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Abstract—Advanced Persistent Threats (APTs), due to their
stealthiness and complexity, have become a significant security
challenge for modern enterprises, often causing severe economic
losses. To address these threats, researchers have proposed
using provenance graphs to model system entities and their
dependencies, aiming to capture the complex scenarios of APT
attacks. However, existing Provenance-based Intrusion Detection
Systems (PIDS) still suffer from the following challenges: (1)
Historical interaction information loss due to the truncation of
long-term interaction scenarios; (2) The difficulty in capturing
long-distance dependencies leads to the loss of crucial contextual
information; (3) Existing methods struggle to balance detection
efficiency and granularity.

We introduce PanThreat, an online detection system that
performs fine-grained, real-time analysis of host system logs to
identify malicious activities. PanThreat combines attributes en-
coding through Word2Vec and position encoding using Laplacian
feature matrices, while retaining long-term interaction histories
and effectively modeling long-range dependencies within prove-
nance graphs. This integrated approach significantly enhances
detection accuracy. Additionally, PanThreat leverages the par-
allel processing capabilities of Graph Transformers to improve
detection efficiency. Evaluations on the DARPA E3 dataset and
StreamSpot database demonstrate PanThreat’s effectiveness in
detecting complex APT attacks, outperforming four state-of-the-
art methods while maintaining an average processing speed of
58,140 events per second.

Index Terms—Threat Detection, Transformer, Host Provenance

I. INTRODUCTION

Advanced Persistent Threats (APTs) pose significant risks to
organizations through their covert, enduring, and multi-stage
strategies [1]. The key to detecting such attacks lies in the
profound understanding and analysis of the direct and indirect
interactions among internal entities. Security defense systems
must be equipped to deeply analyze these interaction patterns
in order to accurately identify and respond to potential threats.

To comprehensively understand the relationships between
different entities within a system or network, recent re-
search [2]–[12] have primarily focused on the analysis of
provenance graphs constructed from raw system logs. By
analyzing the intricate interactions embedded within these
provenance graphs, it becomes possible to distinguish between
benign activities and potential threats. Although prior studies
have shown some effectiveness in detecting APT attacks,
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we have identified three major challenges in their practical
applications, which limit their usability.

• The Challenge of Historical Information Loss due
to Temporal Segmentation of Long-Term Interaction
Scenarios: Existing methods often segment large-scale
system logs into time windows to manage memory con-
straints, creating local provenance graphs for each inter-
val. However, this segmentation only captures interactions
within the current window, neglecting historical context
from previous intervals. This results in critical informa-
tion loss, limiting the accuracy of detecting persistent
threats.

• The Challenge of Context Loss due to Difficulty
in Capturing Long-Distance Interaction Scenarios:
Numerous approaches employ Graph Neural Networks
(GNNs) to model relationships within provenance graphs
by aggregating information from neighboring nodes.
However, GNNs often struggle to capture dependencies
between distant nodes, resulting in the loss of critical
contextual information needed to detect complex attack
patterns.

• The Challenge of Detection Delays Due to the Inef-
ficiency of Fine-Grained Detection Methods: Existing
approaches, notably Unicorn [3], commonly identify ma-
licious subgraphs rather than isolating specific malicious
nodes, necessitating manual investigation of extensive
subgraphs. Although fine-grained detection techniques
are emerging [10], limitations in graph processing effi-
ciency and resource availability often restrict these meth-
ods to offline analysis, leading to delayed responses to
Advanced Persistent Threats.

In this paper, we present PanThreat, an online node-level
detection system that efficiently and accurately identifies ma-
licious nodes by learning interaction patterns from benign
data. PanThreat captures the predictable interaction behaviors
between benign nodes and detects potential anomalies when
deviations from these patterns occur. To address the limitations
of existing methods, which are restricted to analyzing inter-
actions within specific time windows, We proposed a novel
full-cycle provenance graph construction strategy that retains
the full history of interactions without incurring additional
memory overhead. To address the challenge of missing long-
range interaction information, PanThreat enables each node



to communicate with all other nodes in the graph, rather
than being limited to immediate neighbors. This approach al-
lows PanThreat to effectively model long-distance interactions,
thereby enhancing its ability to capture and understand com-
plex long-range dependencies within the graph. To improve
the efficiency of detection, we introduce Laplacian eigen-
vectors as positional encodings for nodes within PanThreat.
This approach, which applies Laplacian transformations to
the adjacency matrix of the provenance graph, allows us to
efficiently capture the graph’s topological information without
relying on multi-layer message passing, thus avoiding the
inherent computational bottlenecks of traditional GNNs.

In summary, this paper makes the following contributions:
• We designed and implemented an online detection sys-

tem, PanThreat, which provides node-level alerts, signif-
icantly reducing the manual analysis burden on security
analysts and enhancing the system’s usability.

• We adopt a full-cycle graph construction strategy to pre-
serve historical interactions while capturing long-range
dependencies through information exchange between any
nodes in the graph. By leveraging both historical and
long-range contextual information, PanThreat enhances
detection performance.

• We utilize Laplacian eigenvectors as positional encodings
to represent the graph’s topological structure, instead
of relying on message-passing methods, thereby signif-
icantly improving the detection efficiency of PanThreat.

• We evaluated PanThreat on the DARPA E3 and
Streamspot datasets, and the results demonstrate that it
outperforms the state-of-the-art detection systems in ac-
curacy at both coarse and fine-grained while maintaining
high throughput.

II. RELATED WORK

A. Provenance-based Intrusion Detection

Provenance Analysis: Provenance Analysis transforms col-
lected system audit logs into a provenance graph, with system
entities (e.g., processes, files, sockets) represented as nodes
and system events (e.g., write, open) represented as edges.

Heuristic-based provenance graph detection methods
[4], [6], [9], [13], [14]: These methods rely on the knowledge
of security and domain experts to define a set of predefined
rules, which are then used to match potential threats in
provenance graphs. However, due to the limited availability
of predefined rules and the unpredictability of rule coverage,
these methods face challenges in detecting unknown threats.

Learning-based provenance graph detection meth-
ods [2], [3], [5], [7], [8], [10]–[12]: By learning the interaction
patterns from benign data to detect anomalies, these ap-
proaches operate independently of expert knowledge, making
them the preferred choice for most detection systems.

B. Methods of Graph Learning

The topology of provenance graphs, derived from host sys-
tem logs, reveals complex inter-entity relationships. Leverag-
ing both structural and semantic data can yield deeper insights

into system interactions. however, existing message-passing
graph learning methods are largely limited to capturing local
patterns by propagating representations between connected
nodes. For instance, Shadewatcher [10] and ProGrapher [12]
employ GNNs to aggregate multi-hop neighbor information
for node embedding, while Flash [7] and Threatrace [11] use
GraphSAGE to reduce computational complexity via neighbor
sampling. Kairos [2] leverages Temporal Graph Networks,
employing message passing similar to static GNNs.

Although these methods effectively capture local neigh-
borhood information, they often overlook long-range depen-
dencies, limiting their ability to model interactions between
distant nodes within the provenance graph. This constraint
hampers a comprehensive understanding of complex, non-local
relationships. Moreover, due to the iterative nature of message-
passing-based graph methods, computational overhead rises
sharply as the graph scales, with each layer’s message-passing
growing exponentially, significantly increasing overall com-
plexity.

III. METHODS

The PanThreat method comprises four key components,
as shown in the Fig 1. In the first component, PanThreat
constructs a provenance graph from log data to capture the
full history of system events and their causal relationships.
It uses Word2Vec [15] to learn node attribute features and
computes Laplacian eigenvectors from the graph’s adjacency
matrix to represent its topology as node positional features.
In the second component, PanThreat extracts node feature
and positional encodings from the provenance graph as input.
Using a transformer architecture [16], it learns latent relation-
ships between nodes, producing node embeddings with rich
global context. In the third component, PanThreat combines
the embeddings of connected nodes to form edge embeddings.
A multi-layer perceptron (MLP) generates predicted edge
encodings, which are compared to actual encodings to detect
anomalous interactions. In the fourth component, PanThreat
correlates and integrates these anomalies to reconstruct a
comprehensive attack scenario.

A. Provenance Graph Construction and Representation

1) Graph Construction: To effectively correlate the in-
teractions between system entities, Panthreat constructs a
provenance graph using the raw audit logs. In the provenance
graph, nodes represent system entities, while edges depict
interaction behaviors between them. We further transform the
attribute information and topology in the provenance graph
into vectorized representations to support the subsequent graph
comprehension and graph analysis phases.

We extract the relationships between the nodes to construct
the edge encoding and employ the Edge Encoding to express
interactions between nodes. The Laplacian eigenvectors of
the graph’s adjacency matrix is computed and utilized as
Positional Encoding to represent the spatial positions of nodes
within the graph. Additionally, we used a Word2Vec model
to encode node-related attribute features into node attribute
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Fig. 1: Overview Of PanThreat

encodings, enabling a more comprehensive capture of each
node’s semantic features.

2) Edge Encoding: To efficiently represent more informa-
tion while minimizing resource consumption, we introduce a
Multi-Edges Combined technique based on a time decay fac-
tor. This approach reduces graph complexity while preserving
essential information, including system entity types, attributes,
interaction types, and temporal information.

Prior to encoding, we enumerate the number of edge types
Ne (e.g., write, read, connect) and map each edge type to
an integer index using a mapping function Me(ei,j), where
Me : EdgeType → {0, 1, . . . , Ne−1}. A single edge ei,j then
represents all interactions between nodes i and j, significantly
compressing the graph. As shown in Fig 2, in stage II(b), one
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Fig. 2: Example of PanThreat’s Edge Encoding
edge between nodes a and c replaces five edges from stage
II(a), achieving a five-fold compression. In complex scenarios,
millions of redundant edges may be generated, consuming
substantial memory resources. By combining multiple edges,
we reduce the graph size and alleviate resource constraints.

We consider new behaviors to be more meaningful to
the current scenario, while the significance of older behav-

iors gradually diminishes over time. Therefore, we define a
forgetting rate FR to gradually forget outdated behaviors
during the update process. Consequently, we construct a sparse
edge feature matrix Efeat ∈ RN×N , where each non-zero
element Efeat(i, j) is an Ne-dimensional vector representing
the combined edge features between nodes i and j. Initially, all
elements are set to zero, and edges are processed sequentially
by timestamp. The update rules for edge ei,j are as follows:{

Efeat(i, j) = Efeat(i, j)× FR,

Efeat(i, j)[Me(ei,j)] = 1.
(1)

As depicted in Fig 2, three additional edges are
added between nodes a and c at Time II compared to
Time I. Consequently, the edge encoding updates from
[0, 0, 0, 1, 0.9, 0, 0, 0, 0, 0] to [0, 0, 0, 0.9, 0.6561, 0, 1, 0, 0, 0].

3) Node Attributes Encoding: To effectively represent inter-
action scenarios in graphs and fully utilize system logs along
with the rich attributes of various system entities, we use
encoding techniques to map attributes (e.g., process names,
file paths) into vector representations. However, traditional
methods such as one-hot encoding and bag-of-words often
produce sparse vectors and fail to capture correlations between
different attributes.

PanThreat employs a Word2Vec model with contextual
information to map these attributes into low-dimensional vec-
tors while preserving deeper correlations among them. As
a result, files with similar functionalities (e.g., /bin/vim,
/bin/nano, /bin/cat, /usr/share/vim) are mapped
to closer positions in the vector space, while files with distinct
functionalities (e.g., /bin/vim and /bin/python3) have
dissimilar vector representations.

Word2Vec maps semantically similar words to nearby
positions in the vector space, capturing their relation-
ships. This ensures that when node attributes are en-
coded as word vectors, their deeper correlations are pre-
served. We associate each node’s attributes with those of
its one-hop neighbors and their interaction types, construct-
ing lists in the format <src_attribute, edge_type,
dst_attribute> to serve as Sentences in the Word2Vec
corpus. This design increases the likelihood that similar or



related attributes will appear in the same context. For instance,
both /bin/vim and /bin/nano are commonly involved
in writing operations on text files and thus appear more
frequently in sentences related to file write actions. As a result,
they are mapped to closer positions in the vector space.

4) Node Position Encoding: The Transformer model pro-
vides a global receptive field, allowing each piece of informa-
tion to attend to any other part of the input’s context. However,
utilizing global attention requires explicitly specifying the
positional relationships of the data. In natural language pro-
cessing, positional encoding helps the Transformer understand
the sequential order of words. In graphs, however, nodes are
not arranged sequentially, necessitating a positional encoding
method that captures both the nodes’ relative positions and the
graph’s topological structure.

Prior research [17] shows that Laplacian eigenvectors offer
strong position-awareness, as nodes closer in the graph tend
to share similar eigenvector values. Therefore, we compute
Laplacian eigenvectors from the graph structure to encode
node positions. We precompute the Laplacian eigenvectors for
all graphs in the dataset. The eigenvectors are derived from
the graph Laplacian matrix factorization:

L = I −D− 1
2AD− 1

2 , (2)

Lvi = λivi, i = 1, 2, . . . , k + 1. (3)

where A is the adjacency matrix and D is the degree matrix.
The k smallest non-trivial eigenvectors, denoted as vi for each
node i, are used as positional encodings for the nodes, with
λi representing the eigenvalue associated with vi.

B. Graph Comprehension

PanThreat utilizes the classical Graph Transformer [17],
[18] architecture to interpret graph data. To effectively capture
latent relationships among all nodes, the Graph Comprehen-
sion integrates node attribute encodings with node positional
encodings as the node input value h(0). These combined
encodings are fed into the Transformer as inputs, enabling
a more comprehensive representation of both node attributes
and their structural relationships within the graph. Through
the Graph Transformer architecture, node embeddings are
obtained, which have learned the interaction scenarios within
the complete provenance graph.

As shown in Section B of Fig 1, the Transformer architec-
ture consists of multiple stacked layers, each comprising two
core components: a self-attention mechanism and a position-
wise feed-forward network (FFN). In addition, we apply the
layer normalization (LN) before the multi-head self-attention
(MHA) and the feed-forward blocks (FFN). Especially, for
FFN sub-layer, we set the dimensionality of input, output, and
the inner-layer to the same dimension with d. We formally
characterize the Panthreat layer as below:

h′(l+1) = MHA(LN(h(l))) + h(l), (4)

h(l+1) = FFN(LN(h′(l+1))) + h′(l+1). (5)

Finally, the output h(l+1)from the last layer is used as the
node embedding. Unlike traditional GNNs, which primarily
focus on the local neighborhood of each node, these embed-
dings capture information from all nodes and learn the full
topological structure of the graph.

C. Graph Analysis

Panthreat employs a Multi-Layer Perceptron (MLP) to an-
alyze graphs by predicting the edge type encoding between
nodes vsrc and vdst. The Analysis learns from the hidden
representations h output by the Comprehension, modeling the
interaction patterns between nodes under the current scenario
to predict the edge encoding. The dimensionality of the MLP’s
output layer corresponds to the number of possible edge
types, ensuring it aligns with the dimensionality of the actual
edge encoding. The output vector P (esrc,dst) represents the
predicted edge encoding between the source node vsrc and
the destination node vdst:

P (esrc,dst) = MLP(hsrc, hdst) (6)

During the training phase, PanThreat optimizes the model
by minimizing the prediction loss (PL) between the predicted
edge encoding P (esrc,dst) and the actual edge encoding L(et).
The loss function is defined as:

PL = CrossEntropy(P (esrc,dst), L(esrc,dst)) (7)

During the detection phase, PanThreat evaluates whether
node interactions align with normal behavior based on the
prediction loss PL. Edges with a low PL indicate that the
interaction between nodes conforms to the learned normal
behavior of the system. In contrast, edges with a high PL
reveal a significant deviation between the actual edge encoding
and the predicted normal encoding, identifying these edges as
anomalous.

D. Alert And Trace

In large provenance graphs, alerts are often dispersed, re-
quiring extensive forward and backward tracing to investigate
causal relationships, which burdens analysts. Furthermore,
different stages of APT attacks are scattered across the graph,
making their connections hard to discern. PanThreat addresses
this by correlating the anomalous edges detected in Section
C to generate a concise alert graph. These simplified graphs
capture only the nodes and edges directly related to the
attack, reducing investigation complexity and helping analysts
efficiently trace and understand key attack elements.

IV. EXPERIMENTS

A. Experiment Settings

1) Implementation: We implemented a PanThreat prototype
in Python, utilizing the torch-based version of DGL for the
graph learning framework and the Gensim library for the
Word2Vec model. We conducted three distinct experiments
to comprehensively evaluate PanThreat’s performance. All
experiments were carried out on a computer running Ubuntu,
equipped with an Intel(R) Xeon(R) Silver 4210 CPU, NVIDIA
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Fig. 3: Efficiency test results on the DARPA dataset

GTX 2080Ti GPU, and 64 GB of RAM. The transformer
model was configured with six attention heads and a hidden
layer dimension of 48. We set the node positional encoding
dimension to 10, the attribute feature encoding dimension to
30, and the forgetting rate (FR) to 0.9.

2) Datasets: We evaluate PanThreat using publicly avail-
able datasets from DARPA E3 [19] and StreamSpot [20].
The DARPA E3 dataset, sourced from DARPA’s third red-
vs-blue team exercise, provides audit logs with both benign
and attack behaviors. We use labels from Threatrace [11]
for evaluation, enabling node-level detection testing on this
dataset. The StreamSpot dataset contains information flow
graphs from one attack scenario and five benign scenarios.
Since StreamSpot is designed for anomaly detection at the
graph level and lacks fine-grained node-level labels for be-
nign or attack classifications, PanThreat’s evaluation on this
dataset is limited to graph-level anomaly detection. PanThreat
determines whether a graph is anomalous by calculating the
proportion of anomalous nodes. If this proportion exceeds a
predefined threshold, the graph is classified as anomalous.

3) Baselines: To comprehensively evaluate PanThreat, we
compare it with two types of provenance graph-based threat
detectors: graph-level and node-level detectors. Since the
StreamSpot [8] and Unicorn [3] detection methods are limited
to graph-level detection, we use these as baselines for graph-
level comparisons. For node-level comparisons, we include
ThreatTrace [11] and Flash [7] as baselines.

B. Detection Performance

TABLE I: Results of Graph Level Detection Experiment in
Steamspot Dataset

Datasets System Precision Recall Accuracy F-score

Streamspot
Streamspot 0.73 0.91 0.93 0.81
Unicorn 0.95 0.97 0.99 0.96
PanThreat 0.98 0.98 0.98 0.98

We evaluated PanThreat’s graph-level performance on the
Streamspot dataset, as shown in Table I. PanThreat demon-
strates superior precision, recall, and F-score compared to the
baseline methods, Streamspot and Unicorn. Unlike Streamspot

and Unicorn, which are limited to coarse-grained graph-
level detection, PanThreat enables finer-grained analysis of
identified malicious subgraphs, allowing for more precise
scrutiny rather than issuing broad alerts on densely connected
subgraphs within the provenance graph.

TABLE II: Results of Node Level Detection Experiment in
DARPA E3 Dataset

Datasets System Precision Recall Accuracy F-score

DARPA E3
Cadets

Threatrace 0.84 0.99 0.99 0.91
Flash 0.94 0.99 0.99 0.96
PanThreat 0.99 0.99 0.99 0.99

DARPA E3
Theia

Threatrace 0.79 0.99 0.98 0.88
Flash 0.92 0.99 0.99 0.95
PanThreat 0.93 0.99 0.99 0.96

DARPA E3
Trace

Threatrace 0.82 0.99 0.99 0.90
Flash 0.95 0.99 0.99 0.97
PanThreat 0.97 0.99 0.99 0.98

We evaluated PanThreat’s node-level performance on the
DARPA dataset, with Table II presenting a comparison against
the baseline methods, ThreatTrace and Flash. PanThreat con-
sistently demonstrates superior precision and F-score across
the three datasets in DARPA E3, outperforming both Threat-
Trace and Flash. This performance advantage is due to Pan-
Threat’s ability to capture extensive long-range dependencies
and rich historical context during graph comprehension.

C. Detection Efficiency

We evaluated the efficiency of PanThreat using three
DARPA datasets. Since PanThreat performs detection on
streaming data, we configured it to conduct detection ev-
ery 100,000 log entries, incorporating historical interaction
information to analyze each current batch of 100,000 logs.
As shown in Fig 3, PanThreat’s processing and detection
capabilities are evaluated across these datasets. The variations
in log processing times are attributed to differences in audit log
formats, which depend on the originating operating systems.
PanThreat completes the detection of 100,000 log events in no
more than 6.6 seconds, achieving an average processing rate
of 58,140 log events per second, with the majority of the time
dedicated to log handling.
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Fig. 4: Efficiency test results on the DARPA dataset

D. Memory Utilization

We evaluated PanThreat’s memory utilization across three
DARPA datasets during the detection process, considering
both system and GPU memory during the detection pro-
cess. As shown in Fig 4, PanThreat maintains a manageable
resource overhead, with system memory usage not exceed-
ing 5GB and GPU memory usage remaining below 1.5GB
throughout the operation.

V. CONCLUSION

We introduce PanThreat, a precise and fine-grained online
detection method for identifying Advanced Persistent Threats
(APTs). PanThreat utilizes node attribute and positional fea-
ture encoders to capture essential graph characteristics, com-
plemented by a Multi-Edges Combined encoder that preserves
comprehensive interaction data throughout entire cycles. Ad-
ditionally, it employs transformer technology to learn long-
range dependencies between nodes, enhancing its detection
capabilities. Evaluation results demonstrate that PanThreat
offers superior detection performance with fast processing
speeds and manageable resource utilization.
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