]
creates multiple patches from 2D images, performs linear projections to get 1D
tokens, and then utilizes transformer blocks with a final MLP layer for classi-
fication. Transformer-based video recognition frameworks generally use a sim-
ilar approach to create patches from every video frame and use a space-time
attention-based transformer[1]. Gedas Bertasius et al.[3] have compared the dif-
ferent types of attention like Space Attention, Joint Space-Time Attention, and
Axial Attention for video recognition in their Timesformer model, etc.

It is generally well-understood how much attention layers contribute to ViT’s
success. But, LSTM-based model Sequencer[30] has tried token mixing in vision
architectures using only LSTM and achieved state of the art on ImageNet clas-
sification benchmark. One attractive property of LSTM is that it learns to map
an input sequence of variable length into a fixed-dimensional vector represen-
tation. Standard LSTMs are generally better at classifying sequential features
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than an MLP[29], especially with long-range sequences. At the base level, a video
representation framework must encode the spatial features and understand the
temporal relation between frames. So, to model the material connection between
different frames, we use transformer blocks consisting of multi-head attention
followed by an LSTM layer.

In this paper, we develop a video recognition framework for classifying in-
vasive species. Our model is based on frame-level patches fed to an attention-
LSTM-based transformer. We propose a variant of our model that is convolution-
free and faster to train while achieving comparable accuracy. We compare the
performance of our model with space-time transformer-based architecture ViVIT[1]
and Long-term Recurrent CNN[9].

3 Proposed Method

In this section, we introduce the Attention-LSTM model as shown in Figure 2.
Firstly, we discuss the Vision transformer architecture and preliminary back-
ground on LSTM, introduce the Attention-LSTM model and its components,
and based on that, we develop several architectures for video classification.

CNN CNN CNN CNN CNN CNN

Linear Linear Linear Linear Linear Linear

MLP Head

Attention-LSTM Transformer

Class

Frames

2D CNN

Linear

Patches

Patches
+Positional 
Encoding

Transformer 
 Blocks

Final MLP Layer

0 1 2 3 4 5

Fig. 4. Model Overview: We extract features from video frames using a Convolution
Neural network, add positional encoding to the flattened patches and feed them to the
Attention-LSTM transformer. We add a final MLP layer to classify from the resulting
sequence.

The original transformer introduced by Vaswani et al.[32] received input as
a 1D sequence of tokens. For 2D images, Vision transformer (VIT)[10] creates
N patches of 2D tokens, flattens the tokens, and then employs a trainable linear
projection to get tokens of D dimensions. Along with that, standard 1D posi-
tional encoding is added to the tokens. These tokens are passed through trans-
former encoders consisting of alternating layers of multi-headed self-attention,
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layer normalization, and MLP blocks. The MLP contains two layers with a GELU
non-linearity.

If we consider zl as a sequence of tokens given as input to the transformer,
then the behavior of the transformer is described by the following equations:
yl = MSA(LN(zl)) + zl and z(l+1) = MLP(LN(yl)) + yl

Here MSA is multi-headed self-attention, LN is layer normalization, and MLP
is a multi-layer perceptron. In case multiple transformer layers z(l+1) can be used
as an input to the next transformer block.

We can think of a video as temporally ordered sequence of image frames
like (x1, x2, x3, . . . ) and x1 ∈ R(H×W×C), where (H,W ) is the resolution of the
images and C is the number of channels. Our model would use input in the form
of V ∈ R(H×W×C×F ), where F is the number of frames. We would create F 1D
patches with positional encoding and pass them to the Attention-LSTM-based
transformer. Figure 4 provides an overview of the model.

LSTM
LSTMs excel in sequential data tasks like speech recognition, image, and

video captioning. Before Transformers, LSTMs were NLP leaders. They’re also
crucial in video recognition, with Convolutional LSTMs predicting frames. LSTMs
use hidden units for memory, employing three gates: input gate it, forget gate
ft, and output gate ot. The forget gate ft decides what information to discard
from the cell state. The input gate it combines values to update and candidates
to add. The output gate ot determines the unit’s output. This structure enables
LSTMs to retain long-term dependencies. While CNNs are great at process-
ing spatial features, LSTM models are great at retaining temporal association.
So, for sequential data, the LSTM recurrence mechanism helps achieve better
performance from Transformers.

Multi-Head Attention
MultiHead Attention is crucial in the Vision Transformer model, excelling

in various Computer Vision tasks. It enables the model to focus on different
patches and grasp frame relationships. The process involves projecting input into
query (Q), key (K), and value (V) transformations, using a parameter dk for key
dimension. The attention score is then computed according to theis equation :
[32] : Attention(Q,K, V ) = Softmax

(
Q·KT

√
dk

)
· V

here, T denotes transpose. Output is computed by multiplying Attention
scores with value V, maintaining input shape. It’s replicated for longer sequences,
attending to parts differently.

3.1 Model Architecture

This section will provide details of the Attention-LSTM model architecture,
which has two main components: the Patch Encoder and the Attention-LSTM
transformer block.

Patch Encoder :
The Vision Transformer feeds the transformer’s linear projections of flattened

patches along with positional encoding. In our case, we create patches from every
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temporal video frame. The goal here is to develop compact features that capture
the visual information for every frame. For transformer-based video recognition,
several architectures have proposed 2D CNN[3,10] or 3D CNN[1] based models
for patch encoding. Due to the rapid development of deep learning, CNNs[20]
had great success in large-scale image recognition problems making it the best
candidate for feature extraction. So, for patch encoding, we apply a ConvNet for
every frame. We add temporal positional encoding to flattened feature vectors
and feed them to the Attention-LSTM transformer.

For video processing, we decompose each frame into N non-overlapping
patches, each of size A × B, such that the N patches span the entire frame.
In case the number of frames in a video is larger than N , we uniformly ran-
domly select N frames, maintaining their increasing temporal order. We apply
ConvNet to create features from these patches, where each patch x is given by
xt = ConvNet(fi), where fi is of size (A,B, 3). We flatten these patches into
vectors xt ∈ R(A×B×3). Here, t ∈ {1, . . . , N} denotes the temporal location of
the frame. We linearly map each patch x(t) into a flattened embedding vector
z. Finally, the sequence of tokens going to the transformer encoder is as follows:

z = [zcls, x1, x2, . . . , xN ] + p (1)

where the projections x1, x2, . . . are created by a convolutional operation. An
optional learned classification token zcls is prepended to this sequence, similar
to the BERT Transformer. A learnable positional embedding, p is added to the
tokens to retain positional information.

Embedded Patches

Norm

BiLSTM

Norm

MLP

Embedded Patches

Norm

Multi-Head Attention

Norm

MLP

Multi-Head
Attention BiLSTM

Layer Norm

Layer Norm

MLP

Fig. 5. 1. Sequencer, 2. Transformer, and 3. Attention-LSTM Block. 1. A Sequencer
Block consists of a BiLSTM layer. 2. In contrast Transformer block consists of Multi-
Head attention. 3. Attention-LSTM combines MultiHead Attention and LSTM layer.
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3.2 Attention-LSTM Layer

In the last few years, several different variants of transformers have appeared.
The sequencer model has replaced attention with Bi-LSTM. This paper tries to
combine the strength of LSTM and attention to create a practical transformer
module for long-range fine-grained features. So, we propose a new architecture
combining a BiLSTM with multi-head attention and concatenating the results
with a residual connection. Like Vision Transformer, MLP block is applied at the
end of the transformer and residual connections, layer normalization after every
transformer block. Incorporating an attention mechanism with LSTM makes
our model highly effective—a comparison between different diagrams is shown
in Figure 5.

The tokens (z) created by the patch encoder are passed through layers
of multi-headed self-attention (MSA), BiLSTM, layer normalization (LN), and
multi-layer perceptron (MLP):

yl = MSA(LN(zl)) + zl + BiLSTM(LN(zl)) (2)
z(l+1) = MLP(LN(yl)) + yl (3)

Like ViT, multiple transformer layers z(l+1) can be used to input the next
transformer block. At the end of transformer blocks, we merge the patches using
a global average pooling layer and perform the final classification using a softmax
activation. We used a cross-entropy loss function with softmax activation in the
final layer.

Table 1. Model Details: Details of the Transformer model variants, the number of
transformer layers, transformer heads, and the number of parameters for an image of
size (28, 28, 3).

Model Type Parameters Layers Heads Patch size
Att-LSTM-S (2D CNN) 47k 2 2 32
Att-LSTM-S (Linear) 183k 2 2 32
Att-LSTM-S (2D CNN) 446k 2 2 64
Att-LSTM-S (Linear) 292k 2 2 64

3.3 Model variations

In this section, we present several different model variants and evaluate them
on different datasets. We have used model variants depending on the size of the
dataset.

ConvNet-based : Our base model is based on one convolution layer, fol-
lowed by linear projections for patch creation. We used a filter size of (3 × 3)
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and a stride size of 1, then created flattened patches with linear projections and
added learnable positional embedding.

Linear Projections : Here we use linear projections on flattened frames to
create patches and add positional encoding for every temporal step.

We create several variations of our model for training on different datasets by
changing the number of transformer layers and attention heads. We use a similar
naming convention to that of Vision Transformer. We consider Attention-LSTM-
Small (L = 2, H = 2), Attention-LSTM-Base (L = 6, H = 6) with patch size of
32 & 64 and present the number of parameters for each of them in Table 1. Here
the number of layers is given by L, and the number of heads in the attention
layer is provided by H.

4 Invasive Species Dataset

Our dataset is processed from videos of water streams. We have used a Kalman
Filter-based proprietary algorithm for tracking and cropping larvae images from
videos. So a set of frames is available for every organism. The dataset has
two types of objects: Invasive and non-invasive. It contains cropped images of
6,905 organisms, with 1,220 invasive organisms (quagga mussels) and 5,685 non-
invasive organisms. There are a total of 221,702 images across two organisms.
The dataset is imbalanced towards non-invasive species as it takes around 85
percent. So, along with accuracy, we report F1 Score for invasive species as eval-
uation criteria. Every organism has a minimum of 6 to a maximum of 42 frames.
In our classification model, we used six frames with a size of (28× 28× 3). We
used 70% of the data for training and validation and 30% as a test.

Fig. 6. These are five images of the same organism plotted in each row. The first two
rows are from non-invasive organisms, and the next two are from dreissenid veligers.
Notice the movement of dreissenid veligers as they progress through the water. This
shows the importance of taking motion cues of invasive species into account while
modeling fine-grained features of the organisms.
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5 Empirical Evaluation

We train models with patch sizes of 64, 32. We train all models with the Adam
optimizer and cross-entropy loss with a batch size 32. The Adam optimizer is
applied with an initial learning rate of 0.001 and an exponential decay rate of
0.9, which we found especially useful for training larger datasets.

We evaluate the Attention-LSTM model primarily on our quagga mussel
dataset, test it with three different backbone architectures, and present the
detailed results in Table 2. We offer the results with different variants, like
Attention-LSTM-Small, and Attention-LSTM-Base, with varying sizes of patch
and backbone structures. We report the test accuracy for the invasive species
dataset and compare the results with ViVIT and LRCN models and a single
image VGG CNN.

Table 2. Comparison with state of the art on invasive larvae dataset. Results are
based on ten experiments with 100 training epochs, using H and L for transformer
head and layer size. Training time per epoch is labeled as Time. VGG CNN relies on
a single image, while accuracy for organisms is calculated via majority voting. All the
other models are based on the first five images of an organism. The F1 score is the
key metric for estimating invasive species’ presence and prevalence. The results show
that Attention-LSTM significantly improves and outperforms other video recognition
models across comparable parameter bands.

Method Patch Size H L Time F1 Score(Invasive) Accuracy
Att-LSTM-S (Linear) 32 2 2 1s 99.18±0.84% 99.71±0.30%
Att-LSTM-S (2D CNN) 32 2 2 2s 99.15±1.5% 99.51±0.87%
Att-LSTM-B (Linear) 64 2 2 1s 98.72±1.95% 99.34±1.22%
Att-LSTM-B (2D CNN) 64 2 2 4s 98.56±2.71% 99.51±0.87%
Att-LSTM-S (Linear) 32 6 6 1s 99.65±0.37% 99.87±0.13%
Att-LSTM-S (2D CNN) 32 6 6 4s 99.75±0.2% 99.32±1.89%
Att-LSTM-B (Linear) 64 6 6 3s 98.28±3.83% 99.27±1.53%
Att-LSTM-B (2D CNN) 64 6 6 4s 99.46±0.93% 99.86±0.33%
ViVIT 32 2 2 1s 92.39±1.64% 97.33±0.54%
ViVIT 32 6 6 3s 92.78±3.52% 97.48±1.5%
ViVIT 64 2 2 2s 93.57±1.28% 97.75±0.44%
ViVIT 64 6 6 3s 94.75±1.35% 98.18±0.43%
LRCN - - - 3s 89.26±2.57% 96.19±0.77%
VGG CNN - - - - 90.8 ± 0.21 % 93.6 ± 0.11 %

The results demonstrate that Attention-LSTM-based video recognition achieved
99% accuracy in classifying invasive and non-invasive images. Attention-LSTM
improves the accuracy significantly compared to other video recognition frame-
works like ViVIT, LRCN, or VGG-based single image CNN, while also being
faster to train.
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6 Conclusion

Invasive species have a detrimental impact on the aquatic environment, leading
to infrastructural damage. We present an Attention-LSTM-based transformer
for video-based, end-to-end recognition of aquatic invasive species larvae. The
combination of LSTM and Multi-Head Attention allows our model to recognize
more fine-grained features from videos. We achieves a remarkable 99% F1 score
in accurately identifying invasive larvae from water sample videos. Future ef-
forts will focus on categorizing dreissenid veligers based on their life stage and
providing recommendations to address them effectively. These methods show
significant potential for enhancing the effectiveness of early detection programs
for invasive dreissenid mussels.
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