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Abstract—For autonomous robotic systems, simultaneous
localization and mapping algorithm (SLAM) is one of the core
technologies. Traditional simultaneous localization and mapping
algorithms usually assume that the system works in a static
environment. However, when there are dynamic objects in the
environment, For example, people walking around indoors, etc.,
they will bring false observation data to the system, and the
visual SLAM system will become unstable, affecting the system
localization and limiting the application of visual SLAM in
reality. However, if the dynamic objects occupy most of the
image area, it will still affect the pose tracking. To solve this
problem, this paper proposes a vision slam system adapted to
dynamic environment, based on ORB-SLAM3, adding a
lightweight target detection tracking network of YOLO5 at the
front end to detect dynamic targets in the tracking environment,
and rejecting the feature points of dynamic targets to reduce the
influence of dynamic objects on the system. To avoid the lack of
feature information due to excessive dynamic feature point
rejection, the improved SLAM system in this paper uses
Superpoint to replace ORB for feature extraction and descriptor
calculation to further improve the robustness of the levy system.
The experimental results of the dataset show that the improved
ORB-SLAM3 system can effectively improve the robustness and
accuracy of the system under dynamic environment.

Keywords—Visiual SLAM, Object detection, Superpoint,
Dynamic environment

I. INTRODUCTION
With the development of technology, autonomous mobile

robots and autonomous driving technologies have made
significant progress, and SLAM systems, as one of the
essential core technologies in the field of autonomous mobile
robots, have become the focus of research in this field in recent
years. With the support of SLAM technology, mobile robots
can perform position estimation and environment map
construction without any a priori environmental information,
which can help robots know their own position in real time.

The research results mainly rely on monocular cameras,
binocular cameras, and RGB-D cameras. Compared with
LiDAR, the camera is able to take in more information about
the environment, and visual SLAM has made many
achievements in its development until now, and its
performance in some specific scenes can meet the expected
requirements. However, most traditional vision SLAM
systems usually assume that the environment is static, and in
some highly dynamic environments, traditional vision SLAM
systems will affect the matching accuracy due to the presence
of dynamic points, and if the proportion of dynamic points is
too high in the actual environment, it will lead to the
degradation of trajectory accuracy, and even the system
initialization and tracking and positioning building work
cannot be realized.

In this paper, based on ORB-SLAM3 we design a SLAM
system that eliminates dynamic interference and has higher
robustness of feature extraction, uses deep learning to detect
and track dynamic objects, eliminates feature points of
dynamic objects to reduce the influence of dynamic objects on
localization in the real environment, and uses Superpoint to
replace ORB for feature extraction and descriptor calculation
on this basis. Further improving the robustness of the system,
the system improves the localization accuracy of the visual
SLAM system in dynamic environments on the basis of
ensuring real-time performance. The main contributions of this
paper are summarized as follows:

1. embedding the lightweight target detection network into
the ORB-SLAM3 system, which can be used to detect the
basic semantic information of tracking dynamic objects.

2. Using Superpoint to replace ORB for feature extraction
and descriptor computation in ORB-SLAM3 system to ensure
sufficient environmental feature information.
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3. A SLAM system that eliminates dynamic feature points
and uses a deep network model to extract feature points to
compute descriptors is successfully constructed based on
ORBSLAM3, which can effectively improve the accuracy and
robustness of the system in dynamic environments.

The rest of the paper is structured as follows: chapter 2
reviews related work by other researchers; chapter 3 details the
framework structure of the improved SLAM and describes the
proposed approach; chapter 4 reports the experimental results
evaluated on the TUM dataset; finally, future work is proposed
in summary in section 5.

II. RELATEDWORKS

A. Semantic slam
One of the larger difficulties faced by visual SLAM in

practical applications is the dynamic interference problem in
the lower complex environment. In recent years, many
researchers have been studying the robustness of visual SLAM
systems in dynamic environments, and the key to solving this
problem is how to accurately detect and reject dynamic feature
points in real time. Researchers have proposed methods for
this problem such as multi-view geometry-based methods,
deep learning-based methods for target detection, semantic
segmentation, optical flow/scene flow-based methods, etc.
Bescos et al. [1] proposed DynaSLAM, which uses CNN for
pixel-wise segmentation of dynamic objects in key frames
without extracting that part of features in the case of
monocular and binocular cameras, and for RGBD cameras
case, dynamic objects are detected using a multi-view
geometric model and a deep learning based algorithm. Yu et al.
[2] proposed DS-SLAM, which combines a semantic
segmentation network with a moving consistency checking
method to filter out dynamic objects in the scene and improve
the robustness and accuracy of the system in dynamic scenes.
Kim et al. [3] proposed a robust dense visual odometry
calculation method based on background model, which uses
the depth scene to calculate the background model while
estimating the camera's own motion and using a representative
background model with a nonparametric model to filter out
dynamic feature points and improve the system stability.
Zhang et al. [4] proposed a semantic segmentation combined
with optical flow network dynamic SLAM system to detect the
motion of dynamic objects by optical flow and eliminate
dynamic feature points to improve system accuracy. Zhang et
al. [5] proposed a semantic SLAM system to identify dynamic
objects in the environment by YOLO and construct a semantic
map to filter out dynamic feature points to improve system
stability. Li et al. [6] proposed a real-time depth-edge-based
RGB-D SLAM system, which is based on frame-to-keyframe
alignment, using only depth-edge points and reducing the
influence of dynamic objects on the system by representing the
likelihood of a point becoming part of the static environment
with the static weight of the keyframe edge points. Zhao et al.
[7] used an optical flow science approach to check the
potential in dynamic regions and background regions under the
assumption of spatio-temporal consistency of the two

images,and determine the correspondence of points from two
consecutive images to eliminate the influence of dynamic
points on the system. Liu et al. [8] proposed a new semantic-
based real-time dynamic VSLAM algorithm, which effectively
uses the semantic segmentation results for dynamic target
detection and outlier removal while maintaining the real-time
nature of the algorithm. Sun et al. [9] proposed a new motion
segmentation algorithm for RGB-D, where motion
segmentation uses vector quantized depth images and applies
maximum a posteriori estimation to vector quantized depth
images to accurately determine the foreground. Scona et al.
[10] proposed a robust dense RGB-D SLAM method for
detecting moving targets in dynamic environments while
reconstructing the background structure, simultaneously
estimating camera motion as well as probabilistic
static/dynamic segmentation of the current RGB-D image to
reduce the overall drift. Zhang et al. [11] proposed a new
dense RGB-D SLAM method that uses optical flow residuals
to highlight the dynamic semantics in RGB-D point clouds for
more accurate dynamic/static segmentation.Dai et al.[12]
proposed a point cloud correlation-based segmentation method
to separate static and dynamic points, which uses the
correlation between map points to separate points belonging to
static scenes and points belonging to different motion objects
into different classes to improve the robustness and accuracy
of the system for motion estimation in dynamic environments.

B. Feature Extraction
Cong et al. proposed the use of Superpoint for feature

extraction in UAV SLAM with accurate extraction and high
computational efficiency. Tang et al.[15] proposed a deep
learning based network GCNv2 for generating keypoints and
descriptors. Kang et al.[17] proposed the use of shallow
convolutional neural networks to extract feature points and
enhance the SLAM system.

III. SYSTEM INTRODUCTION
In this chapter, we will introduce the improved ORB-

SLAM3 in detail.This chapter is divided into three main
aspects. First, the improved system framework is introduced;
second, the added target detection method is introduced; and
finally, Superpoint feature extraction is introduced.

A. System Framework
The conventional ORB-SLAM3 has excellent performance

in most practical situations under static environment
assumptions, and the accuracy is further improved compared
with ORB-SLAM2 [14] by introducing IMU combined with
vision; realizing a multiple sub-map system, reconstructing the
sub-map when following a loss, and merging with the previous
sub-map when looping back to improve the system robustness
[13]. However, the problem of poor positioning accuracy or
even failure still exists in dynamic environments. For this
reason, we choose to add a target detection tracking thread to
ORB-SLAM3 and use Superpoint to replace ORB to extract
feature points. An overview of the improved ORB-SLAM3
system is shown in Fig. 1:



Fig. 1 System framework overview, based on the original ORB-SLAM3 front-end, add YOLO5 to provide semantic information to detect
and track dynamic targets, add Superpoint convolutional neural network instead of ORB to extract feature points, eliminate dynamic
feature points and keep only static feature points.

Fig. 2 YOLO5s convolutional neural network model overview diagram, mainly contains Input, Backbone, Neck, Prediction four parts



B. Dynamic detection
The task of the target detection model is to detect objects in

the image and determine their location coordinates, as seen in
Fig. 1, the red two-dimensional bounding box indicates the
location of the dynamic object, the mainstream detection
network is divided into single-order network and dual-order
network. Single-order networks extract features directly in the
network to predict the classification and location of objects,
characterized by fast speed and low accuracy compared to
dual-order networks; dual-order networks need to be classified
and regressed into Region Proposal (RP) for each RP to return
results, which is slower but more accurate. The common
single-order networks are YOLO series, SSD, RetinaNet,
YOLO as the pioneer of single-order network, with the
iterative update in recent years, its real-time and target
detection effect is gradually improved, YOLO5 uses Mosaic
data enhancement in the model training stage, the pictures are
randomly scaled, randomly cropped, randomly arranged in a
way to stitch the rich detection object background and small
targets, which greatly improves the network training speed and
reduces the model memory. To ensure the real-time
performance of visual Slam and improve the detection
efficiency, this paper selects the faster lightweight single-order
network model YOLO5s, and the target detection is outlined in
Fig. 2.

yolo5s contains four parts: Input, Backbone, Neck and
Prediction. The images are input in standard size, and pre-
processed in Input module with data enhancement, adaptive
anchor frame calculation, adaptive image scaling, etc. The
original images are uniformly scaled to standard size and sent
to Backbone module. In the Backbone module, we first
perform isolated sampling and stitching to split the image into
multiple low-resolution images and then perform feature
extraction for later target detection. box's loss function:
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Where IOU denotes the intersection ratio of two boxes to be
calculated, tan _ 2Dis ce denotes the Euclidean distance

between the center point of the predicted box and the center
point of the real box, and tan _Dis ce C is the diagonal
distance of the smallest box that can enclose two boxes.
Compared with the previous generations of Bounding box loss
function, _CIOU Loss integrates the geometric factors
such as overlap area, centroid distance, aspect ratio, etc. In the
case that the prediction box and the real box do not overlap,
IOU is 0, the gradient can still be calculated. Finally, NMS
non-maximum suppression is used to determine whether the
same object is detected by the detection frame and eliminate
the redundant detection frames.

C. Superpoint feature Extraction
ORB is used for feature extraction of ORB-SLAM3 vision
front-end based on its small computational effort and
possesses rotation and scale invariance, however, in scenes
with low texture and obvious illumination changes, the
extraction of tracking feature points is generally effective, and
the system may even fail to initialize due to the insufficient
number of feature points. Therefore, in this paper, while
eliminating dynamic feature points to optimize the SLAM
system, we use superpoint to replace ORB for feature
extraction to further improve the robustness of the visual slam
system. The method adopts a self-supervised full
convolutional network framework, in which feature detection
and descriptor computation share a single encoder to enhance
the association between them and reduce computation, and
adopts a sub-pixel convolution upsampling method to reduce
model computation in feature extraction. In terms of descriptor
computation, a semi-dense descriptor is first obtained by using
the UNC-like method to reduce the memory consumption of
algorithm training and the running time of the algorithm, and
then the descriptors are obtained by interpolating all the pixels
with double cubic polynomials and then by normalizing the
descriptors with L2. Fig. 3 shows the comparison results
between ORB extracted feature points and superpoint
extracted feature points.

The two images in the experiment (a)(b) are the same
image in the TUM dataset. (a) is the feature points extracted
by the traditional ORB-SLAM3 based on Oriented FAST and
Rotated BRIEF (ORB), and it can be seen that there are almost
no feature points extracted from the strong light area in the
upper left corner of the image and the weak light area in the
middle part of the upper edge of the image. In our improved
SLAM system, it is obvious that the feature points extracted by
Superpoint have more number of feature points and are evenly
dispersed, which has stronger robustness.



TABLE I. RESULTS OF ABSOLUTE TRAJECTORY ERROR (ATE)

Dataset
sequences

ORB-SLAM3 Dyna-SLAM Ours Improvements against ORB-
SLAM3

RMSE STD RMSE STD RMSE STD RMSE STD

fr3/w/xyz 0.3948 0.1892 0.0164 0.0086 0.0127 0.0069 96.78% 96.35%

fr3/w/rpy 0.6429 0.2740 0.0354 0.0190 0.033 0.0188 94.49% 93.14%

fr3/w/half 0.3914 0.0954 0.0296 0.0157 0.0268 0.0143 93.15% 85.01%

fr3/s/static 0.2039 0.0807 0.0108 0.0056 0.0083 0.0043 95.93% 94.67%

TABLE II. RESULTS OF ROTATIONAL RELATIVE POSE ERROR (RPE)

Dataset
sequences

ORB-SLAM3 Dyna-SLAM Ours Improvements against ORB-
SLAM3

RMSE STD RMSE STD RMSE STD RMSE STD

fr3/w/xyz 8.3007 5.7019 0.6284 0.3848 0.6137 0.1786 92.61% 96.87%

fr3/w/rpy 8.9483 7.6020 0.9849 0.5701 0.5144 0.2323 94.25% 96.94%

fr3/w/half 6.3572 5.1356 0.7842 0.4012 0.7099 0.2324 88.83% 95.47%

fr3/s/static 0.3121 0.2075 0.3416 0.1642 0.1647 0.0818 47.23% 60.58%

IV. EXPERIMENTAL RESULTS

The performance of the improved SLAM for dynamic
scenes will be described in detail in this chapter. We chose
four different scenes from the TUM dataset [16] to test the
proposed method in this paper. The experimental computing
platform configuration is AMD-5800X, GTX2060 and 16GB
RAM, and the SLAM is running on ubuntu 20.04. The TUM
RGB-D dataset is composed using the Microsoft Kinect sensor
collection, which is often used in the SLAM field for system
performance evaluation. The four datasets chosen are dynamic
datasets in TUM, where fr3_walking_xyz describes two people
walking, sitting, and talking to each other in a scene, which is
considered a highly dynamic scene, fr3_walking_rpy describes
the same scene as fr3_walking_xyz, but the two cameras move
differently, fr3_ walking_half dataset, the camera does
hemispheric trajectory movement to collect data,

fr3_siting_static describes two people doing some simple
sitting and talking actions.

A. Experimental evaluation criteria
Absolute trajectory error is the direct difference between

estimated and real poses, which can reflect the algorithm
accuracy and global consistency of trajectory very intuitively.
The program first aligns the real and estimated values
according to the timestamp of poses, then calculates the
difference between each pair of poses and finally outputs it in
the form of a graph, which is very suitable for evaluating This
criterion is ideal for evaluating the performance of visual
SLAM systems. The relative pose error is used to calculate the
difference between the pose changes within the same two
timestamps, which is suitable for estimating the drift of the
system. The magnitude of the absolute trajectory error and the
relative pose error can be determined by the root mean square
error and the standard deviation.

(a)ORB-SLAM3 (b)Ours

Fig. 3 Comparison of traditional ORB-SLAM3 feature extraction and improved SLAM feature extraction



B. Evaluation accuracy
We use ATE and RPE as evaluation criteria, and both use

root mean square error and standard deviation to compare data
with ORB-SLAM3 and Dyna-SLAM, respectively, and the
experimental data are shown in Table 1 and Table 2, where
Table 1 shows the data results related to ATE and Table 2
shows the data results related to RPE. From Table 1-Table 2,
we can see that the improved SLAM can lead to the
improvement of most dynamic sequence performance of TUM.
Compared with the conventional ORB-SLAM3, the RMSE

and STD errors can be reduced by up to 96.78% and 96.35% in
terms of absolute trajectory errors, and the trajectory accuracy
is also improved to some extent compared with Dyna-slam.We
provide ATE plots of two challenging high dynamic scenarios
fr3_walking_xyz and fr3_walking_half datasets in ORB-
SLAM3 and our improved system. From the real trajectories
and predicted trajectories provided by the datasets, the
improved algorithm in this paper can effectively handle the
impact of dynamic targets on the trajectory estimation and
localization of the SLAM system .

Fig. 4 The performance of the conventional ORB-SLAM3 system in the TUM dataset fr3_walking_xyz sequence, (a) plot of ATE, (b) plot
of curve fit of the estimated trajectory of the camera with the real trajectory in x-direction, y-direction, and z-direction translation, and (c)
plot of curve fit of the camera doing roll, pitch, and yaw motion.

Fig. 5 The performance of our improved ORB-SLAM3 system in the TUM dataset fr3_walking_xyz sequence is shown in (a) plot of ATE,
(b) plot of curve fit of the estimated trajectory of the camera with the real trajectory in x-direction, y-direction, and z-direction translation,
and (c) plot of curve fit of the camera doing roll, pitch, and yaw motion.



As shown in Fig.4 Fig.5, (a) the red part in the figure
shows the error between the ground-truth and the estimated
trajectory of the system, in the fr3_walking_xyz sequence, the
difference between the estimated trajectory of the traditional
ORB-SLAM3 and the ground-truth provided by the dataset is
large, and the error of the estimated trajectory of the improved
SLAM system in this paper is significantly (b) In (b), from the
real curves of camera motion in x, y and z directions and the
curve fitting plots obtained from the system estimation, the
improved SLAM system estimation in this paper is more
accurate. (c) In the figure, from the real curves of the camera
doing roll, pitch, ywa motion and the curve fitting plot
obtained from the system estimation, the improved SLAM
system in this paper is more accurate in estimation. The
results show that the improved system is more robust in the
dynamic environment.

As shown in Fig.6 Fig.7. In the fr3_walking_half sequence,
it can be seen from the plot in (a) that the difference between
the estimated trajectory of the conventional ORB-SLAM3 and
the real trajectory provided by the dataset is large, while the
error of the estimated trajectory of the improved SLAM
system in this paper is significantly smaller, and in (b), from
the real motion curves of the camera in the x, y, and z
directions and the curve fit plots obtained from the system
estimation The improved SLAM system in this paper has a
higher accuracy in estimation. (c) In the figure, from the real
curves of the camera doing roll, pitch, and yaw motion and
the curve fitting plots obtained from the system estimation,
the improved SLAM system in this paper is estimated more
accurately. The results show that the improved system is more
robust in the dynamic environment.

Fig. 6 The performance of the conventional ORB-SLAM3 system in the TUM dataset fr3_walking_half sequence, (a) figure shows the
ATE plot, (b) figure shows the curve fit of the estimated trajectory of the camera with the real trajectory in x-direction, y-direction and z-
direction translation, (c) figure shows the curve fit of the camera doing roll, pitch and yaw motion.

Fig. 7 The performance of our improved ORB-SLAM3 system in the TUM dataset fr3_walking_half sequence is shown in (a) plot of ATE,
(b) plot of curve fit of the estimated trajectory of the camera with the real trajectory in x-direction, y-direction, and z-direction translation,
and (c) plot of curve fit of the camera doing roll, pitch, and yaw motion.



V. CONCLUSIONS
In this paper, a real-time semantic SLAM system is

proposed that can reduce the impact of dynamic targets on
camera pose estimation. We add the YOLO dynamic target
detection tracking thread to the original ORB-SLAM3 system
to remove the influence of dynamic feature points on the
accuracy of the SLAM system, and use Superpoint to replace
ORB to extract feature points, which experimentally proves
that more and evenly dispersed feature points can be obtained,
which further improves the robustness of the SLAM system to
some extent. The improved system is tested on several
dynamic sequences of the TUM RGB-D dataset. The results
show that the improved SLAM outperforms the conventional
ORB-SLAM3 in terms of accuracy and robustness.
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