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Abstract 

The Macroscopic Fundamental Diagram (MFD) represents an increasingly established model for assessing the quality 

of traffic flow in networks. However, the uniqueness of an empirically estimated MFD cannot be guaranteed due to 

the problem of detector selection. Instationarity and varying flow patterns make it difficult to select the link flows that 

are representative of the traffic state in the whole network. This paper developed a new method for selecting loop 
detectors that represent a particular traffic state of a road network. The method relies on a metric of heterogeneity 

characterizing the role of a network link over the time of a day. The dispersion indicates the heterogeneity in traffic 

conditions and the dynamic role of each time interval. The heterogeneity-weighted saturation level of links is used to 

determine a ranking of links. The high-ranked links in the ranking represent the most homogenous sample of subset 

links.  

The study used the loop detector data of Zurich and London and a simulated network to compare both equal (classical) 

and dynamic weights (proposed) by selecting the sample links based on different saturation levels. Moreover, 

associating the saturation level with the heterogeneity level specified the links creating the heterogeneity in the road 

network primarily. 
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 Introduction: 

Nowadays, congestion has become an integral part of the urban road network. Managing road networks to operate 
nearer to capacity is an optimal approach. However, at the optimum point, an increase in the traffic flow will initiate 

congestion in the road network. Therefore, efficient traffic demand management is required to avoid delays and 

congestion. Geroliminis and Daganzo (2008) developed the relationship between traffic flow, density, and speed in 

Yokohama, Japan which provides information about traffic conditions required for traffic demand management. The 

relationship is known as the Macroscopic Fundamental Diagram (MFD). MFD can evaluate the performance of the 

road network at a large scale (Mahmassani, Saberi et al. 2013). Moreover, MFD can also be used to control the inflow 

of the road network to avoid the density exceeding the critical point. Later, MFD developed for many cities such as 

California, Amsterdam, and Brisbane (Gayah and Dixit 2013, Tsubota, Bhaskar et al. 2014, Knoop, van Erp et al. 

2018). MFD consists of free flow and congested regions, and the slope of the regions is known as free-flow and 

shockwave speeds, respectively. These parameters along with capacity and critical density, are required to develop 

control strategies, traffic modeling, and vehicle guidance in the road network (Daganzo, Gayah et al. 2011, Aboudolas 
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and Geroliminis 2013, Leclercq and Geroliminis 2013). 

Analytical and empirical methods are used to estimate the MFD. Many studies are present in the literature that 

estimate the MFD analytically by Variational Theory (VT) (Daganzo 2005), Method of Cuts (MoC) (Daganzo and 

Geroliminis 2008), Probability Density Function (PDF) (Geroliminis and Sun 2011), and Linear Program (LP) 

(Daganzo and Lehe 2016). The analytically developed MFD is independent of the impact of demand evolution, and 

the estimated parameters show the maximum output of the system. However, the analytical method is limited to 

isolated links and signalized intersections. The literature has still not developed any analytical method for the MFD 

estimation of the entire road network. The primary obstacles are the limited capabilities of capturing network 

heterogeneity, signal control schemes, and hierarchical network structures (Zhang, Yuan et al. 2020). Furthermore, 

optimal traffic management of an isolated section of the road network does not ensure improvement of the traffic 

conditions of the entire road network (Zhang, Pei et al. 2022). Therefore, the researchers are focused on the empirical 
estimation of the MFD. The empirical estimation of MFD uses the traffic data collected from the links of the road 

network. 

Traffic data is the primary input for the empirical MFD. Traffic conditions are time-dependent, and the collected 

traffic data must cover the dynamic traffic conditions of the road network. The distribution of dynamic traffic 

conditions is inhomogeneous in urban road networks (Ramezani, Haddad et al. 2015). The gap between supply and 

demand and the road network hierarchy is the main reason for the dynamic traffic conditions in the road network (Xie 

and Levinson 2007). Consequently, each link in the road network has a different traffic flow pattern during the day, 

making the road network conditions heterogeneous. The heterogeneity increases during peak hours when congestion 

occurs in a few links compared to the total number of links in the road network. Simultaneously, other links in the 

road network are in a free-flow state. Thus, the standard deviation of the volumes is higher with a higher average road 

network density (Mazloumian, Geroliminis et al. 2010). From the large number of links in an urban road network, 

data from only a few links are typically sampled to estimate the MFD.  
The heterogeneity in the road network makes it difficult to determine the subset sample of links for traffic data 

collection. Dynamic traffic conditions and different flow patterns of links make the sample unrepresentative of the 

road network and introduce uncertainties in the estimated MFD. The uncertainty in the traffic data will account for 

inaccurate estimation of MFD (Ambühl, Loder et al. 2018). Furthermore, the accuracy of the traffic flow parameters 

required for road network management will also be affected. Hence, heterogeneity in the road network plays a crucial 

role in selecting the sample links and the accuracy of the MFD estimation. Limited studies are available in the literature 

to determine the sample links for traffic data collection. Keyvan-Ekbatani, Papageorgiou et al. (2013) collected traffic 

data from a subset of links of the road network. The authors assumed that the subset links represent the entire road 

network. Nevertheless, the authors used a visual interpretation to select links in simulation that is not applicable in the 

real world. This method was further modified to develop mathematical models to find the optimal subset of links for 

estimating the MFD of the road network (Ortigosa, Menendez et al. 2015, Zockaie, Saberi et al. 2018). Ortigosa, 
Menendez et al. (2015) formulated four blind strategies for link selection and urged for developing a systematic 

method to select representative links. Ji, Xu et al. (2018) selected the 30% congested and 30% non-congested links of 

Changsha, China, and estimated the MFD. Saffari, Yildirimoglu et al. (2020) used the Principal Component Analysis 

(PCA) to identify critical links in the road network. The study collected data from local loop detectors (LLD) of the 

critical links and floating car data (FCD) of all links. The Principal Component (PC) of each link and LLD data of 

critical links reconstruct the data of the entire road network. The study used the traffic data from the FCD for 

calculating the PC of links that require full road coverage of the FCD, which is difficult to achieve in urban road 

networks. 

Ambühl, Loder et al. (2018) introduced the re-sampling method to estimate the traffic parameters with minimal 

data. The authors randomly selected the links based on the different sample sizes and estimated the MFD. This process 

continues until the MFD plane has a clear upper bound. The study determines the additional capacity obtained by the 

subset links as a measure of the level of heterogeneity of the road network. Previous studies that collected the data 
from the subset links for the MFD estimation ignored the level of heterogeneity of the road network. Although 

Ambühl, Loder et al. (2018) calculated the level of heterogeneity, no study in the literature considers the effect of 

heterogeneity in the selection of the subset links. The heterogeneity of a road network is not constant. Mostly, the 

heterogeneity is higher during peak hours. The variation in heterogeneity is a key factor in the accuracy of MFD 

estimation. Similarly, the same heterogeneity level in the morning and evening peaks is not possible because travel 

patterns are different in every city and different road hierarchy. Moreover, some networks are heterogeneous for a 
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certain period while some road networks remain heterogeneous most of the time during the day. 

The application of MFD-based strategies depends on the accuracy of the MFD estimation, and no strategy exists 

that is robust enough in the application based on inaccurate MFD. On the other hand, the subset links are prone to 

inhomogeneity, which could affect the accuracy of the MFD estimation. Data collected from a sample (subset) of links 

may not represent the characteristics (traffic conditions) of the system (road network), resulting in an inaccurate 

estimate of the MFD. The studies in the literature on link selection have quantitative outcomes, i.e., the accuracy of 

the MFD is associated with selecting a higher number of links (Saffari, Yildirimoglu et al. 2020). The subset of links 

is homogeneous and representative of the road network when the estimated MFD is closer to the theoretical upper 

bound (Daganzo and Geroliminis 2008). Representing the traffic conditions of the road network from subset link data 

and obtaining an upper bound in the MFD plane is a challenge. Considering the temporal variation of the heterogeneity 

of the links and their saturation level (traffic flow rate w.r.t given capacity), the role of each time interval is dynamic. 
However, the literature ignores the dynamic role of each time interval which implies that all time intervals are 

considered equal.  

This study addresses the gap by selecting the most homogeneous sample of subset links based on the variation in 

heterogeneity that characterizes the dynamic role of each time interval. With the weighted saturation level, a ranking 

is compiled by calculating a Performance Score (Pi) for each link. Weights represent the dynamic role of time intervals 

according to traffic conditions. First, weighting the time intervals of traffic flow data according to traffic conditions 

maintains temporal homogeneity at the time interval level. The weights are then used to determine the saturation level 

of each link. Links having high Pi score have high saturation and similar traffic conditions during the day. As a result, 

selecting links with higher score have a higher probability of representing the road network; the data points are closer 

to the theoretical upper bound in the estimated MFD plane. Moreover, the highly saturated links provide information 

of different traffic states in the road network. 

This study uses the traffic flow data obtained from a simulated road network and the LLD of links in the CBD of 
Zurich and London for MFD estimation. Data of sample links (respective detectors) selected from two different 

methods, i.e., weighted saturation level (proposed methodology) and unweighted saturation level, are used to estimate 

the MFD. The difference between the MFDs shows that the dynamic role of time intervals decreases the susceptibility 

of sample links to heterogeneity and increases their representativeness. Finally, the better representation of the traffic 

state of the network provided by the sample links increases the accuracy of the MFD estimation. The measure 

developed for calculating the heterogeneity level indicates the links primarily involved in the heterogeneity of the 

road network. The method of Ambühl, Loder et al. (2018) obtained the upper bound in the MFD by the subset data. 

However, the computational effort is significantly higher because both flow and density are required at the initial 

level, and re-sampling depends on the number of links. As a result, the computation time for a large road network 

would become much higher (Ortigosa, Menendez et al. 2015). Whereas the proposed methodology is relatively 

inexpensive, it requires only flow data for link selection and then uses the density of the selected links for MFD 
estimation; increasing the number of links will only linearly increase the computational time. Moreover, the study 

also measure the level of herterogenoty and relates it with the saturation level that specified the links primarlity 

invloved in creating the heterogeneity in the road network. Ultimately, the application of the methodology on real and 

simulated road nework highlight the transferability of the study. 

The structure of this paper is organized as follows. The following section discusses the methodology for selecting 

the subset links. Section 3 explains the data used for the application of the method. Sections 4 and 5 discuss the results 

of the ranking of the detectors, the estimation of MFD, and the heterogeneity level of the road network of a real data 

and a simulated network, respectively. The last section concludes the study and provides insights for future extension. 

 Methodology: 

The traffic flow pattern is different at each link of the road network. The traffic state in a road network is 

homogeneous when most links have similar flow patterns, and it becomes heterogeneous when the pattern varies at 

most of the links. The more heterogeneous the traffic state in the network, the less likely a selected sample of links 

represents the traffic state of the network. Following a specific flow pattern by every link to reduce heterogeneity is a 
subjective approach. The objective approach is identifying the dominant traffic flow pattern in most road network 

links. The dominant pattern gives an overall profile of the dynamic traffic conditions throughout the day 

(homogeneous to heterogeneous). Ultimately, the profile shows that the time intervals differ from each other based on 



4  Transportation Research Procedia 00 (2023) 000–000 

 
traffic conditions and cannot be considered equal. 

The primary objective of this study was to develop a ranking of the links for the selection of the sample. The 

ranking methodology was based on the weighted saturation level. Finding the dominant traffic flow pattern was the 

main task, as the flow profile of any link could not be favored to avoid subjectivity in the methodology. This study 

used the Entropy Weight Method (EWM) and the Technique for Order Preference by Similarity to Ideal Solution 

(TOPSIS) to calculate weights and saturation levels, respectively. These two models were used simultaneously and 

called Entropy-based TOPSIS (E-TOPSIS). 

2.1 Selection of Links: 

An MFD estimated using data from sample links is usually susceptible to inhomogeneity of traffic conditions of 

the road network. Typically the data points characterizing traffic flow over density lie below the upper bound, although 

the primary aim is to determine the upper bound of these parameters. The heterogeneity in the road network varies 
with time. Road networks tend to have homogeneous traffic conditions in the morning, and heterogeneity increases 

during peak hours. In peak hours, only a few links have higher flow concentrations; the remaining links are in a free-

flow state. Therefore, a lower dispersion is found in the data when the flow concentration is higher in a few links. 

Similarly, the dispersion is higher in the flow data when the flow concentration is lower in the links in homogeneous 

traffic conditions. As discussed, the main task in the methodology was to find the traffic flow pattern that is dominant 

in most of the links. Therefore, the dispersion in the traffic flow data at each time interval on given traffic demand 

indicates the effect of dynamic traffic conditions during the day. To take this effect into account, we applied the EWM, 

which calculates the dispersion in the data at each time interval and assigns weights accordingly. 

If data points from the subset sample data lie close to the upper bound in the MFD plane, then sample links should 

have higher saturation. The TOPSIS method calculates the saturation level of each link at each time interval. 

Moreover, the TOPSIS method requires weights for each parameter (time intervals) and uses the Entropy Weights 

(EW) from EWM to include the effect of dynamic traffic conditions. The weighted saturation level ensures the 
formation of an upper bound in the MFD without affecting the homogeneity of the sample links. Using the 

combination of these two methods (E-TOPSIS), we calculated the Pi of each detector. Given the Pi, the ranking of the 

links could be developed. Data of the high-ranked links have homogeneous traffic conditions and a higher saturation 

level in the links, collectively forming a curve nearer to the upper bound in the MFD plane. 

In the known research work, the data of the different time intervals were considered with an equal weight for each 

time interval. To evaluate the proposed method, we compared the proposed EW approach with the conventional 

method by selecting the sample links at different saturation levels using both the EW ranking and the equal weights 

approach. However, equal weighting considers time intervals with different traffic conditions similarly. Hence, the 

ranking created differs from the ranking developed using the EW. The difference between the two rankings was the 

consideration of the dynamic traffic conditions. This difference is also evident in the estimated MFD. 

2.1.1 E-TOPSIS: 

The E-TOPSIS is a productive method in decision-making (Behzadian, Otaghsara et al. 2012, Zavadskas, Mardani 

et al. 2016). The TOPSIS method requires weights for each system property. For weighing the properties of the system 

in the TOPSIS, the literature extensively uses EW from EWM. Although other methods are available, calculating EW 

is relatively straightforward and inexpensive (Chen 2021).    

2.1.1.1  Entropy Weight Method (EWM): 

The EWM was developed by Shannon (Shannon 1948). EWM is also a useful decision-making model (Zhang and 
Wang 2015, Wu, Xue et al. 2017). The advantage of EWM is the objectivity in calculating the weights (Ding, Chong 

et al. 2017). Entropy analyzes the dispersion in the information, and EWM gathers the data according to the dispersion 

by weighing the system's responses. EWM calculates the weights using the following equations 

The application of the methodology requires a decision matrix for each city. The columns represent the time 

interval, and the row represents the loop detectors, as shown in Figure 1. The decision matrix shows the total flow of 

the road network over a day. In the next step, according to the EWM, Equation 1 calculates the probability of each 

flow value. Next, the entropy is determined by Equation 2. The entropy indicates the level of uncertainty in traffic 

flow data at each time interval. Later, Equation. 3 determines the divergence based on the entropy values. Finally, the 

entropy weights calculated using Equation 4 indicate the degree of dispersion in flow at each time interval of a day. 
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Figure 1 Decision matrix, Di represents the detectors, Tt represents the time intervals, and Fit represents the corresponding flow. 
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where m and n show the number of detectors and number of time intervals, respectively  

2.1.1.2 TOPSIS: 

The TOPSIS method was developed by Hwang, Chen et al. (1992). It calculates the distance of a property of a 

system from the ideal and worst solutions and determines a Pi. The Pi indicates how close the property of a system is 

from the ideal solution and how far from the worst solution at each interval. The links having higher saturation during 

the day have a higher probability of representing the traffic state of a road network. In this study, the capacity was 

assumed to be an ideal solution, and an empty link was considered as the worst/negative solution. The Pi of each link 

is calculated using the distance between both solutions and used to develop the ranking of the detectors. 
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where V𝑡
+, Vt

−, Di
+, Di

−and 𝑃𝑖 show the ideal, worst solution, distances from the solutions, and performance score, 

respectively. 

The TOPSIS method determines the Pi using Equations 5-9. Equation 5 creates the normalized decision matrix Rit 

using the traffic flow from the decision matrix in Figure 1. Equation 6 uses the EW of EWM and Rit to develop a 

weighted normalized decision matrix. With Equations 7 and 8, the Euclidean distance of the weighted value from the 
ideal and worst solution is calculated at each time interval for each detector. The Pi of each detector indicates nearness 

to the ideal solution, i.e., capacity. Ultimately, the Pi represents the weighted saturation level over a day of each 

detector. 

The E-TOPSIS method calculates the Pi of each detector. Since the calculation of Pi is based on the EW, the EW 

represents the heterogeneity in the road network at each time interval. The ranking developed using Equation 9 
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includes the effect of heterogeneity in calculating the Pi of each link. Finally, the methodology uses the ranking to 

select the sample links, and the MFD is estimated using their loop detector data. Equation 10 uses the data of sample 

links for the MFD estimation. 

𝒒𝒕,𝑳𝑳𝑫 =
∑ 𝒒𝒊𝒕𝒍𝒊

𝒎
𝒊

∑ 𝒍𝒊
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𝒊=𝟏

 , 𝒐𝒕,𝑳𝑳𝑫 =
∑ 𝒐𝒊𝒕𝒍𝒊

𝒎
𝒊

∑ 𝒍𝒊
𝒎
𝒊=𝟏

  (10) 

The variable heterogeneity level of the road network makes the role of the time interval dynamic. Only a fraction 
of the total links represent the network; out of them, only a few are representative most of the time during the day. 

The ranking developed by the E-TOPSIS ranks the links according to their representation property over the course of 

the day. 

2.2 Level of Heterogeneity: 

In the literature, the additional capacity obtained in the MFD estimated using the data of subset links (Ambühl, 

Loder et al. 2018) and variance in link densities (Ji and Geroliminis 2012) determined the level of heterogeneity. 

Mazloumian, Geroliminis et al. (2010) related the standard deviation of the network density and the number of 

congested links with the average flow of the road network. This study highlighted the difference in MFD estimated 

by sample links selected using the two different approaches. Therefore, the measure for calculating the heterogeneity 

level of the road network represents the additional capacity obtained in the MFD plane. Ambühl, Loder et al. (2018) 

also determined the heterogeneity level as an additional capacity for different sample sizes of links. The heterogeneity 
level specified in this study represents the additional capacity at different saturation levels. The former criteria of 

heterogeneity level only gave the information of heterogeneity at different sample sizes but could not specify which 

links were creating heterogeneity. 

Identifying links that create heterogeneity is beneficial in reducing heterogeneity in the road network. The approach 

of this study by relating the heterogeneity level to the saturation level, highlighted the links responsible for the 

heterogeneity in the road network. Equation 9 calculates the Pi of the links that indicate the saturation level of the 

links. The Pi is used to determine the ranking of the links. (Ambühl, Loder et al. 2018) (Ambühl, Loder et al. 2018) 

(Ambühl, Loder et al. 2018) (Ambühl, Loder et al. 2018) (Ambühl, Loder et al. 2018) The equal weights and EW 

calculated different saturation levels of the links. Sample links were selected at different saturation levels i.e., 50%, 

40%, 30%, 20%, and 10%. Similarly, the number of sample links selected using both methods differed for the 

respective saturation level bins. Therefore, the additional capacity obtained at each bin of saturation level highlighted 

the role of the respective bins in the heterogeneity of the road network.  
The additional capacity was a percentage change in the capacities of MFDs, i.e., MFD estimated by sample links 

of equal weights and EW. The capacity of each MFD was the 85th percentile of the data to avoid noisy data points. 

Equation 11 calculated the percentage change in the capacities for each saturation level bin. 

𝑨𝒅𝒅𝒊𝒕𝒊𝒐𝒏𝒂𝒍 𝑪𝒂𝒑𝒂𝒄𝒊𝒕𝒚 = (
𝑪𝑬𝑾 − 𝑪𝑬𝒒𝒖𝒂𝒍

𝑪𝑬𝑾
) ∗ 𝟏𝟎𝟎  (11) 

where CEW and CEqual are the capacities of the MFD estimated by sample links selected by EW and equal weights, 

respectively. 

 Macroscopic Traffic Data: 

Macroscopic traffic parameters i.e., traffic flow and occupancy, are primary components of the methodology. First, 

the traffic flow was used to select the sample links. After selecting the sample, the occupancy of sample links was 

used to estimate the MFD. Loop detector data fulfilled the requirement of data in our case. Although FCD provides 

the required data, penetration rate could be another variable affecting the outcome. Data from loop detectors installed 

in the city center and its vicinity, excluding the ring roads, expressways, and motorways, were used. The data from 

two urban cities (Zurich and London) and a simulated urban network (Braunschweig) were used to apply the proposed 

methodology.  

 Cities of Zurich and London 

Data from two different cities, Zurich, Switzerland, and London, UK, were used in this study (Loder Allister 2020). 
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Cities are different in demographics and traffic conditions. The population of London is much higher than that of 

Zurich and has an extensive transportation system. The loop detectors installed in both cities are primarily used for 

traffic control. The traffic data of loop detectors represent the traffic conditions of the CBD of Zurich and London, as 

shown in Figure 2. Table 1 gives information about the data used in the study. 

Both cities are different in size. Therefore, for comparison and similarity, the study selected the detectors from the 

city center to apply the methodology. OpenStreetMap and spatial information of the loop detectors were used for the 

filtration of data. Geo-referenced the loop detectors' locations and removed the freeway, trunk, and residential roads. 

After the filtration, the city center of Zurich has 260 detectors, and London has 686 detectors. 

TABLE 1 Data overview 

 

 

 

 

4.1 Ranking of Links 

First, we calculated the weights using the traffic flow data of Zurich and London to determine the weighted 

saturation level. After forming the decision matrix for each city, Equation 4 calculated the EW for each city, as shown 

in Figure 3. The time aggregation interval of data is different for both cities, as shown in Table 1. Therefore, the weight 

profiles of both cities are plotted in the same figure but at the secondary axis. Figure 3 also includes the equal weight 

profile along with EW for comparison. The equal weights underestimate the starting time intervals, i.e., homogeneous 

traffic conditions, as shown in Figure 3. In contrast, in the peak hours when the traffic state of the road networks is 

heterogeneous, equal weights overestimate the traffic conditions in both cities.  

In the next step to determine the weighted saturation level, there are two different weights for each city, so Equation 
9 developed two different rankings of detectors for each city based on Pi. Figure 4 illustrates the Pi of Zurich and 

London. The equal weights overestimate the traffic conditions at peak hours, resulting in a higher Pi of the detectors 

in both cities. At the same time, the EW calculates a lower Pi. E-TOPSIS requires a capacity (ideal solution) and an 

empty link (worst solution) as a reference for calculating the saturation level of each detector. The capacity used was 

1000 and 1400 veh/hr/ln for Zurich and London, respectively. The ranking of the detectors indicated that only very 

few links in the road network have higher saturation during the day. Pi for the capacity flow equals one, and zero for 

an empty link. However, traffic conditions and link capacities are different in both cities. 

City Zurich London 

Number of Detectors 260 686 

Road Network Coverage (Km) 56.68 114.88 

Aggregation Interval (Min) 3 5 

Data Duration (Hr) 19 19 

London Zurich 

Figure 2 Bird eye view of city center of Zurich and London 
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Zurich has a higher difference between the Pi values compared to London. The higher difference shows that the 

traffic conditions have a higher variation during the day, and considering them equal results in higher scores than 

actual. The higher number of low saturation links in both cities indicates that few links have a high flow concentration. 

Unfortunately, the author has access to insufficient traffic data to analyze the cause of flow concentration in the study 

area. The Pi in Figure 4 of both cities indicates that both road networks have very few links that are representative of 

the road network most of the time during the day. However, the results are relative to the number of detectors and 

flow in each link. Moreover, the city centers of Zurich and London have high accessibility, as shown in Figure 2. 

Therefore, a smaller number of representative links and any subset links selection without considering the road 

network's heterogeneity make them vulnerable to inhomogeneity. 

4.2 MFD Estimation: 

The ranking developed by Pi shows that only a few links are representative of the road network by both approaches 

(EW and equal weights). Therefore, we selected sample links based on saturation-level bins, as discussed in Section 
2.2. The data from sample links estimated the MFD using Eq. 10. In Figure 5 MFD estimated by sample links having 

saturation level a) 50% (Zurich) b) 40% (Zurich) c) 50% (London) d) 40% (London). Both MFDs have adequate 

points in free flow and congested regions. A non-linear model was fitted on the traffic data to highlight the difference 

between both approaches. Additionally, the shape of the MFD gives information about the usability of the 
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infrastructure and traffic control (Daganzo and Geroliminis 2008, Ambühl, Loder et al. 2020). 

The ranking developed by EW is different from the ranking produced by equal weights. Similarly, the selected 

detectors differ for the MFD estimation, and the effect is evident in the MFD plane. In Section 4.1, we explained that 

the equal weights consider all the time intervals equal whether the traffic conditions are similar or not. The equal 

consideration of time intervals underestimates the homogeneous traffic conditions and overestimates the traffic 

conditions when the traffic states of the road network are heterogeneous in Figure 3. Both approaches select the 

detectors at the same saturation level. The equal weights calculate a higher saturation level of links that selects more 

links, and the estimated MFD lies below the MFD curve compared to the MFD estimated from the links selected using 

EW. The difference in the estimated MFDs indicates that EW considered the effect of heterogeneity in the selection 

of links, and the estimated MFD by EW is least affected by the heterogeneity of the road network. The EW estimated 
the MFD with more accuracy and considered the dynamic traffic conditions that are obvious in every road network, 

and no such road networks exist that have constant traffic conditions during the day. 

Figure 5 MFD estimated by sample links having saturation level a) 50% (Zurich) b) 40% (Zurich) c) 50% (London) d) 40% (London)  

0

200

400

600

800

1000

1200

1400

0 10 20 30 40 50 60 70 80 90 100 110

F
L

o
w

 (
V

eh
/H

o
u
r/

L
an

e)

Density (Veh/Km/Lane)

MFD (Zurich)

Entropy Weights
(50%)

Equal Weights
(50%)

A 

0

200

400

600

800

1000

1200

1400

0 10 20 30 40 50 60 70 80 90 100 110

F
L

o
w

 (
V

eh
/H

o
u
r/

L
an

e)

Density (Veh/Km/Lane)

MFD (Zurich)

Entropy Weights
(40%)

Equal Weights
(40%)

B 

0

200

400

600

800

1000

1200

1400

0 10 20 30 40 50 60 70 80 90 100 110

F
lo

w
 (

V
eh

/H
r/

L
n

)

Density (Veh/Km/Ln)

MFD (London)

Equal Weights
(50%)

Entropy Weights
(50%)

C 

0

200

400

600

800

1000

1200

1400

0 10 20 30 40 50 60 70 80 90 100 110

F
lo

w
 (

V
eh

/H
r/

L
n

)

Density (Veh/Km/Ln)

MFD (London)

Equal Weights
(40%)

Entropy Weights
(40%)

D 



10  Transportation Research Procedia 00 (2023) 000–000 

 
The ranking is based on the saturation level of each link, using the data of top-ranked links indicating that they also 

have the highest flow compared to lower-ranked links. The saturation level check resulted in traffic data points in both 

regions of MFD. Including the effect of dynamic traffic conditions (heterogeneity), the selected detectors are 

minimally affected by the inhomogeneity of the road network. The data of any other link would lie below the curve, 

and the selected subset links would have homogeneous traffic conditions. Moreover, the saturation levels of links 

were calculated using the capacity values indicated in Section 3.1. We discussed the impact of change in capacity on 

the link selection and MFD estimation in Section 4.2.1. The estimated MFD by the proposed method lies nearer to the 

capacity value provided for each city, meaning that the curve is close to the upper bound and less affected by the 

heterogeneity of the road network. 

The methodology is based on the traffic data and uses the data of a typical weekday. Including more data of different 

days could give more information about the traffic conditions. The density was calculated for estimating the MFD 
using the proportionality of occupancy and density. The occupancy data was converted into the density by a scalar 

conversion using mean vehicle length (Hall and Persaud 1989, Bickel, Chen et al. 2007). Mean vehicle length is the 

sum of the vehicle length and detector length. However, the variance in the traffic mix affects the proportionality of 

the occupancy and density. Therefore, the truck-to-car ratio relates to the deviation in the occupancy-density relation 

(Kim and Hall 2004). However, the study used the data collected from the CBD of the urban road network. 

Heterogeneity in the traffic stream of the CBD is minimum. Therefore, the mean vehicle length used was 6.3 m for 

Zurich (Ambühl, Loder et al. 2017) and 6.0 for London (Ambühl, Loder et al. 2018). 

4.3 Sensitivity of Capacity 

In the previous section, the saturation level of links was calculated using the capacity value of 1000 and 1400 

veh/hr/ln for Zurich and London, respectively. The capacity values were selected based on the flow data of loop 

detectors. However, the actual capacity values for both cities may differ. Therefore, the capacity was changed by +/- 

20% to determine the impact of capacity variation on link selection and, ultimately on the MFD estimation. The 
saturation level of the links varies with the provided capacity value. Figure 6 shows link selection at 40% and 30% 

saturation because links were present at the stated saturation levels, even at a higher capacity. The 50% saturation 

level results were excluded because there were significantly fewer links or no links were present when capacity was 

increased by 20%; hence, the result could not be compared. However, the blue curve is an MFD estimated by links 

selected by the proposed method, and the green curve is calculated using the link selection by equal weights. The area 

above and below the respective curves is the variation in the MFD curve when capacity varies by +/- 20%. 

The MFD curve of Zurich estimated by using EW was above the green MFD curve even when the capacity was 

increased for equal weights. Increasing the capacity led to the selection of a few links, as there were fewer links with 

higher saturation in the road network. But equal weights ignored the heterogeneity of the road network and selected a 

non-homogenous sample that resulted in inaccurate MFD. Similarly, decreasing the capacity by 20% increased the 

saturation level of the links; a higher number of links were selected. Nevertheless, the EW took into account the 
heterogeneity of the road network; the estimated MFD is above the green curve. 

Figures 6c and 6d show the variation of the MFD curve with the change in capacity value in London. Compared 

to the MFDs of Zurich in Figures 6a and 6b, the difference between the curves is lower. The difference between the 

curves highlights the level of heterogeneity in the road network. Besides the difference between the curves, London 

follows the same trend as Zurich. The results in Figure 6 show that the proposed methodology of using EW in the link 

selection outperformed the equal weights approach independent of the capacity value provided. Moreover, if the 

capacity value used in the analysis deviates from the actual capacity of the links, the applicability of the method is not 

affected, and a homogeneous sample is selected. 
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4.4 Level of Heterogeneity: 

The study specifies that selecting the links without considering the dynamic traffic conditions is affected by the 

heterogeneity of the road network. As a result, the estimated MFD lies below the upper bound, as shown in Figure 5 

MFD estimated by sample links having saturation level a) 50% (Zurich) b) 40% (Zurich) c) 50% (London) d) 40% 

(London). The EW includes the effect of heterogeneity in the link selection, and the estimated MFD is closer to the 
upper bound. The difference between the capacities of the MFDs is called the additional capacity obtained in a 

homogeneous road network (Ambühl, Loder et al. 2018). Since the MFD estimated by EW is least affected by the 

heterogeneity, the difference from the MFD estimated using equal weights is the level of heterogeneity of the road 

network. 

The additional capacity is determined using Equation 11 for each saturation level. Figure 7 illustrates the additional 

capacity as a level of heterogeneity of Zurich and London. The road network of Zurich is more heterogeneous than 

London; it covers more area under the curve. Both road networks have few links with a saturation level of more than 

50%; they have smaller and similar differences. Similarly, including the links of saturation level 10% or higher would 

obtain only 7.1% and 3.6% of additional capacity, respectively. The low saturation links have lower flow during the 

day, affecting the MFD least. 

The links having saturation levels between 20-40% are more responsible for the heterogeneity in the road network, 

as shown in Figure 7. These links are higher in number than other links, as shown in Figure 4. The additional capacity 

Figure 6 MFD estimated by sample links using different capacity values at saturation level a) 40% (Zurich) b) 30% (Zurich) 

c) 40% (London) d) 30% (London) 

A B 

C D 
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obtained in Zurich is much higher than in London. Therefore, the sample link selection in Zurich is more prone to 

heterogeneity. Whereas the overall heterogeneity level in London is lower than in Zurich, and links with a saturation 

level of at least 30% are more responsible for the heterogeneity in the road network of London. When the traffic 

conditions of high and low-ranked links behave similarly, the additional demand in the congested links shifts towards 
the low-saturated links, and the road network attracts more demand. As a result, the road network would have a higher 

average flow in homogenous traffic conditions (Knoop, van Erp et al. 2018). 

The transferability of the method to other road networks is still a major limitation of research studies in traffic 

engineering. The studies of link selection used different methods to select the links but were unable to characterize 

the selected links. Characterizing the links generalizes the method and could be applied to other road networks. Figure 

7 highlights the role of links having different saturation levels in the heterogeneity of the road network. The saturation 

level characterizes the links and highlights the links which are primarily responsible for the heterogeneity in the urban 

road network. Relating the saturation level to the heterogeneity not only increases the transferability potential of the 

study to other road networks but also helps in maintaining the homogeneity in the road network. 

 Network Simulation 

5.1 City of Braunschweig 

The road network of Braunschweig, Germany, is shown in Figure 8. The road network (80 Km2) was simulated in 
SUMO. The road network comprises motorway, primary, secondary, and residential roads. Loop detectors were placed 

near signalized intersections at primary and secondary roads. Cycle time at each intersection was set to 90s. 33s green 

time for through traffic, 6s green time for turning vehicles, and 3s lost time for each phase. The demand for the model 

was taken from Armellini, Banse Bueno et al. (2021). The study formulated the traffic demand model in SUMO for 

Braunschweig, Germany, using Travel Activity PAttern Simulation (TAPAS) (Hertkorn 2005, Heinrichs, Krajzewicz 

et al. 2016). The demand model was calibrated using traffic data from 129 counters installed on different road types 

of Braunschweig. 
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5.2 MFD Estimation by Sample Links 

The previous sections applied the method to the loop detector data of urban cities. Similarly, the method was 

applied to the simulated traffic data to highlight the transferability of the method to other road networks. The weighted 

saturation level of the links was calculated using Eqs 1-9. The pattern of the weight profile in Figure 9 is similar to 

Zurich and London; the homogeneous and heterogeneous traffic conditions are underestimated and overestimated by 

the equal weight approach, respectively.  

The Pi in Figure 10 was calculated using EW and equal weights. The difference is quite evident between the scores, 

and very few links have higher scores. Selection of links without consideration of the dynamic role of time intervals 

will affect the sample representativeness and accuracy of estimated MFD. However compared to both cities, the links 

in the simulated network have lower scores. Since the score was calculated from provided capacity value, the links' 

capacity depended on several factors that were not investigated and were out of the scope of the study. 

Figure 8 Braunschweig, Germany layout used in SUMO 
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The Pi of the links in Figure 10 indicates the presence of high saturation links is low, and selecting a higher value 

will select a few links that are not enough for the MFD estimation of a road network. Therefore we set 20% Pi value 

for the sample since it will select enough links, irrespective of both approaches for the MFD estimation of 

Braunschweig. Figure 11 illustrates the MFD estimated by sample links having a saturation level of 20%. The 

difference in the MFD curve is as expected and similar to previous results. The equal weights approach selects more 

links than the proposed method on the same saturation level. The MFD curve of the sample links selected by the 

proposed method lies above the MFD of equal weights, which shows that consideration of dynamic time interval 
decreases the effect of heterogeneity on the MFD curve and increases the representativeness of the selected sample  

links. 

The sample links were selected using the capacity value 700 (Veh/Hr/Lane). However, the actual capacity may 

differ, and the capacity used was taken by observing the flow data. For determining the effect of change in capacity 

on the MFD estimation, we changed the capacity value by +/- 20% and estimated the MFD by sample links selected 
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by both approaches. Figure 12 shows the MFD curves estimated by 20% saturated links at different capacity values. 

The MFD curve estimated by the proposed method lies above the equal weight MFD even at a lower capacity. The 

MFD of equal weights also remains beneath the blue curve after increasing the capacity. The effect of variation in 

capacity on the MFD estimation proves that the proposed method estimates accurate MFD compared to equal weights, 
and a change in capacity would not affect the accuracy of the MFD estimation. 

Based on the flow data, the saturation level calculated is lower compared to previous results. Therefore, the 

additional capacity was calculated at lower saturation levels. However, the increase in additional capacity in Figure 

13 with the increase in saturation level is similar to Zurich and London; less additional capacity is obtained at low 

saturation levels, and the highest value is observed between 30% and 40% saturated links. Since the maximum 

saturation attained in the simulation was 20%, a comparison between the case studies at a higher saturation level is 

not possible. 

The results obtained by applying the method in a simulation environment are similar to real traffic data of urban 

cities. The similarity in results indicates that the proposed methodology of the study can be applied to any urban road 

network. Moreover, the size of the road network in the simulation is comparatively bigger than the area taken for 

Zurich and London. The number of detectors placed was higher and the capacity value used in the analysis was 

substantially lower compared to both cities. Though the road network of both cities and the simulation network are 
quite different but the results are similar. This implies that the proposed method is independent of the size of the road 

network, the number of detectors placed, and the capacity of the links. Therefore, the transferability of the method to 

other road networks increases the applicability of the study. 

 Conclusion: 

MFD estimation requires extensive traffic data of the urban road network. The traffic data should highlight the 

actual network performance on a given demand. Mainly the data collected from the subset links. The dynamic traffic 

conditions in the road network affect the representation by the subset links and the accuracy of MFD estimation. 

Inaccurate estimates limit the parameterization of MFD. The higher demand at peak hours increases the chances of 

congestion, and the inhomogeneous distribution of congestion increases the heterogeneity of the road network. The 

susceptibility of a subset of links to inhomogeneity decreases by including the effect of heterogeneity in the selection 

of the links. In this study, the heterogeneity is determined at each time interval by calculating the dispersion in flow 

data and including the effect by weighing the time intervals using EWM. Weighing the data maintained the 
homogeneity between the subset of links at the time interval level. Maintaining homogeneity at a lower level implies 

that the subset of links has minimum susceptibility to inhomogeneity. 

The proposed method uses the E-TOPSIS method to select a subset of links. The method requires the weights that 

EWM calculates. Once the EWM maintains homogeneity in the subset links, the TOPSIS method analyzes the 

Figure 12 MFD estimated at different capacity values by 20% 
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saturation level of links. The weighted saturation level calculates the Pi and develops the ranking simultaneously. 

Estimated MFD by the subset of links is least affected by the inhomogeneity when the curve lies closer to the upper 

bound, and the selection of highly saturated links leads to capturing the free flow and congested traffic conditions. 

Therefore, this study uses both approaches (EW and equal weights) to select the sample links on different saturation 

levels to determine the effect of heterogeneity on the estimated MFD. The literature ignores the role of the time 

interval, which means that all the time intervals are equal in the analysis. But in reality, the traffic conditions are 

dynamic, implying that each time interval's contribution is different. Comparing the proposed methodology with the 

equal role of time intervals reveals the better estimation capability of our approach. However, considering the equal 

role of time intervals could be detrimental to traffic planning and management. 

The MFD estimated from the sample links of EW lies above the MFD estimated by the links selected by equal 

weights. Since the former MFD is less affected by heterogeneity, the additional capacity is the difference between the 
capacities of the two MFDs, and the percentage change is the level of heterogeneity of the road network. The MFD is 

estimated by selecting the sample links at different saturation levels. Earlier, the additional capacity was determined 

based on the sample size. The sample size gives only the number of links related to heterogeneity level but does not 

give any characteristics of links in the sample. This study addresses the limitation of the previous measure by relating 

the level of heterogeneity to the saturation level. It will identify the links that are primarily involved in the 

heterogeneity of the road network.  

The methodology is applied to the simulated road network of Braunschweig and loop detector data of Zurich and 

London placed in CBD, and the selected sample represents the CBD area. The traffic conditions are different in both 

case studies, but based on the results, we have found that the different road networks give similar results. Therefore, 

the proposed method of the study can be applied to any urban road network. The study uses the loop detector data for 

the MFD estimation. The occupancy data is directly used, although it may have a bias due to queue formation at the 

signalized intersection. For this reason, the study did not report any value of the estimated traffic flow parameters but 
highlighted the links with a higher tendency to represent the road network. Accurate density estimation on these links 

from other reliable sources could be helpful in the accurate parameterization of MFD. 

This study highlights the importance of consideration of dynamic traffic conditions. Including dynamic traffic 

behavior instead of a constant role makes the sample representative of the road network and gives a homogeneous 

sample of links. The planners could employ the data collection resources on selected sample links to collect reliable 

speed and density data for estimating accurate traffic flow parameters using data fusion techniques. Moreover, this is 

the first study to include the effect of heterogeneity in link selection using traffic flow data only. The flow data of loop 

detectors free it from any bias that can incur inaccuracy in the estimation. Measuring the heterogeneity at different 

saturation levels can help to maintain homogeneity in the road network by traffic managers and planners. This study 

calculates the entropy-weighted saturation level based on the constant capacity of the links due to the availability of 

the data. However, the link capacity varies with time. Using the variable capacity in determining the entropy-weighted 
saturation level could give more interesting results and could be the future extension of this study. 
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