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Abstract—Passage retrieval is a part of fact-checking and
question answering systems that is critical yet often neglected.
Most systems usually rely only on traditional sparse retrieval.
This can have a significant impact on the recall, especially
when the relevant passages have few overlapping words with
the query sentence. Recent approaches have attempted to learn
dense representations of queries and passages to better capture
the latent semantic content of text. While dense retrieval models
have been proven effective in question answering, there is no
relevant work for improving evidence retrieval in fact-checking.
In this work, we show that simple training of a dense retriever
is sufficient to outperform traditional sparse representations in
both question answering and fact-checking. We constructed a new
artificial dataset called Factual-NLI, comprised of factual claims
and relevant evidence, and demonstrate that using it to train
a dense retriever can improve evidence retrieval significantly.
Experimental results on the MSMARCO dataset indicate that
pre-training with Factual-NLI, and other NLI datasets, is also
effective for large-scale passage retrieval in question answering.
Our model is incorporated in a real world semantic search engine
that returns snippets containing evidence related to questions and
claims about the COVID-19 pandemic.

Index Terms—passage retrieval, fact-checking, question an-
swering, natural language inference

I. INTRODUCTION

Misinformation can appear in various forms for different
reasons, and in many cases its detection is challenging. When
it is not intentional, it may be due to mistakes done by
journalists or the inability to verify information. However,
it can also be intentional, like hoaxes, rumours, click-bait,
satire or fraud. Many online sources are strongly motivated
by reader engagement and profits, and intentionally spread
false or unverifiable information to capture the internet users’
interest. Aided by the high speed of information diffusion, the
spread of fake news has become a serious issue. One measure
to counter this spread is to perform fact-checking. However,
manual fact-checking at scale is intractable and there is a need
for a system to assist in this process.

Many approaches have been proposed for automated fact-
checking. They can be categorized based on their input rep-
resentations, their sources of evidence and the methodology
they use [1]. A common input representation that has been
used in many systems is subject-predicate-object triples [2]–
[6]. The problem with this representation of claims is that
the types of predicates can be limited. Some claims are more

complex, and their semantics cannot be fully expressed using
such representation.

Sources of evidence for fact-checking include source iden-
tity, metadata [7] and their estimated veracity [8]. Some
systems depend on trustworthy sources or fact-checking orga-
nizations [9], [10] to match claims with already verified claims
in a repository of unstructured text articles. Structured data
sources like databases and knowledge graphs have also been
used [11]–[13]. The main issue with approaches depending on
structured data is that the data sources may not be comprehen-
sive and they require maintenance. In terms of methodology,
models for stance classification have been trained to check
the stance of existing headlines on a given claim [14]–[17].
Natural Language Inference models have also been utilized for
the entailment classification of evidence-claim pairs [18].

Fact-checking and question answering systems require the
retrieval of relevant passages from a text corpus in their
first stage. Until recently, most approaches have relied on
the traditional TF-IDF or BM25 retrieval [19], [20]. TF-IDF
and BM25 represent text as sparse high-dimensional vectors
that can be searched efficiently using an inverted index data
structure. These sparse representations can be effective in
reducing the search space based on keywords. For example,
when we want to answer a question like ”Who directed the
movie Inception?”, we obviously want to focus on passages
containing the words movie and Inception. However, sparse
representations can be restrictive because they require word
overlaps between the query and the passage, and they fail to
capture latent semantic relationships. For instance, if we want
to validate the claim ”Young person died from COVID-19”,
relevant passages like ”baby died from COVID-19” or ”boy
died from COVID-19” will be missed.

In this paper, we present a semantic matching model for evi-
dence retrieval called QR-BERT, that has the potential to scale
to a corpus with millions of passages. We constructed a new
artificial factual natural language inference dataset (Factual-
NLI), and demonstrated that QR-BERT trained on this dataset
outperforms sparse evidence retrieval. When using additional
samples from traditional NLI datasets for pre-training, we
observed further improvement. The same pre-training scheme
improves the model on passage retrieval for question answer-
ing (MSMARCO dataset) and leads to improvement over other
state-of-the-art approaches when used in a hybrid ranking



architecture. Finally, we describe the architecture of a real-
world semantic search engine called Quin, that utilizes QR-
BERT to return snippets related questions or claims about the
COVID-19 pandemic.

II. RELATED WORK

Neural models based on transformers [21] and pre-trained
on language modeling tasks, like BERT [22], GPT [23],
and T5 [24], have lead to significant improvements in many
natural language processing tasks, including passage retrieval.
Noguerira et al. [25] used BERT as a re-ranking model in a
multi-stage document ranking architecture that relies on sparse
retrieval in the first stage. While achieving state-of-the-art
results, the performance of their architecture is bounded by
the recall of a sparse retriever.

Seo et al. [26] tackled the open-domain question answering
problem by using a BERT-based model to generate query-
agnostic dense representations of phrases. Their approach
however, fails to outperform a basic two-step open domain
question answering system than relies on sparse retrieval and
a question answering model [20], [27].

Lee et al. [28] presented an open-domain question answer-
ing system with a BERT-based dense retriever and a BERT-
based reader, that was trained jointly with question-answer
pairs without any traditional information retrieval system.
They also introduced the Inverse Close Task, that attempted
to solve the cold start problem of a dense retriever.

Chang et al. [29] carried out extensive experiments with
dense retrievers, introduced pre-training tasks and showed
that a dual-encoder dot product retriever based on BERT,
with proper pre-training and fine-tuning on a passage retrieval
dataset, can outperform sparse retrieval.

Guu et al. [30] proposed a retrieval-augmented language
model pre-training technique, that trains a knowledge retriever
with masked language modeling without any supervision.
Their work showed additional improvement in open-domain
question answering over the previous approaches. In concur-
rent work related to this paper, Luan et al. [31] and Karpukhin
et al. [32], also investigated the effectiveness of dense dot
product retrieval language models.

While there is a lot of work towards improving passage
retrieval for question answering, there is not much relevant
work on improving evidence retrieval for fact-checking. One
relevant work is by Nie et al. [18] who proposed a semantic
matching model to identify the most relevant documents
to factual claims. They observed an improvement in their
fact-checking system on the FEVER dataset. However, their
semantic matching model cannot scale, and its performance is
also bounded by a sparse retriever.

Pre-training on natural language inference data, has been
proven quite effective for learning dense latent representations
of text. The idea was first introduced by Conneau et al. [33],
who proposed training a text encoder on a textual entailment
classification task. The same idea was used by Reimers et al.
[34], who used BERT as the encoder.

III. THE FACTUAL-NLI DATASET

In order to train and evaluate models for evidence retrieval
in fact-checking, we constructed a new synthetic dataset called
Factual-NLI. Factual-NLI is comprised of claim-evidence pairs
from the FEVER dataset [35] as well as additional synthetic
examples generated from the Natural Questions dataset [36]
and the MSMARCO dataset [37] which are in the form of
question-passage-answer triples.

The additional examples are derived by converting the
question-answer pairs to factual statements. This conversion is
performed by fine-tuning T5-base, a pre-trained sequence-to-
sequence language model [24], using the well-formed answers
(182,887 examples in total), with their respective questions
and short answers from the MSMARCO question answering
dataset. The training is done on a TPU pod for 2 epochs with
batch size 512. The input sequence is a pair of question and
short answer, separated by ”?”. The output sequence is the
factual statement. For example the pair: ‘Which is the tallest
building in the world ? Burj Khalifa’ is converted to the
statement: ‘Burj Khalifa is the tallest building in the world.’

Besides the synthetic entailed factual statements from
question-answer pairs, we also generate additional contradic-
tory statements using the following rules:

R1. Entity replacement. We replace named entities (person,
organization, location) and numerical entities with a
random entity of the same type. For example:
• Alexander Graham Bell invented the first telephone

in 1976. → Thomas Edison invented the first tele-
phone in 1976. (named entity replacement)

• Alexander Graham Bell invented the first telephone
in 1976. → Alexander Graham Bell invented the
first telephone in 2004. (numerical entity replace-
ment)

R2. Antonym replacement. We replace the first mentioned
adjective with its antonym using Wordnet1. For example:
• Burj Khalifa is the tallest building in the world. →

Burj Khalifa is the shortest building in the world.

R3. Verb negation. We convert the first verb to its negative
form. For example:
• Alexander Graham Bell invented the first telephone

in 1976. → Alexander Graham Bell did not invent
the first telephone in 1976.

Table I shows the characteristics of the Factual-NLI training
and testing datasets.

IV. METHODOLOGY

A. Problem Definition

The retrieval problem we attempt to solve is defined as
follows: Given a corpus of documents D and a query q, we
want to return the top-k most relevant passages in D using

1https://wordnet.princeton.edu/



Type Source # Training # Testing

True statements FEVER 115,569 13,329
Conversion to factual statements Natural Questions + MSMARCO 330,829 28,361

Subtotal 446,398 41,690

False statements FEVER 29,734 6,660
Contradictions obtained with rule R1 Natural Questions + MSMARCO 233,014 19,773
Contradictions obtained with rule R2 Natural Questions + MSMARCO 101,497 9,032
Contradictions obtained with rule R3 Natural Questions + MSMARCO 100,503 9,388

Subtotal 464,748 44,853

Total 911,146 86,543

TABLE I: Statistics of the Factual-NLI dataset.

a scoring function fθ with two arguments q and d ∈ D
that computes a relevance score fθ(q, d) ∈ R. In question
answering, the query is a question and the relevant passages
are expected to answer the question, while in fact-checking,
the query is a statement and the relevant passages support or
contradict the given statement.

B. Dense Retrieval Model

The corpus D may consist of millions of documents, thus
the time complexity of the scoring function is important for
a responsive real-time system. In this work, we use the dot
product of φ(q) and φ(d) as our scoring function:

fθ(q, d) = φ(q)Tφ(d) (1)

where φ(.) is an embedding function that maps a passage or
query to a dense vector. The choice of this function fθ allows
us to use efficient maximum inner product search [38], and
easily scale our system to millions of documents. As for the
embedding function φ(.), we use the average token embedding
of the BERT-base language model [22] which has been fine-
tuned on a number of tasks:

φ(d) =
1

|d|

|d|∑
i

BERT (d, i) (2)

where BERT (d, i) is the embedding of the i-th token in
document d, and |d| is the number of tokens in d. Figure 1
shows the semantic matching model, referred to as QR-BERT,
that determines whether a passage is relevant to the query. Our
dense retrieval model is comprised of one encoder that embeds
the query and the passage to the same k-dimensional space.
The similarity between the query and the passage is given by
the cosine similarity of their embedding representations.

C. Training

QR-BERT is trained on a set of query-passage examples.
Let D be the set of all the passages in our training dataset and
D+ be the set of positive query-passage pairs. We estimate the
model parameters θ of the scoring function by maximizing the
log likelihood as follows:

maxθ
∑

(q,d)∈D+

log(pθ(d|q)) (3)

Fig. 1: Siamese semantic matching model

where conditional probability is approximated by the softmax:

pθ(d|q) =
efθ(q,d)∑

di∈D e
fθ(q,di)

(4)

Note that obtaining the denominator over all the passages in
Equation 4 is computationally expensive. Hence, we limit the
computation to only passages in the current training batch as
is widely used in [28]–[30], [39]. The final loss function is
given by:

maxθ
∑

(q,d)∈D+
B

fθ(q, d)− log
( ∑
di∈DB

efθ(q,di)
)

(5)

where DB is the set of passages in a training batch B, and
D+
B is the set of positive query-passage pairs in B.
For evidence retrieval, the model is trained and evaluated

on the Factual-NLI dataset, and for answer retrieval on MS-
MARCO. We train it with Adam optimizer, initial learning
rate 2× 10−5, batch size 256 and 10,000 warmup steps.

D. Pre-training Tasks

We experiment with two pre-training tasks in an attempt to
further improve the performance of QR-BERT:

Inverse Cloze Task. A semantic matching model may
suffer from the cold start problem as observed in the dense
retrieval models. The Inverse Cloze Task (ICT) has recently
been used as a pre-training task to solve this issue [28]–[30].



Given a passage d with n sentences d = {s1, s2, ..., sn},
the query q is a sentence si drawn randomly from the
passage d, and the relevant passage is the remaining sen-
tences {s1, ..., si−1, si+1, ..., sn}. Here, we adopt the same
pre-training process for QR-BERT. We source 50 million
training samples from Wikipedia, and pre-train our siamese
encoder model for 400,000 steps with Adam optimizer, weight
decay 0.01, initial learning rate 2× 10−5, batch size 256 and
10,000 warmup steps.

Natural Language Inference. It is recognized that pre-
training embedding models on natural language inference
(NLI) data is effective for semantic text similarity tasks [33],
[34]. As such, we merge two popular NLI datasets, namely
SNLI [40] and MultiNLI [41], into one dataset (referred to as
NLI) and perform pre-training with the classification objective
function:

o = softmax(W [u; v; |u− v|]) (6)

where u is the embedding of the premise sentence and v is
the embedding of the hypothesis sentence, W3×3k a linear
transformation matrix, where k = 768 is the dimensionality of
the hidden representation of QR-BERT (based on BERT-base)
and [u; v; |u− v|] is the concatenated vector of u, v and their
absolute difference |u−v|. We pre-train QR-BERT using cross-
entropy loss, Adam optimizer, initial learning rate 2 × 10−5

and batch size 64, until convergence.

V. PERFORMANCE STUDY

In this section, we evaluate the performance of QR-BERT
and compare the different pre-training methods. We compute
the recall@k metrics and the mean reciprocal rank (MRR)
for the top 10 results on the Factual-NLI test set and the
MSMARCO dataset.

A. Experiments on Evidence Retrieval

We first demonstrate the effectiveness of QR-BERT for
evidence retrieval, where the query is a statement or a claim.
We evaluate the performance of QR-BERT with different
pre-training methods on the Factual-NLI testing set. For
comparison, we implement a baseline BM25 retriever using
lemmatization, unigrams and bigrams. We have trained QR-
BERT in one or more stages using:
• FEVER (with sampled softmax - eq. 5)
• NLI (with classification objective - eq. 6)
• Factual-NLI (with sampled softmax)
• ICT (with sampled softmax) and Factual-NLI
• NLI and Factual-NLI without contradiction examples
• NLI and Factual-NLI using all the examples

Table II shows the results. We observe that training using the
FEVER dataset, the currently popular dataset for fact-checking
[42], is insufficient and leads to worse performance than sparse
retrieval, while training using the extended Factual-NLI dataset
is very effecive. The best performing model is the one that has
been pre-trained on NLI and trained on Factual-NLI. When

we compare training QR-BERT on NLI with the classification
objective versus Factual-NLI with sampled softmax, we see
a vast improvement in the recall as well as the MRR. Pre-
training on NLI and training on Factual-NLI leads to slight
improvement compared to pre-training on ICT and training
on Factual-NLI. Looking at the last two rows in Table II,
we find that including contradiction examples in the training
dataset is important, as it improves MRR by 0.021 and R@100
by 3.22%. The advantage of QR-BERT over sparse retrieval
is more obvious when we perform evaluation on a subset
of the test examples, excluding those for which the sparse
retriever returns the relevant passage in the top 5 results. In
this subset, as seen in Table III, QR-BERT is still able to
achieve high recall in the top 20 results. It is clear that when
keyword matching is insufficient, dense representations can
help in retrieving relevant passages.

B. Experiments on Answer Retrieval

Besides evidence retrieval, QR-BERT is also effective for
answer retrieval. In this set of experiments, we evaluate QR-
BERT on a large scale MAchine Reading COmprehension
dataset (MSMARCO) [37]. MSMARCO contains 8,841,823
passages extracted from 3,563,535 web documents retrieved
by the Bing search engine. It also contains 1,010,916 queries
with 1,026,758 unique answers, 182,887 of which are also
written as well-formatted sentences. This dataset is widely
used for evaluating reading comprehension and passage re-
trieval models.

We examine the performance of the following QR-BERT
models on MSMARCO:

• fine-tuned using only MSMARCO
• pre-trained on ICT and fine-tuned using MSMARCO
• pre-trained on NLI and fine-tuned using MSMARCO
• pre-trained on NLI and Factual-NLI without fine-tuning
• pre-trained on NLI and Factual-NLI with fine-tuning

using MSMARCO

Table IV shows the evaluation results using only the
passages in the development set as a small scale retrieval
benchmark. We observe that using the model we trained for
evidence retrieval without fine-tuning on MSMARCO, leads to
a very poor performance. Pre-training on NLI improves MRR
by 0.017 and R@1 by 2.26% (fifth row in Table IV). If we
include Factual-NLI dataset in the pre-training, we obtain an
additional 0.031 improvement in MRR and 3.71% in R@1
(see the sixth row).

Overall, pre-training using natural language inference ex-
amples seems more effective than pre-training on the inverse
cloze task for both evidence and answer retrieval. However, it
is worth mentioning that we use a relatively small batch size
of 256 due to limited resources, while much larger batches
were used in previous works [29]. All the models outperform
the BM25 retrieval baseline.



Model R@1 R@5 R@10 R@20 R@100 MRR@10

BM25 with lemmatization, unigrams and bigrams 78.18 89.15 92.61 95.16 98.03 0.8272
QR-BERT on FEVER 62.80 73.47 78.07 81.87 87.21 0.6735
QR-BERT on NLI 23.31 28.98 33.01 37.42 48.78 0.2667
QR-BERT on Factual-NLI 79.82 89.30 92.06 93.86 95.50 0.8369
QR-BERT on ICT + Factual-NLI 82.27 92.37 95.24 97.15 98.76 0.8643
QR-BERT on NLI + Factual-NLI (no contradictions) 81.39 89.97 92.53 94.13 95.77 0.8492
QR-BERT on NLI + Factual-NLI 82.91 93.06 95.79 97.61 98.99 0.8707
QR-BERT on NLI + Factual-NLI

⋃
MSMARCO (multi-task) 80.19 89.59 92.31 93.92 95.23 0.8402

TABLE II: Evidence retrieval evaluation on Factual-NLI.

Model R@1 R@5 R@10 R@20 R@100 MRR@10

BM25 with lemmatization, unigrams and bigrams 0 0 32.57 55.93 82.32 0.0706
QR-BERT on NLI + Factual-NLI 45.55 65.75 76.78 84.30 90.82 0.5457
QR-BERT on NLI + Factual-NLI

⋃
MSMARCO (multi-task) 47.36 66.87 76.94 83.72 89.28 0.5582

TABLE III: Evidence retrieval evaluation on Factual-NLI excluding examples with BM25 rank ≤ 5.

Model R@1 R@5 R@10 R@20 R@100 MRR@10

BM25 with lemmatization, unigrams and bigrams 57.03 78.72 84.45 88.71 94.69 0.6684
QR-BERT on NLI + Factual-NLI 39.21 60.65 67.48 73.13 83.15 0.4916
QR-BERT on MSMARCO 66.90 87.87 92.03 94.63 97.66 0.7621
QR-BERT on ICT + MSMARCO 65.28 86.79 91.20 94.03 97.40 0.7482
QR-BERT on NLI + MSMARCO 69.16 89.05 92.80 95.17 97.84 0.7798
QR-BERT on NLI + Factual-NLI + MSMARCO 72.87 91.64 94.92 96.79 98.85 0.8114
QR-BERT on NLI + Factual-NLI

⋃
MSMARCO (multi-task) 67.96 87.06 90.48 92.47 94.69 0.7638

TABLE IV: Answer retrieval evaluation on MSMARCO (passages from development set)

Model R@1 R@5 R@10 R@20 R@100 MRR@10

BM25 with lemmatization, unigrams and bigrams 9.77 27.08 36.39 44.96 64.62 0.1713
QR-BERT 13.91 35.15 44.85 53.79 70.49 0.2285
BM25 (top 200) + re-rank 24.19 51.35 59.86 66.05 71.64 0.3556
QR-BERT (top 200) + re-rank 22.55 47.92 56.96 64.37 74.36 0.3324
QR-BERT (top 200)

⋃
BM25 (top 200) + re-rank 25.43 55.71 66.68 75.67 87.93 0.3817

BM25 (top 1000) + monoBERT (Nogueira et al.) [25] - - - - - 0.3650
BM25 (top 1000) + monoBERT + duoBERT [25] - - - - - 0.3790

TABLE V: Answer retrieval evaluation on MSMARCO (all candidate passages)

C. Experiments with Re-Ranking

The learned representation of a dense retrieval model like
QR-BERT is query-agnostic. Nevertheless, learning a repre-
sentation conditioned on both the query and the passage should
help in identifying the relevant passages more accurately.
To validate this, we experiment with a two-stage retrieval
process, where a list of candidate passages is first obtained
from a retrieval model followed by a re-ranking of the list
of candidates [25] with a binary relevance classifier. The
relevance classifier is based on BERT-large, fine-tuned on 20M
query-passage pairs from the MSMARCO dataset. We trained
the ranking model by minimizing the cross-entropy loss with
Adam optimizer, initial learning rate 2× 10−5 and batch size
128, on a validation set of 20,000 samples until convergence.
We evaluated the following configurations:

• Use BM25 to generate a list of candidates without re-
ranking.

• Use QR-BERT to generate a list of candidates without
re-ranking,

• Use BM25 to generate a list of candidates, followed by
re-ranking

• Use QR-BERT to generate a list of candidates, followed
by re-ranking,

• Use the union of the top results from BM25 and QR-
BERT as the list of candidates, followed by re-ranking.

Table V shows the results. We observe that using a two-stage
approach with retrieval and re-ranking, leads to higher recall
and MRR, confirming our hypothesis that query-dependent
representations are better in identifying relevant passages.

The two-stage ranking approach with a BM25 sparse re-
triever seems to perform a little better in terms of the MRR
metric than the one with a QR-BERT dense retriever. This is
possibly because in many query-passage pairs in MSMARCO,
there is a word overlap that constitutes a strong relevance
signal, and dense representations sometimes cannot capture
it. It is worth noting however, that QR-BERT with re-ranking
has higher recall@100 compared to BM25 with re-ranking.
The best performance is obtained when we combine the top
retrieved results of BM25 and QR-BERT during the retrieval



(a) Indexing snippets from news articles

(b) Searching for relevant snippets

stage. Our two-step approach with the hybrid retrieval and
re-ranking even outperforms the state-of-the-art solutions by
Nogueira et al. [25], namely, BM25 retrieval and re-ranking
with a relevance classifier referred to as monoBERT, as well
as their three-stage approach with BM25 retrieval, re-ranking
using monoBERT followed by an additional pairwise ranking
model called duoBERT.

D. Qualitative Analysis

Table VI shows the top snippets retrieved for some questions
and claims by QR-BERT and BM25. For the first two queries,
only QR-BERT returns a relevant passage. This is because
keyword based retrieval is not sufficient to surface the most
relevant passages. For the third query, both models succeed
in retrieving a relevant snippet. An interesting observation for
this query is that the snippet retrieved by QR-BERT has only
the word viruses in common with the query. This shows that
the model has the ability to capture the latent meaning of the
text and identify synonym terms like called off (for canceled)
and semantically close terms like conferences (close to events).

In conclusion, sparse retrieval works well in cases when
the query is specific enough to allow easy discovery of the
relevant passage through keyword matching. However, this
is insufficient in practice. A dense retrieval model can give
more accurate results, and when used in an architecture with
sparse retrieval combined with re-ranking, we can achieve
significantly higher recall.

VI. THE QUIN SYSTEM

Using the dense retrieval model, we developed Quin2, a
scalable semantic search engine that returns snippets of up
to five sentences containing the answer to a question or
claim related to the COVID-19 pandemic. Figure 3 shows a
screenshot of the system.

2https://quin.algoprog.com

Fig. 3: Screenshot of the Quin system

A. Indexing and search

Quin has a module for crawling RSS feeds, and storing the
html source of the news articles. We remove the boilerplate and
isolate the main content of the news articles. From the clean
text, we extract snippets of 5 sentences each, by using a sliding
window on the sequence of sentences of every article. We
utilize the nltk library3 to split the documents into sentences.
To facilitate efficient large-scale retrieval, we build two indexes
on the snippets: (a) an efficient sparse inverted index for BM25
retrieval, and (b) a FAISS dense index [43] that supports
maximum inner product search. Building a FAISS index of 1M
passages takes about 26 seconds using an NVIDIA V100 GPU.
The index is able to process about 1000 top-100 queries per
second on a DGX-2 server with a Dual Intel Xeon Platinum
CPU. Figure 2a summarizes this process. Figure 2b shows the
search process. The query is used to perform a search on a
sparse and on a dense (FAISS) index of snippets. We retrieve
the top 500 results from each index, and compute a relevance
score for each result. The results are ranked by their relevance
score, and we output the final ranked list of results R.

3https://www.nltk.org



Question / Claim Top snippet returned by QR-BERT Top snippet returned by BM25

Is COVID-19 the same as
SARS?

... Coronaviruses are a class of pathogens, seven of
which are known to infect humans. Covid-19 is said
to be more genetically similar to Sars than any other
virus of that class. The International Committee on
Taxonomy of Viruses is even calling Covid-19 “severe
acute respiratory syndrome coronavirus 2”. ...

... The patent numbers listed are indeed real, but they
are for SARS, caused by SARS-CoV (or SARS-CoV-1),
not for COVID-19, caused by SARS-CoV-2. Both men-
tion “SARS-CoV” multiple times but have no mention
of “SARS-CoV-2”, the new strain causing COVID-19.
...

What is COVID-19? ... Covid-19 is one of seven strains of the coronavirus
class that are known to infect humans. Others range
from the mild common cold to severe acute respiratory
syndrome (Sars), which killed 774 people in 2004. Most
of the people who initially became unwell from Covid-
19 worked at, or visited, a seafood and live animal
market in the Chinese city of Wuhan. ...

... CMO Brendan Murphy has repeatedly ruled out any
link between the technology and the spread of COVID-
19. T̈here is no link between 5G and COVID-19. 5G
does not cause COVID-19. It does not spread COVID-
19. Nor does it increase the severity of COVID-19 or
make people more susceptible to COVID-19,ḧe said on
Friday in a statement. ...

Events were canceled because
of the virus

... Conferences are particularly conducive to spread-
ing viruses because they bring large crowds together
in close proximity from many locations. Several ma-
jor tech conferences, including the Mobile World
Congress in Barcelona and Facebook’s F8 develop-
ers’ conference, have been called off because of the
coronavirus. ...

... The Google I/O 2020 physical event has been can-
celed and will be held digitally. Refunds will be given to
those who have purchased tickets for I/O 2020. People
who were awarded tickets for the 2020 event will be
automatically awarded tickets to the 2021 event. ...

TABLE VI: Snippets retrieved by QR-BERT and BM25 for queries related to COVID-19

Scoring Top retrieved snippet

Relevance ... More than 100 people have died from the virus in Italy with more than 3,000 confirmed cases. ...

Time-sensitive relevance ... Italy’s total known infections stand at 249,756. Three more deaths since Thursday raised Italy’s overall
confirmed death toll to 35,190. ...

TABLE VII: Retrieved snippets using relevance and time-aware relevance scores

B. Time-sensitive ranking

When dealing with news articles, the answers to many
questions change over time. When ordering the results by
semantic relevance, some of the retuned snippets might contain
outdated answers. For example, when we have a question like
’How many are the virus cases in Italy?’, the top results
might contain answers stating that the number of cases is a
few hundreds, while the actual number is already more than
200,000. Sorting the passages above a relevance threshold by
date is not the best solution, because finding an optimal cuttoff
threshold is non-trivial and could lead to lower recall. On the
other hand, ignoring completely the relevance score in the
final ranking can lead to irrelevant passages ranked high in the
results. To mitigate this issue, we pass the relevance scores to
an exponential decay function to priotitise the snippets from
more recently published articles:

r′(s, t) = r(s)× 2−
tc−t
h (7)

where r′(s, t) is the time-sensitive relevance score of the
snippet s from a news article with unix timestamp t, r(s) the
semantic relevance score, tc is the current unix timestamp and
h a halving interval in seconds (one year in our system). Ta-

ble VII shows an example where the time-sensitive relevance
surfaces a more up-to-date answer.

VII. CONCLUSION

In this work, we demonstrated that a latent dot product
retrieval model based on BERT, trained with sampled softmax
loss, can outperform the traditional sparse retrieval as a
standalone model, and leads to significant improvements when
used in a multi-stage ranking architecture. We constructed
a new synthetic dataset for evidence retrieval evaluation in
fact-checking called Factual-NLI, and showed that pre-training
on existing NLI datasets, and the new dataset, improves
significantly the retrieval model. Using the trained retrieval
model, we built a semantic search system of news articles
to demonstrate its effectiveness in a real-world large-scale
dataset. Our model and the used datasets are publicly released
as part of our Quin semantic search framework 4.
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