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Abstract. Agile Business often requires to identify similar objects (firms,
providers, end users, products) between an older business domain and a
newer one. Data-driven tools for aggregating similar resources are nowa-
days often used in Business Intelligence applications, and a large majority
of them involve Machine Learning techniques based on similarity met-
rics. However effective, the mathematics such tools are based on does
not lend itself to human-readable explanations of their results, leaving
a manager using them in a “take it as is”-or-not dilemma. To increase
trust in such tools, we propose and implement a general method to ex-
plain the similarity of a given group of RDF resources. Our tool is based
on the theory of Least Common Subsumers (LCS), and can be applied
to every domain requiring the comparison of RDF resources, including
business organizations. Given a set of RDF resources found to be sim-
ilar by Data-driven tools, we first compute the LCS of the resources,
which is a generic RDF resource describing the features shared by the
group recursively—i.e., at any depth in feature paths. Subsequently, we
translate the LCS in English common language. Being agnostic to the ag-
gregation criteria, our implementation can be pipelined with every other
aggregation tool. To prove this, we cascade an implementation of our
method to (i) the comparison and clustering of drugs (using k-Means)
in Drugbank, and (ii) the comparison of contracting processes in Public
Procurement (using TheyBuyForYou).For both applications, we present
a fairly readable description of the commonalities of the cluster given as
input.

Keywords: Explainable Artificial Intelligence (XAI), Resource Descrip-
tion Framework (RDF), Least Common Subsumer (LCS)

1 Introduction

The ability of a business organization to rapidly adapt to changing conditions—
referred to as Agility—often requires, among other needs, a rapid identification
of pairs—or clusters—of similar objects, being they partners, products, require-
ments, etc. This problem has been widely investigated in the literature and
applied to heterogeneous application domains, ranging from business strategy
[20], to manufacturing [10] to drug analysis [9], among others.

Aggregating similar entities in a large dataset may reveal patterns, point out
special groups, and in general it helps in understanding data. Data-driven tools
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for aggregating resources by some similarity measure are nowadays available by
the dozens [7, 14], and a large majority of them involve Machine Learning tech-
niques based on similarity metrics. However, the mathematics such tools are
based on is rather complex, therefore approaches that make the tool transpar-
ent in order to explain a user how the cluster was constructed do not lead to
human-readable explanations. This problem leaves to the manager using the tool
the burden to make explicit which characteristics are similar in the aggregated
resources—a task which is not always self-evident.

We provide a method for describing the commonalities among a given set of
RDF resources, that can be pipelined to any tool for clusterization whose output
is one or more cluster of RDF resources judged similar by the tool. Since our
method is logic-based, it can abstract with blank nodes features that, although
different, lead to a common value through a recursive chain (see Section 3 for
more details).

As a byproduct, our method can be used also in a fine-tuning phase of a
clusterizing tool, since it allows one to immediately identify which clusters are
significant—among the ones obtained—for a human reader and possibly which
features in the data lead to significant clusterization.

The rest of this paper is organized as follows: in the next section, we re-
port related work on Natural Language Generation for RDF. Section 3 recalls
main notions about the definition of LCS in RDF. In Section 4, we show our
logic-based method for the explanation of the similarity of RDF resources. We
demonstrate the feasibility of our approach by showing its results in two different
contexts in Section 5. Conclusions close the paper.

2 Related Work

The need for making explicit the interpretation of clustering results emerged
a long time ago. In 1980, in fact, conceptual clustering [12] was introduced as
the problem of returning clusters of resources, together with a concept explain-
ing the proposed aggregation. In the meanwhile, several conceptual clustering
approaches and algorithms have been proposed, the most influential of which
have been reviewed in a recent work by Pérez-Suárez et al. [13]. None of the
approaches summarized by Pérez-Suárez et al. deals with RDF resources. An
approach to conceptual clustering of RDF resources based on LCS was proposed
by Colucci et al. [6].

Our proposal stems from a similar need, but, differently from works in the
field of conceptual clustering, we do not build clusters of RDF resources; we focus
only on their explanation. To this aim, we propose a logic-based methodology:
the natural language text explaining the cluster is generated from the set of
RDF triples computed as the LCS of all cluster items, which abstracts the
commonalities of all resources.

The problem of generating Natural Language text from Semantic Web (SW)
data has been widely addressed in the literature and continues to represent a
relevant research topic. A systematic review of main approaches up to 2014 was
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conducted by Bouayad-Agha et al. [1] who classify at least 11 Natural Lan-
guage Generation (NLG) approaches working on RDF graphs, w.r.t. to several
features, including the verbalization request (part of the input graph to ver-
balize) and the communicative goal (information to return). Possible commu-
nicative goals are: returning all facts in the verbalization request, returning a
user-selected set of facts, returning the most typical facts, returning the most
relevant facts. Apparently, no research work is able to generate text from de-
rived triples not explicitly stated in RDF and to manage anonymous resources.
Bouayad-Agha et al. [1] also point out the need for summarizing information
among challenging communicative goals.

The current research trend, to the best of our knowledge, is mostly focused
on improving the readability of textual descriptions generated from RDF, w.r.t.
criteria set as baselines.

In particular, the WebNLG challenge [3] significantly boosted the proposal of
research solutions in NLG, by providing a benchmark corpus of English sentences
verbalizing RDF triples. The challenge has been repeated in 2020 [21], including
a larger corpus in both English and Russian and adding the subtask of parsing
natural language text in RDF. The current dataset refers to 15 categories of
resources. The object of the challenge is, again, improving the performance in
the generation of baseline sentences rather than proposing forms of verbalization
lending to richer explanation.

Traditionally, NLG approaches have been based on rules and templates (see
[2], among others), that make such solutions highly domain-dependent and de-
manding manual intervention.

Recently, the advancements in deep learning have opened the way to neural
network-based NLGmodels. Among them, the Sequence to Sequence (SEQ2SEQ)
framework [17] has been employed by Vougiouklis et al. [18] to propose a frame-
work, Neural Wikipedian, to generate summaries of RDF triples. The approach
is able to summarize triples involving the same entity either as a subject or as
an object, but, again, only explicitly stated facts are verbalized and anonymous
resources are not managed.

Also the Neural Entity Summarization of Li et al. [11] collects only triples
that are already present in the RDF descriptions, without handling blank nodes.

Differently from the above approaches, we propose a template-based method
that can use blank nodes to abstract several triples with common predicate/object,
and, more importantly, can chain triples with blank nodes that eventually reach
the same known object (see the example about contracting processes in Sect.5.2).
The informative potential of our method is in the logic-based computation of the
RDF graph to verbalize: a rooted graph summarizing in triples the commonali-
ties shared by groups of RDF resources. We show in the rest of the paper how
this method for NLG may support the explanation of RDF similarity.
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3 LCS in RDF

To make this paper self-contained, we briefly recall here the definition of Least
Common Subsumer (LCS) from works by Colucci et al. [5, 4], along with some
preliminary notions. First of all, to compare specific resources r, s in RDF, we
need the definition of rooted RDF-graph (in brief r-graph): a pair ⟨r, Tr⟩ which
isolates resource r inside the RDF-graph Tr. Secondly, G[s → t] denotes the
graph obtained from G by substituting each occurrence of s with t. Then, the
definition of Simple Entailment Tr |= Ts [8] between two RDF-graphs Tr, Ts, is
extended to r-graphs as follows [4, Def.6]:

Definition 1. [Rooted Entailment] Let ⟨r, Tr⟩, ⟨s, Ts⟩ be two r-graphs. We say
that ⟨r, Tr⟩ entails ⟨s, Ts⟩—denoted by ⟨r, Tr⟩ |= ⟨s, Ts⟩—in exactly these cases:

1. if s is a blank node, then
(a) if r is not a blank node, Tr |= Ts[s 7→ r] must hold;
(b) if also r is a blank node, then Tr[r 7→ u] |= Ts[s 7→ u] must hold for a

new URI u occurring neither in Tr nor in Ts;
2. otherwise (i.e., s is not a blank node), if s = r, then Tr |= Ts must hold.

In all other cases (i.e., s is not a blank node and s ̸= r), ⟨r, Tr⟩ never entails
⟨s, Ts⟩.

Intuitively, Rooted Entailment extends Simple Entailment with the requirement
that the root of a graph is mapped to the root of the other. When both resources
r, s are URI, this is possible only when s = r (Case 2), while when either r or
s is a blank node (Cases 1b and 1a), the mapping is enforced by a suitable
substitution.

Rooted Entailment is at the basis of the definition a Common Subsumer (CS)
of two r-graphs ⟨a, Ta⟩, ⟨b, Tb⟩:

Definition 2 (Common Subsumer, [4, Def.7]). Let ⟨a, Ta⟩, ⟨b, Tb⟩ be two
r-graphs. An r-graph ⟨x, Tx⟩ is a Common Subsumer (CS) of ⟨a, Ta⟩, ⟨b, Tb⟩ iff
both ⟨a, Ta⟩ |= ⟨x, Tx⟩ and ⟨b, Tb⟩ |= ⟨x, Tx⟩.

Finally, a Least Common Subsumer (LCS) of two RDF resources can be
defined as follows:

Definition 3 (Least Common Subsumer [4, Def.8]). Let ⟨a, Ta⟩, ⟨b, Tb⟩ be
two r-graphs. An r-graph ⟨x, Tx⟩ is a Least Common Subsumer (LCS) of ⟨a, Ta⟩,
⟨b, Tb⟩ iff both conditions below hold:

1. ⟨x, Tx⟩ is a CS of ⟨a, Ta⟩, ⟨b, Tb⟩;
2. for every other CS ⟨y, Ty⟩ of ⟨a, Ta⟩, ⟨b, Tb⟩:

if ⟨y, Ty⟩|=R⟨x, Tx⟩ then ⟨x, Tx⟩ |=R ⟨y, Ty⟩, (i.e., ⟨x, Tx⟩ and ⟨y, Ty⟩ are
equivalent under Simple Entailment).

Colucci et al. [4] proved that an LCS of two r-graphs is unique—up to blank
renaming—so we can talk about “the” LCS. Moreover, the LCS enjoys the prop-
erties of Idempotency, Commutativity, and Associativity.
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The Associativity property, written in full as a formula, means that:
LCS(⟨a, Ta⟩, LCS(⟨b, Tb⟩, ⟨c, Tc⟩)) = LCS(LCS(⟨a, Ta⟩, ⟨b, Tb⟩), ⟨c, Tc⟩).
Associativity relies on a fundamental property of LCSs: the LCS of two r-graphs
is itself an r-graph, so it can be used as the argument of another LCS operation
with a third r-graph, and so forth. Associativity ensures that the order in which
resources are taken—when computing the LCS of all of them—does not matter.

We also recall some definitions modifying the basic notions of Graph Theory
to RDF-graphs [4], used in the rest of the paper. First, an RDF-path from r
to s is a sequence of triples t1, . . . , tn in which the subject of t1 is r, either the
predicate or the object of tn is s, and for i = 1, ..., n − 1, either the predicate
or the object of ti is the subject of ti+1. A resource r is RDF-connected to a
resource s if there exists an RDF-path from r to s. The length of such an RDF-
path is n, and the RDF-distance between two resources is the length of the
shortest RDF-path between them. Also, the RDF-distance between a resource
r and a triple t is the shortest RDF-distance between r and the subject of t—
in particular, triples which r is the subject of, have zero-RDF-distance from r
itself, as expected.

We propose to use the LCS of a cluster of RDF resources—where the cluster
can be obtained in any way—to explain their commonalities. To this end, we
attached to the construction of an LCS its verbalization in English common
language, as described in the next section.

4 From LCS r-graphs to NLG Explanation

Our approach generates a verbal explanation of the similarity of groups of RDF
resources, starting from the triples in their LCS.

Real applications managing RDF resources need some preliminary choices to
ensure feasibility. In fact,RDF-based applications cannot take all triples describ-
ing a resource r into account, given the huge and always increasing dimensions
of available datasets. Thus, it is crucial to select which triples qualify r and build
its r-graph. Colucci et al. [4] proposed explicit criteria for this choice:

1. data sources: which datasets (one or more) to explore for the comparison;
2. RDF-distance: exclude triples which are “too far” from r
3. stop-patterns: exclude triples which fit a given pattern ≪ s p o ≫;
4. connectedness: there must be an RDF-path from r to the subject of each

chosen triple.

Notably, the first three choice criteria can be parameterized for the particular
application at hand.

Still, the computed LCS may contain too many triples which, although logi-
cally implied by the r-graphs of all analyzed resources, provide little information.
Colucci et al. name these triples uninformative triples, and propose to eliminate
them from the comparison result. The result is a—no more Least—Common
Subsumer, containing only the most informative triples deducible from all r-
graphs.
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The set of stop-patterns and uninformative triples used in this paper include
both general patterns/triples (to be discarded in every application domain), and
some domain-dependent patterns/triples, defined through the analysis of our
results.

We propose a template-based NLG tool for explaining the content of a CS we
consider significant for the similarity analysis at hand. In fact, the tool allows
developers to flexibly set the context of analysis through the specification of
the list of uninformative triples, the datasets to explore, the RDF-distance and
the stop-patterns to be considered (coherently with the the criteria for triples
selection recalled above). Such settings tune the practical significance of the CS
and, consequently, increase the effectiveness of communication.

We recall that r-graphs modeling CSs include blank nodes by construction
(see Definition 1). To the best of our knowledge, no NLG tool is able to verbalize
triples involving blank nodes in any position, so this is an original feature of our
tool.

The tool works in three steps:

1. it takes as input a set of resources to be compared and application-specific
parameters (datasets, RDF-distance, stop-patterns, uninformative triples);

2. it computes the CS parameterized as in Step 1
3. it generates a verbal explanation from the CS computed at Step 2

Step 3 implements a template-based approach, which allows developers to
flexibly provide, as application-specific parameters, a dictionary for resources
involved in triples, with particular reference to two kinds of undetermined re-
sources: IRIs of involved blank nodes and IRIs of resources not further described
in the datasets (even though not modeled as blank nodes).

5 Approach Demonstration

We show how we implemented our explanation approach with two use cases
involving aggregation by similarity: the comparison and clustering of drugs in
Drugbank [19] and the comparison of contracting processes in public procure-
ment in the dataset released with TheyBuyForYou project [15]. In both cases,
we show how to customize the approach w.r.t. the specific knowledge domain,
to demonstrate its generality and flexibility.

5.1 Explaining Drugs Similarity

The need for evaluating the similarity of drugs emerges in several application
scenarios, including drugs and/or side effects classification, search for substitute
drugs and clustering, among others. In fact, several tools for drug comparison are
available, in terms both of free services (see Drugs.com1 and WebMD2, among

1 urlhttps://www.drugs.com/compare/
2 https://www.webmd.com/drugs/compare
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others) and of commercial solutions (e.g., Lexicomp3). All such tools offer a
parallel tabular view of explicitly declared drugs features, which ease the visual
comparison of a small set of drugs selected by the user. None of them is able
to extract implicit (logically deducible) commonalities and to highlight shared
features.

The most advanced solutions addressing the analysis of drug similarity em-
ploy Machine Learning techniques based on metrics and return an aggregation
of resources by similarity, without any universal and easy-to-read explanation.
When dealing with resources that can be intrinsically represented by only numer-
ical features, this lack of explanation is generally motivated by the complexity
of the underling mathematical solving process. Values of the specific similarity
measure represent the reason why resources are aggregated, as the only source
of explanation.

Instead, when resources are described in formal languages endowed with se-
mantics, like RDF, more informative and logic-based forms of explanation may
be returned. Our method describes in English common language the common-
alities among a set of drugs defined in RDF, by first computing their LCS.

We first show such a human-readable explanation for the similarity of a pair of
resources manually selected from Drugbank4: Amphetamine (drugbank:DB00182)
and Phentermine (drugbank:DB00191), with the following prefix:

@prefix drugbank: <https://bio2rdf.org/drugbank> .

Recall from Sect.4 that the approach for computing an LCS in RDF asks for
(1) the specification of the RDF-distance to be covered, (2) the list of patterns
to ignore (stop-patterns) in the exploration, and (3) the list of triples to be re-
moved in the final result because of their irrelevancy (uninformative triples). Our
example refers to two values of RDF-distance, 0 and 1, to show the impact on fi-
nal explanation of a deeper exploration of the information source. Stop-patterns
and uninformative triples have been set according to heuristics evaluated in the
performance of our examples.

Figure 1 shows a screenshot of our tool The upper part includes the set of
triples describing a significant CS of the analyzed pair of r-graphs when the
RDF-distance of their triples is set to 0 (i.e., only triples whose subject is the
resource itself are included in the r-graph). Lower part of Figure 1 shows the
explanation generated by the tool, starting from the triples in the upper part.

Figure 2 shows a CS graph at RDF-distance 1 of the analyzed pair.
In Figure 3, we show only the verbalization of triples added when passing

from r-graphs with triples at RDF-distance 0 to r-graphs including also triples
at RDF-distance 1. The complete explanation of the CS depicted in Figure 2
could be obtained by combining Figures 1 (lower part) and 3.

As the reader may observe, the number of triples collected in the CS at
RDF-distance 1 is significantly high, but some of them may be considered un-

3 https://www.wolterskluwer.com/en/solutions/lexicomp/resources/
facts-comparisons-user-academy/drug-comparisons

4 https://old.datahub.io/dataset/fu-berlin-drugbank
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Fig. 1. A screenshot of the tool generating an explanation (lower window) for the RDF
triples in a CS at RDF-distance 0 of a resources set (upper window).
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Fig. 2. A CS between Amphetamine (drugbank:DB00182) and Phentermine
(drugbank:DB00191), computed from r-graphs including only triples at RDF-distance
1 from each resource). Note that this representation of the commonalities of the two
resources, although pictorial, is still ineffective as an explanation.
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The resources in analysis present the following properties in common:

1) They share the property "target" each one of them referencing some resource
which has organism type "Human"
and has cellular location "Membrane, multi-pass membrane protein"

2) They share the property "mechanism of effecting the body" each one of them referencing some resource
which has semantic type "Mechanism of action"

3) They share the property "enzyme" each one of them referencing some resource
which has organism type "Human"
and has transmembrane regions of effect: "None"
and has cellular location "Endoplasmic reticulum"

6) They share the property "toxicity" each one of them referencing some resource
which has semantic type "toxicity"

Fig. 3. Verbal explanation generated from the CS in Figure 2; we show only the verbal
explanation of paths in the CS leading to triples at RDF-distance 1.

informative, according to our analysis. In particular, in addition to the triples
originally put in the set of uninformative triples (and then not returned in the
graph in Figure 2), we excluded from the explanation also triples including URI
not further described nor labeled in Drugbank.

We notice that our approach is able to generate a verbal explanation also
from triples involving blank nodes, which are crucial in the computation of the
LCS to abstract the commonalities of different resources at every RDF-distance
form the root. To the best of our knowledge, such an ability is not available in
any developed NLG tool. The informative potential of blank nodes treatment in
our tool may be evaluated by looking at the content of Figure 3: all the sentences
not in the first row of each figure item contain a relative sentence—starting with
the relative pronoun “which”—that refers to “some resource” (an undetermined
object represented by a blank node).

From now on, we show our explanation results, referring to a group of RDF
resources aggregated by similarity thorough standard methods, with a twofold
aim: (i) considering items supposed to be similar in an agnostic fashion, without
manually selecting them; (ii) showing the behaviour of the explanation approach
over groups of resources rather than pairs.

To this aim, we show the explanation of the commonalities shared by clusters
of drugs returned by a standard clustering algorithm applied on Drugbank. In
particular, we applied the k-means algorithm in the Scikit-learn5 Python library
setting the number of clusters and the maximum number of iterations param-
eters equal to 125 and 400 , respectively (such settings result from a standard
validation process).

Figure 4 shows the explanation corresponding to the LCS (atRDF-distance 0)
of all the 13 items returned in one of the clusters returned by the k-means im-
plementation described above. The cluster included the following drugs:

Cathinone [drugbank:DB01560] Aprindine [drugbank:DB01429]

5 https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
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Etidronic acid [drugbank:DB01077] Metocurine [drugbank:DB01336]
Papaverine [drugbank:DB01113] Methsuximide [drugbank:DB05246]
Ceftizoxime [drugbank:DB01332] Pentosan Polysulfate [drugbank:DB00686]
Tipranavir [drugbank:DB00932] Atomoxetine [drugbank:DB00289]
Clonazepam [drugbank:DB01068] Paclitaxel [drugbank:DB01229]
Pentobarbital [drugbank:DB00312]

The resources in analysis present the following properties in common:

1) Their type is "small molecule"
2) They share the property "kingdom",

all of them referencing the same resource not further described in the dataset

Fig. 4. Verbal explanation generated from the LCS at RDF-distance 0 of a cluster of
RDF resources returned by k-means. Note that the common content has very little
relevance for explanation.

Notably, the computed LCS is almost completely uninformative because it
includes really generic features shared by items in the cluster. Apparently, the
aggregation returned by k-means, that is purely numeric, does not reflect the
logical content of analyzed resources. This behaviour suggests a possible byprod-
uct of our tool: the produced explanation may be used as a fast-checker for the
significance of results in the fine tuning of tools for clustering resources modeled
in RDF.

5.2 Explaining Similarity of contracting processes in public
procurement

Our second use case demonstrates the applicability of the proposed tool to the
contracting process in procurement. This process includes the procedures fol-
lowed by a business entity when purchasing services or products: it starts when
company managers identify a business need that must be fulfilled and ends when
the contract is awarded and signed.

The proposal of easily accessible data-driven solutions supporting (especially
public) contracting has been recently addressed. In particular, the Global Public
Procurement Database (GPPD)6 includes a country comparison functionality,
that provides to users a side-by-side view of information on countries and re-
gions, helping them to compare country profiles, procurement practices, laws
and regulations, and performance indicators.

Also, a specific Contracting Data Comparison (CDC) platform7 was devel-
oped by the Open Contracting Partnership (OCP), an independent non-profit
organization born with the aim of publishing and using open, accessible and

6 https://www.globalpublicprocurementdata.org/gppd/
7 https://www.open-contracting.org/2014/04/30/comparing-contract-data-
understanding-supply/
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timely information on public contracting. To the best of our knowledge, none
of such solutions is able to automatically compute implicit commonalities, to
highlight shared features and explain the similarity of compared resources.

We here show our explanation approach w.r.t. the knowledge graph (in RDF)
released with TheyBuyForYou project [15]. The project provides a platform with
advanced knowledge-based tools for public procurement, including anomaly de-
tection, cross-lingual document search, and storytelling tool. No tool for re-
sources comparison and its explanation is provided with it.

TheyBuyForYou knowledge graph includes an ontology for procurement data,
based on the Open Contracting Data Standard (OCDS) [16] . The OCDS data
model is built around the concept of a contracting process, whose main phases
are planning, tender, award, contract, and implementation.

In our example, we compare three RDF resources describing different con-
tracting processes:

1. a public procurement issued by the Gateshead Council8 for the supply of
two lots of two 3.5t flatbed trucks with Tail-lift:
http://data.tbfy.eu/contractingProcess/ocds-0c46vo-0001-76e76119-992d-40ef-8444-7b020809ff81

2. a tender for trucks supply issued by the Ringkøbing-Skjern municipality9:
http://data.tbfy.eu/contractingProcess/ocds-0c46vo-0133-026258-2019

3. a public tender for the supply of trucks with multi-lift equipment and three
containers issued by the district council of Azuaga10

http://data.tbfy.eu/contractingProcess/ocds-0c46vo-0203-2019-SUM-1

Notably, in this example we set an RDF-distance equal to 2 for exploration,
showing how the significance of similarity results increases with the depth of
exploration of the knowledge graph. Coherently with the approach detailed in
Section 4, we first compute a significant CS at RDF-distance 2 of the three
resources listed above, w.r.t. a set of stop-patterns and uninformative triples
defined through the analysis of our examples. We show this CS in Figure 5.
Then, we show in Figure 6 the natural language text generated from the CS in
Figure 5. The reader may observe that the callouts in Figure 5 correspond to
part of the content in description item 2) in Figure 6. In particular, the callouts
show the full path (RDF-distance 2) from the CS root to the classification code
”34134000”.

6 Conclusion

We presented a logic-based methodology and a tool for the explanation of the
similarities of a group of RDF resources, which can be pipelined to any Data-
driven similarity aggregation tool, including Business Intelligence ones. Our
methodology is agnostic w.r.t. the aggregation criterion and produces a verbal

8 https://www.gateshead.gov.uk
9 https://www.rksk.dk

10 http://www.azuaga.es
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Fig. 5. A CS at RDF-distance 2 between three different contracting processes: i) a
public tender for the supply of two flatbed trucks with tail-lift issued by the Gateshead
Council; ii) a tender for the supply of trucks issued by the Ringkøbing-Skjern mu-
nicipality; iii) a tender for the supply of trucks with multi-lift equipment and three
containers issued by the district council of Azuaga

The resources in analysis present the following properties in common:

1) They all have a release referencing some resource
which has publisher schema "Companies House"
and has publisher name "Open Opps"
and has publisher web page "https://openopps.com"

2) They all present a tender referencing some resource
which has tender status "complete"
and require a specific item(s) referencing some resource
which has classification schema "Common Procurement Vocabulary (CPV)"
and has classification code "34134000 (Flatbed and Tipper trucks)"

Fig. 6. Verbal explanation generated from the CS in Figure 5.
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explanation of commonalities among groups of resources which the aggregation
tool found to be similar.

Our tool works in two steps: first, the LCS of the analyzed set of resources is
computed, as an abstraction of commonalities in the form of RDF triples; then,
the LCS is translated into a verbal explanation, communicating only the effective
knowledge. We presented the explanations given by our tool in two different use
cases: Drug comparison and Public Procurement. Our methodology is domain-
independent and can be adapted to several contexts (we omitted a third use
case about Twitter accounts for lack of space). Also the significance of returned
explanation may be tuned through the specification of patterns uninformative
for the analyzed context.

Thus, our approach is potentially able to explain the similarity of RDF
resources in every scenario, with a flexible level of communication effectiveness.
The informative potential of our explanation is double-tied to the logic-based
nature of the underlying theory, showing that the synergy between numerical
and logical methods may improve explainability of Data-driven tools.
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