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Abstract. In modern healthcare services, intelligent patient follow-up
is a critical approach to improving the quality of medical services and
the efficiency of patient health management. Our study proposes an in-
telligent patient follow-up method based on Retrieval Augmented Gener-
ation (RAG) and multi-model fusion. Patient data and case information
are collected using custom forms, forming an RAG-supported retrieval
database to store follow-up records and relevant details. A multi-model
framework was designed, using machine learning algorithms to predict
key information such as follow-up schedules, and leveraging multiple
large language models to generate initial follow-up recommendations. A
decision-making large language model was utilized to integrate the initial
follow-up recommendations from various language models, optimizing
and developing the final personalized follow-up plan. Manual assessments
were conducted to comprehensively analyze the quality of the final follow-
up plan in terms of readability, professionalism, and other dimensions to
evaluate the proposed method. Experimental results demonstrate that
the proposed method significantly enhances the scientific validity and
personalization of the follow-up plan, providing a reliable technical foun-
dation for intelligent health management.

Keywords: Intelligent Patient Follow-Up · Retrieval Augmented Gen-
eration · Multi-Model Fusion · LLM.

1 Introduction

In modern medical services, Intelligent patient follow-up is a critical approach to
improving medical service quality and the efficiency of patient health manage-
ment[34]. With the development of information technology, Electronic Health
Record (EHR) systems and patient management platforms have been widely
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used[30, 27], greatly promoting the digitization and standardization of medical
information[6]. However, despite significant progress, existing medical informa-
tion systems still face many challenges.

Existing systems fall short in personalized care and intelligent follow-ups.
Traditional EHR systems only record diagnostic results and treatment history,
lacking integration of patient characteristics and lifestyles to provide tailored
treatment recommendations[1, 22]. Meanwhile, follow-up tools are not intelligent
enough, lacking automated data analysis to schedule or adjust follow-ups[19].
These issues hinder optimal care planning, increase workload, reduce patient en-
gagement, and negatively impact treatment and long-term health management.

To address these challenges, this study proposes an Intelligent Patient Follow-
up Supported by RAG and Multi-Model Fusion (IPF-RMF) method. RAG tech-
nology mitigates the deficiencies of traditional generative models in terms of
knowledge accuracy and contextual integrity by incorporating external knowl-
edge bases and real-time retrieval mechanisms[8]. Building on this, we designed
a multi-model framework that leverages machine learning algorithms and large-
scale language models to generate personalized treatment recommendations and
dynamic follow-up plans, thereby enhancing the scientific and personalized na-
ture of follow-up strategies.

To verify the effectiveness of the proposed method, we conducted a detailed
experimental study. The final follow-up plan was manually evaluated from vari-
ous dimensions such as readability and professionalism. The results show that the
IPF-RMF method significantly enhances the scientific and personalized nature of
the follow-up plans, providing a solid technical foundation for intelligent health
management. Additionally, the method exhibits good scalability and adaptabil-
ity, making it applicable to various medical scenarios and likely to become an
important development direction in intelligent healthcare.

The structure of this article is organized as follows. The second part reviews
related work in the field of intelligent patient follow-up, focusing on RAG and
multi-model fusion techniques. The third part introduces the background of this
study, providing a detailed explanation of the design and implementation of the
IPF-RMF framework. The fourth part elaborates on the specific methods of
the intelligent follow-up process, including data collection, model integration,
and the generation of personalized follow-up plans. The fifth part evaluates the
effectiveness of the proposed method through experiments and analyzes its per-
formance in improving the scientificity and personalization of follow-up plans.
Finally, the sixth section summarizes the main conclusions and suggests future
research directions.

2 Related Work

Extensive research has been conducted in medical data management and pa-
tient follow-up, achieving significant results[4, 12]. Recently, RAG technology
and multi-model fusion have gained widespread attention. RAG significantly
improves medical data management by integrating knowledge retrieval and gen-
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eration models[16]. For example, Liu et al.[23] proposed a fine-tuning method
combining pre-trained parameter memory with neural retrieval, which enhanced
model performance in knowledge-intensive NLP tasks, especially in open-domain
QA. Studies indicate that RAG dynamically integrates patient history, the latest
medical literature, and external knowledge to generate more precise and person-
alized treatment recommendations[32].

Multi-model fusion enhances data analysis and decision-making accuracy by
integrating various machine learning models[13]. For instance, Zheng et al.[36]
proposed a multimodal graph learning framework (MMGL) that captures inter-
modal correlations and achieves superior performance in disease prediction tasks.
Additionally, Chen et al.[9] highlighted emerging trends in multimodal medical
image processing, such as generative adversarial networks and contrastive learn-
ing. These studies demonstrate the advantages of multi-model fusion in providing
comprehensive and accurate diagnostic and treatment recommendations.

Existing methods can be categorized into single-model and multi-model fu-
sion approaches. Single-model methods typically rely on specific data sources or
model types, such as traditional EHR systems, which utilize structured data and
standardized forms for management[14, 15]. While simple to implement, these
methods lack flexibility and personalization, and struggle with complex medi-
cal data. In contrast, multi-model fusion methods enhance overall performance
by integrating diverse data sources and model types. For example, multimodal
deep learning frameworks can simultaneously process text, images, and physi-
ological signals[21]. However, they are more complex to implement and require
addressing data source integration challenges[20, 3].

Despite the potential of RAG and multi-model fusion in medical data man-
agement and patient follow-up[24], limitations remain. Many systems rely on
manual input, resulting in inefficient and error-prone data collection. Follow-up
tools lack personalized reminder functions and fail to respond swiftly to patient
needs. Furthermore, they often do not fully utilize medical research and ex-
ternal knowledge bases, leading to insufficient scientific and personalized plans.
The rigid design of many systems hampers their adaptability to doctor-patient
interactions, affecting user experience.

This study addresses the limitations of existing patient follow-up systems
by introducing RAG technology and multi-model fusion. We propose an intel-
ligent follow-up platform that integrates RAG technology, custom forms, and
multi-model integrated prediction algorithms. This platform enhances flexibility,
personalization, and data analysis capabilities while promoting efficient doctor-
patient communication through real-time retrieval and generation functions, pro-
viding more accurate treatment recommendations and follow-up plans. Specifi-
cally, it combines the capabilities of knowledge retrieval and generation models
to dynamically integrate patient history, the latest medical literature, and exter-
nal knowledge for personalized follow-up suggestions. Leveraging multi-model
fusion, the platform comprehensively analyzes various data sources to deliver
accurate and holistic diagnostic and treatment advice. Custom forms enable
efficient patient data collection and case information management, forming a
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retrieval database that supports RAG technology and improves data collection
quality and efficiency. This study not only fills existing research gaps but also of-
fers a novel solution for intelligent follow-up, significantly enhancing the quality
and efficiency of medical services[5].

3 The IPF-RMF Framework

3.1 IPF-RMF Architecture

Fig.1 illustrates the complete IPF-RMF architecture process, encompassing data
collection, the integration of RAG and multi-model fusion, and the generation of
personalized follow-ups. The architecture consists of the RAG module and the
multi-model fusion module, designed to deliver precise and personalized health-
care support through efficient data management and processing.

Fig. 1. IPF-RMF architecture

The RAG module focuses on retrieving and enhancing historical patient data
and follow-up records. Custom forms efficiently collect medical data, which is
stored in a retrieval-enhanced database integrating basic patient information,
follow-up records, and treatment plans. RAG technology identifies similar case
data, compensating for current data gaps and providing comprehensive input to
enhance the adaptability and accuracy of treatment plans.

The multi-model fusion module integrates multiple Large Language Mod-
els(LLM) and Machine Learning(ML) algorithms to generate multi-dimensional
follow-up recommendations. Leveraging the augmented data from the RAG mod-
ule, models generate initial suggestions considering disease conditions, treatment
responses, and individual needs. The decision model then optimizes these out-
puts, formulating the most suitable personalized follow-up plan.

The IPF-RMF architecture, which combines RAG and multi-model fusion
technologies, provides an efficient and personalized follow-up solution that offers
substantial support to clinical decision-making processes and enables more in-
telligent and personalized healthcare management. The IPF-RMF architecture
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combines RAG and multi-model fusion technologies to deliver efficient and per-
sonalized follow-up solutions, supporting clinical decision-making and advancing
intelligent healthcare management.

3.2 RAG Module

The RAG module relies on comprehensive medical data, collected via the meth-
ods illustrated in Fig.2. Retrieving symptoms and mathematical features from
medical databases, clinical manifestations and treatment plans from hospital
databases, and all existing medical data for specific patients via a custom form
collection system. All data is persistently stored in JSON format. Before use, key-
word extraction and text segmentation are performed. Segmentation is sentence-
based to maintain semantic integrity. Short sentences are combined to approxi-
mate 256/512 tokens, enabling processing by LLMs.

Fig. 2. RAG module

To meet RAG’s efficiency requirements for data processing and retrieval, vec-
torization[2] was employed. Text data was vectorized using the BGE-Embedding
model, with local fine-tuning improving the indexing accuracy for medical data
by over 27%. The indexed data is then stored in a FAISS database, enabling
efficient storage and retrieval.

Before IPF-RMF usage by medical practitioners, RAG retrieves relevant data
from the database based on queries and patient information using efficient in-
dexing methods, integrating it into the prompt. Similarity algorithms filter data
exceeding a similarity threshold for prompt inclusion. The initial prompt is then
enhanced by adding relevant information, increasing its specificity and logical
coherence, thereby improving LLM understanding and output accuracy.
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3.3 Multi-Model Fusion Module

The Multi-Model Fusion module leverages machine learning algorithms com-
bined with medical data from the local knowledge base to predict key infor-
mation in the follow-up plan. These algorithms account for individual patient
differences, such as the severity of their condition and treatment response time,
to create personalized follow-up plans. To facilitate subsequent processing and
analysis, the module standardizes the knowledge base data and integrates the
predicted follow-up plans with existing data, generating standardized statements
containing medical causal logic and logical types. These statements are stored
as key-value pairs for ease of future processing and querying.

Fig. 3. Multi-Model Fusion module

As shown in Fig.3, standardized statements combined with prompts gener-
ated by RAG are provided as inputs to multiple large language models (LLMs)
for further analysis[17]. These models comprehensively consider data from the
knowledge base and personalized follow-up time predictions, generating multiple
potential follow-up treatment plans for each patient, including future follow-up
arrangements. Ultimately, a decision-making model integrates the outputs from
these models with patient-specific details to propose the most suitable treat-
ment plan. This process not only focuses on treatment effectiveness but also
incorporates the patient’s personal preferences and lifestyle.

After each follow-up, the system updates the patient’s condition records and
treatment progress based on the latest results. This dynamic update mecha-
nism ensures that the follow-up plan can be flexibly adjusted to reflect changes
in the patient’s condition, while also providing critical reference information
for future follow-ups. Additionally, the system interprets the outputs from the
large model, assisting doctors in pre-filling sections of follow-up forms, such as
recommendations for subsequent treatments or recovery arrangements. This sig-
nificantly reduces doctors’ workloads and enhances the efficiency and accuracy
of the follow-up process. Doctors can refine and enhance the preliminary plans,
ultimately creating personalized follow-up reports for each patient.
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4 Framework Evaluation

4.1 Experimental Set Up

Dataset. To comprehensively evaluate the effectiveness of the IPF-RMF frame-
work in intelligent patient follow-up plan generation, this study conducts a sys-
tematic comparison and analysis using the Medical Information Mart for Inten-
sive Care IV dataset(MIMIC-IV). MIMIC-IV is a widely used public medical
database developed collaboratively by the Massachusetts Institute of Technol-
ogy’s Computational Physiology Laboratory and the Beth Israel Deaconess Med-
ical Center. The dataset contains anonymized electronic health records of pa-
tients treated in the intensive care units of Beth Israel Deaconess Medical Center
from 2008 to 2019. MIMIC-IV provides detailed clinical information, including
patient admission and discharge summaries, laboratory test results, medication
prescriptions, surgical records, and more. In this study, we selected 1500 follow-
up records with varying symptoms and severity levels, and based on different
treatment plans over time, defined the time periods after the first follow-up
as the follow-up treatment plans, which were used as a reference for subse-
quent experiments.We also adopted several key performance evaluation metrics
to comprehensively measure the performance of different models or model com-
binations.

Framework Configuration. We selected four different model combinations
for comparative experiments to explore how LLMs and their combinations can
provide personalized follow-up recommendations based on the specific conditions
of patients. Specifically, our research includes a case where only the base LLM
model is used to test its basic ability to generate follow-up plans. A model
that combines LLM with RAG to enhance the relevance and precision of the
output by retrieving relevant historical data. A method that integrates results
from multiple independent LLM models to combine diverse information sources
and improve the overall quality of the plan. A method that employs both RAG
technology and multi-model fusion strategies, aiming to achieve the best level of
personalized service and precision.

To identify the most effective model combinations, we considered several
different LLM configurations, including BERT[11], T5[26], XLNet [33] and GPT-
4[31, 25]. Each combination is paired with a decision support model, Medpalm[28],
to assist the final decision-making process.

We begin by conducting a comprehensive evaluation of the individual LLMs,
followed by an analysis of various LLM combinations. In order to enhance the
accuracy of follow-up plan generation while minimizing the risks of overfitting
and excessive computational complexity[18], we selected a combination of four
individual LLMs[35] to achieve the best effect improvement. The term "LLMs"
encompasses BERT, T5, XLNet, and GPT-4.

To comprehensively evaluate the capabilities of various model configurations,
we designed a series of prompts ranging from simple to complex for testing. These



8 J. Jia et al.

prompts covered basic information queries (e.g., patient age, gender) to more in-
depth questions (e.g., providing specific health management suggestions). This
approach allows us to observe the performance differences between different mod-
els when faced with varying levels of challenges.

Evaluation. The evaluation process mainly relies on manual scoring, consid-
ering multiple dimensions such as accuracy, personalization, response time, and
user experience.

Accuracy Scoring(AS). Scoring is based on the degree of match between
the generated follow-up plan and the actual case. The scoring criteria include
the accuracy of the treatment plan, the reasonableness of the follow-up schedule,
etc[29].

Readability Scoring(RS). Evaluate whether the generated follow-up plan
is easy to understand, whether the language is clear and concise, and whether it
allows doctors to grasp the key points of the patient’s condition quickly.

Professionalism Scoring(PS). Assess the medical standardization of the
follow-up plan, whether it covers all aspects of the patient’s condition (such as
symptoms, medical history, treatment responses, etc.), and provides appropriate
medical recommendations[7].

Response Time Scoring(RTS). Record the time taken by the model to
generate the follow-up plan and score it based on the response speed[10].

To ensure the fairness and objectivity of the evaluation, we employ experts
from the medical field to score the models. Specific scoring criteria are set for
each dimension, and three experts review the output of each model. The average
score from these experts is then taken as the final evaluation result, with the
highest-scoring model being selected. The evaluation process is divided into two
stages: initial scoring and final scoring.

Initial Scoring. Each expert gives an initial score for the output of the four
models based on the preset dimensions. Each expert reviews 500 data samples
and scores the outputs. Clarify and standardize the scoring criteria for each
dimension before the process begins to ensure consistency in scoring.

Final Scoring. The expert scores for each model are aggregated to calculate
the final score for each model. The score for each dimension is weighted based on
its importance and averaged, and the model with the highest score is selected.
Final Score(FS) is calculated as:

FS = w1 ×AS + w2 ×RS + w3 × PS + w4 ×RTS (1)

Where w1, w2, w3, w4 represent the weights for accuracy, readability, profes-
sionalism, and response time, respectively. After detailed discussions among
the experts, the weights for each scoring dimension are determined as follows:
w1 = 40%, w2 = 20%, w3 = 20%, and w4 = 20%.

By comprehensively considering the factors mentioned above and assigning
different weights based on the importance of each metric. We aim to conduct
a comprehensive and detailed evaluation of the performance of different model
configurations under the IPF-RMF framework in the intelligent generation of
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patient follow-up plans. This approach not only helps identify the most effective
model combinations but also provides a scientific basis for further optimization
of such systems in the future.

4.2 Results

Based on the experimental results, the RAG + Multiple LLM Fusion Model out-
performs other models across all dimensions, especially in accuracy, readability,
and professionalism. However, this model has a relatively longer response time
and may require further optimization to enhance its real-time performance. Over-
all, this model demonstrates great potential in generating intelligent follow-up
plans for patients, particularly in medical scenarios that require high levels of
personalization and professionalism.

Results on simple prompts are denoted as AS1, RS1, PS1, RTS1, FS1, while
results on complex prompts are denoted as AS2, RS2, PS2, RTS2, FS2. This
setup allowed us to assess model performance across different levels of task com-
plexity.

Table 1. Evaluation of Individual LLMs and LLM Combinations

Model AS1 RS1 PS1 RTS1 FS1 AS2 RS2 PS2 RTS2 FS2
BERT 48 62 70 74 60.4 51 62 71 74 61.8

T5 51 64 73 77 63.2 53 64 72 75 63.4
XLNet 47 60 69 73 59.2 50 61 69 73 60.6
GPT-4 49 61 71 75 61.0 51 63 72 76 62.6
LLMs 56 68 78 82 71.2 58 69 77 81 73.2

Table 1 evaluates four individual LLM configurations (GPT-4, BERT, T5,
RoBERTa), and shows the evaluation results of different LLM combinations.
Each individual model performs differently across various metrics, highlighting
the strengths and weaknesses of each in certain tasks. Compared to single LLMs,
combination models generally perform better across various tasks. The combined
LLMs show significant improvements in metrics such as AS1, RS1, and PS1,
demonstrating greater adaptability and flexibility.

Table 2. Evaluation of Machine Learning + LLM & LLMs

Model AS1 RS1 PS1 RTS1 FS1 AS2 RS2 PS2 RTS2 FS2
ML + BERT 56 70 79 80 68.2 58 70 78 81 69.0

ML + T5 58 71 80 82 69.8 60 72 80 83 71.0
ML + XLNet 55 69 78 79 67.2 57 69 77 81 68.2
ML + GPT-4 57 71 80 81 69.2 59 72 80 83 70.6
ML + LLMs 59 72 81 82 70.6 61 73 80 83 71.6
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Table 2 evaluates the combination of machine learning models with LLMs
and the effects of combining machine learning with multiple LLMs. The com-
bined models further enhance performance across multiple tasks, especially in
tasks such as PS1 and RTS1, showing that the combination of machine learning
algorithms and LLMs provides additional advantages, improving accuracy and
robustness. Compared to single LLMs and the machine learning + single LLM
combinations, machine learning with multiple LLMs further improves perfor-
mance in tasks such as AS1, RS1, etc., showing more balanced improvements
across most metrics.

Table 3. Evaluation of RAG + LLM & LLMs

Model AS1 RS1 PS1 RTS1 FS1 AS2 RS2 PS2 RTS2 FS2
RAG + BERT 58 70 77 78 68.2 60 71 79 81 70.2

RAG + T5 60 72 80 82 70.8 62 73 81 83 72.2
RAG + XLNet 57 69 78 80 68.2 59 71 79 82 70.0
RAG + GPT-4 59 71 80 82 70.2 61 72 80 84 71.6
RAG + LLMs 64 67 79 81 71.0 65 76 82 85 74.6

Table 3 evaluates the combination of RAG (retrieval-augmented generation
models) and LLMs, and the evaluation results after combining RAG with multi-
ple LLMs. The combination of RAG and LLMs shows good performance across
multiple evaluation metrics, especially in tasks such as AS1, RS1, and PS1, where
the combination outperforms the single models significantly. The combination of
RAG and multiple LLMs performs excellently across all evaluation metrics, par-
ticularly in tasks such as AS1, RS1, RTS1, where it shows a significant advantage,
indicating that this configuration effectively enhances the overall performance of
the model.

Table 4. Evaluation of RAG + Machine Learning + LLM & LLMs

Model AS1 RS1 PS1 RTS1FS1 AS2 RS2 PS2 RTS2FS2
RAG + ML + BERT 60 72 79 81 70.4 62 74 80 83 72.2

RAG + ML + T5 62 74 81 83 72.4 64 75 82 85 74.0
RAG + ML + XLNet 59 71 78 80 69.4 61 72 79 82 71.0
RAG + ML + CPT-4 61 73 79 81 71.0 63 74 81 84 73.0
RAG + ML + LLMs 63 75 81 83 73.0 70 84 86 77 77.4

Table 4 shows the performance of the combination of RAG, machine learning,
and LLMs and shows the evaluation results of combining RAG, machine learning,
and multiple LLMs. The combined models (such as RAG + ML + BERT to RAG
+ ML + LLMs) show significant performance improvements across multiple
evaluation tasks, especially in metrics such as AS1, RS1, RTS1, and FS2, where
the overall capability of the model is greatly enhanced. The combination of RAG
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and machine learning with multiple LLMs performs the best, demonstrating the
model’s powerful performance and efficient personalization capability.

5 Discussion

In this study, we propose an intelligent patient follow-up plan generation method
based on the IPF-RMF framework and compare four different model configura-
tions when handling prompts of varying complexity. By evaluating accuracy,
readability, professionalism, and response time, we demonstrate the advantages
of this method in generating personalized and accurate follow-up plans.

The core advantage of the IPF-RMF framework lies in combining various
models with the retrieval capabilities of RAG technology. By integrating histori-
cal case data into the generation process, RAG significantly enhances the person-
alization and accuracy of follow-up plans. Compared to traditional LLM models,
incorporating RAG technology produces plans that better align with patients’
actual conditions and treatment needs while improving medical compliance. This
advantage is further amplified within the multi-model fusion framework.

Experimental results show that in terms of readability, RAG and multi-model
fusion models outperform single LLM models. Models with RAG perform better,
indicating that while multi-model fusion enriches content and perspectives, the
absence of RAG historical data retrieval leads to deficiencies in language fluency
and applicability.

Multi-model fusion results indicate that integrating outputs from different
LLMs can enhance follow-up plan quality. By leveraging the characteristics of
diverse language models, multi-LLM fusion provides more comprehensive and di-
versified information. However, a drawback is increased response time, especially
with multiple large models involved. Although RAG shortens prompt generation
time through retrieval enhancement, multi-model inputs and decision-making
processes add extra response time.

To address response time issues, future work could focus on selecting lower-
computation language models tailored for healthcare and introducing caching
mechanisms for repeated prompts or similar cases to avoid full retrieval and rea-
soning every time. By caching model outputs and decision processes, results can
be returned directly in similar scenarios, reducing response time. Additionally,
pre-processing case data and prompts and precomputing generation paths can
effectively shorten inference time.

6 Conclusion

This study introduces an intelligent patient follow-up method (IPF-RMF) based
on RAG and multi-model fusion, designed to efficiently collect patient data
through custom forms and generate personalized follow-up plans using advanced
neural network techniques. Compared to traditional methods, this approach sig-
nificantly enhances the scientific and personalized aspects of follow-up plans,
especially in managing complex cases and diverse patient needs.
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Compared to traditional follow-up methods, this study reveals that models
leveraging RAG technology generate more accurate follow-up plans by retriev-
ing historical data of similar cases. Multi-model fusion further boosts predic-
tive capabilities, aligning recommendations more closely with individual patient
needs, particularly in complex cases, demonstrating higher accuracy and relia-
bility. Evaluations confirm that the combination of RAG and multi-model fusion
excels in readability, professionalism, and personalized adaptation compared to
single models.

Experimental results validated the practical application of the model through
manual evaluation. When compared to actual treatment plans, the proposed
method ensures treatment effectiveness while reducing doctors’ workloads and
improving doctor-patient communication efficiency. Data analysis and case stud-
ies confirm the feasibility and effectiveness of this approach in personalized
healthcare and intelligent health management.

Despite its promising results, this study has certain limitations. Future work
will focus on optimizing the model’s generalization ability for complex clinical
scenarios and improving accuracy and robustness using more real-world clinical
data. Additionally, as AI technology evolves, the IPF-RMF method holds great
potential for broader applications, particularly in chronic disease management,
disease prediction, and personalized treatment plan generation.
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