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—— Abstract

Under the assumption of certain hypothesis, we show that P # N P. In this way, we provide another
possible tool to prove the P versus NP problem.
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1 Result

A principal NP-complete problem is SAT [2]. An instance of SAT is a Boolean formula ¢
which is composed of:

1. Boolean variables: x1,Zo,...,2Ty;

2. Boolean connectives: Any Boolean function with one or two inputs and one output, such
as A(AND), V(OR), —(NOT), = (implication), < (if and only if);

3. and parentheses.

A truth assignment for a Boolean formula ¢ is a set of values for the variables in ¢. A
satisfying truth assignment is a truth assignment that causes ¢ to be evaluated as true. A
Boolean formula with a satisfying truth assignment is satisfiable. The problem SAT asks
whether a given Boolean formula is satisfiable [2]. We define a C NF' Boolean formula using
the following terms:

A literal in a Boolean formula is an occurrence of a variable or its negation [1]. A Boolean
formula is in conjunctive normal form, or C N F| if it is expressed as an AND of clauses, each
of which is the OR of one or more literals [1]. A Boolean formula is in 3-conjunctive normal
form or 3CNF, if each clause has exactly three distinct literals [1]. For example, the Boolean
formula:

(3?1\/ — 1V — $2) AN (373 V X2 \/56'4) A\ (—/ 1V — x3V — 56'4)

is in B3CNF. The first of its three clauses is (z1V — 21V — x2), which contains the three
literals x7, — =1, and — x2. We state the following Hypothesis on Boolean formulas in
3CNEF:

» Hypothesis 1. There is a general fized constant ¢ for all set of variables X = {x1,22,...,zn}
and a set of truth assignments T'x assigned to X such that there exists a satisfiable Boolean
formula ¢ in 3CNF wusing a set of variables Y with at most n® variables and X C Y.
For each satisfying truth assignment T in ¢, we have there is at least a truth assignment
T' € Tx such that T' C T, which means T' is mapped into the variables in X. For every
truth assignment T' € T, there exists at least a satisfying truth assignment T in ¢ such
that T' C T. Moreover, there is no a satisfying truth assignment T in ¢ such that a truth
assignment T' is mapped into the variables in X, T' CT and T' ¢ Tx.

A graph G = (V, E) has V as the set of vertices and E as the set of edges, each edge being
a pair of vertices [1]. We say (u,v) € E is an edge in a graph G = (V, F) where v and v are
vertices: We say that u and v are adjacent. For a graph G = (V, E), a simple path in G is a
sequence of distinct vertices (vg, v1, V2, ..., V) such that (v;_1,v;) € E fori=1,2,...,k [1]. A
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Hamilton path is a simple path of a graph which contains all the vertices of the graph [1].
Interestingly, a linear order P on the nodes of G describes the existence of a Hamilton path,
that is, a binary relationship isomorphic to < on the nodes of G' (without loss of generality,
these nodes are {0,1,2,...,n — 1}) such that consecutive nodes are connected in G [3]. The
properties of P require several things. We say that a tuple (z,y) is appropriated for the
binary relation P when (z,y) belongs to P. First, all distinct nodes of G are comparable by
P [3]:

Vavy((P(z,y) V Py, 2)) V& = y).

Next, P must be transitive but not reflexive [3]:
VaVyVz((— P(z,x)) A (P(z,y) A P(y, z)) = P(x, 2))).

Finally, any two consecutive nodes in P must be adjacent in G [3]:
VaVy((P(z,y) AVz(— P(z,2)V — P(z,y))) = G(z,y))

where G(z,y) means that (x,y) is an edge on G. The existence of such linear order P with
these properties guarantee the existence of a Hamilton path on G [3].

In computational complexity theory, SUCCINCT HAMILTON PATH is a well-known
problem in NEXP-complete [3]. A succinct representation of a graph with n nodes, where
n = 2% is a power of two, is a Boolean circuit C' with 2 x b input gates [3]. The graph
represented by C, denoted G, is defined as follows: The nodes of G¢ are {0,1,2,...,n—1}
and (4, 7) is an edge of G¢ if and only if C accepts the binary representations of the b-bits
integers i, j as input [3].

» Definition 2. SUCCINCT HAMILTON PATH
INSTANCE: A succinct representation C' of a graph Go with n nodes.
QUESTION: Does G¢ have a Hamilton path?
REMARKS: We know that SUCCINCT HAMILTON PATH € NEXP-complete [3].

Given a succinct representation C of a graph G¢ with n nodes, where n = 2% is a power of
two, if the Hypothesis 1 is true and C € SUCCINCT HAMILTON PATH, then there exists
a Boolean formula @ in 3C N F bounded by less than (3 x b)¢ variables and (3 x b)**¢ clauses.
Q(x,y) means the remaining formula after evaluating @) in the first 2 x b variables that
correspond to the bits of the b-bits integers x, y. In addition, @) could represent a linear order
P such that P(z,y) holds if and only if the Boolean formula Q(z,y) is satisfiable. Similarly,
we say that C(x,y) accepts when the Boolean circuit C has been evaluated in the binary
representations of the b-bits integers z, y and the output is 1 (or simply true). Moreover,
this linear order P that represents @ could comply the properties mentioned above when G¢
has a Hamilton path and thus, we can confirm that C' € SUCCINCT HAMILTON PATH.

We can apply the Hypothesis 1 and obtain the formula @), because the linear order P is a
binary relation between integers represented by a set of variables X = {x1,z2,...,Z2xs} and
a set of truth assignments T'x assigned to X, where T'x contains the truth assignments for
the 2 x b variables that correspond to the bits of the b-bits integers x, y when (z,y) belongs
to P. Since the set X has a cardinality of 2 x b, the set of variables in () has at most (2 x b)¢
elements (this is bounded by the amount of (3 x b)¢). Since every clause of a formula in
3CNF has exactly 3 literals, then we would obtain at most a combination of 2 x (2 x b)¢
literals within sets of three elements (this is bounded by the amount of (3 x b)**¢). Note
that, the set X corresponds to the first 2 x b variables in Q and so, every appropriated
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tuple (z,y) in the binary relation P would be a truth assignment to the variables in X
that will be contained into a satisfying truth assignment of @. Indeed, Q(z,y) will be a
satisfiable formula if and only if the pair (z,y) belongs to P, because of the Hypothesis 1
which guarantee the existence of such Boolean formula () and its constraints.

Basically, we could represent an appropriated tuple (x,y) of the linear order P if and
only if Q(z,y) is satisfiable. In this way, we could represent the first property of P:

VaVy((P(z,y) V P(y,z)) Vz =y)
as the computational problem of solving the Boolean formula with quantified variables,

Vavy(Q(z,y) V Qy, x)) V ¥ (x,y))

where the Boolean formula v is satisfied when x = y. We can see that, the other variables in
@, which are not in the set X, remain as free variables inside of this kind of Boolean formula.
In addition, we could represent the other properties:

VavyVz((— Pz, z)) A ((P(z,y) A Py, 2)) = P(z,2))).
and
Vavy((P(z,y) AVz(— P(z,2)V — P(z,y))) = G(z,y))
as the computational problems of solving the Boolean formulas with quantified variables,

VaVyvz((— Q(z, ) A (R, y) A Qly, 2)) = Q(x, 2))).

and

Vavy((Q(z,y) ANVz(— Q(z, 2)V — Q(2,9))) = F(z,y))

where F is the Boolean function that represents the circuit C' (F(x,y) is satisfied if and only
if C(z,y) accepts). We know the bit-length of the formulas Q(z,y), ¥(x,y) and F(z,y) are
polynomially bounded by the bit-length of the circuit C' according to the Hypothesis 1 since
all problems in P have polynomial circuits such as checking whether two sequences of bits
are equals or whether a Boolean circuit accepts after being evaluated all its input gates [3].

Note also that, solving those Boolean formulas with quantified variables signifies the
necessity of computing instances of problems that can be solved in polynomial time when
P = NP [3]. Under the assumption that P = NP, we would have a succinct certificate
for the instance C' € SUCCINCT HAMILTON PATH that could be the formula @, where
we should be able to check the existence of the Hamilton path using @) by a deterministic
Turing machine in polynomial time. However, this is exactly the definition of NP. If
there is any single problem in NEXP-complete that it is also in NP, then NP = NEXP.
However, NP # NEXP is a previous known result [3]. If we assume that P = NP and the
Hypothesis 1 is true, then this implies that SUCCINCT HAMILTON PATH should be in
N P which is trivial contradiction. Consequently, we obtain that necessarily P # N P under
the assumption that the Hypothesis 1 is true.
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