
EasyChair Preprint
№ 5668

Interpretable Model-based Hierarchical
Reinforcement Learning Using Inductive Logic
Programming

Duo Xu and Faramarz Fekri

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

June 3, 2021

Interpretable Model-based Hierarchical Reinforcement Learning Using
Inductive Logic Programming

Duo Xu 1 Faramarz Fekri 1

Abstract
Recently deep reinforcement learning has
achieved many success in wide range of appli-
cations, but it notoriously lacks data-efficiency
and interpretability. Data-efficiency is important
as interacting with the environment is expensive.
Interpretability can increase the transparency of
the black-box-style deep RL model and gain trust
from the users of RL systems. In this work, we
propose a new hierarchical framework of sym-
bolic RL, leveraging a symbolic transition model
to improve the data-efficiency and introduce the
interpretability of learned policy. This framework
consists of a high-level agent, a subtask solver and
a symbolic transition model. Without assuming
any prior knowledge on the state transition, we
adopt inductive logic programming (ILP) to learn
the rules of symbolic state transitions, introducing
interpretability and making the learned behavior
understandable to users. In empirical experiments,
we confirmed that the data-efficiency of the pro-
posed framework over previous methods can be
improved by 30%∼40%.

1. Introduction
Reinforcement learning (RL) methods are the state of the art
for solving complex sequential decision making problems
in games and robotics, achieving a lot of success in practical
applications (Van Hoof et al., 2015; Mnih et al., 2015; Ku-
mar et al., 2016a;b; Akkaya et al., 2019; Falco et al., 2018).
However, since the environment model and reward function
are unknown initially, RL methods mostly rely on random
exploration to collect rewards and then improve their current
policy accordingly. Therefore, RL methods are notoriously
sample inefficient, requiring billions of interactions with
the environment before learning policies better than random
exploration. This problem becomes more severe in long-
horizon tasks (Andrychowicz et al., 2020). Another problem

1Georgia Institute of Technology. Correspondence to: Duo Xu
<dxu301@gatech.edu>.

in deep RL is the lack of interpretability (Lyu et al., 2019;
Puiutta & Veith, 2020). The learned behavior based on the
black-box neural network is nontransparent and difficult to
explain and understand. The goal of interpretability is to
describe the internals of a system or learned behavior in
a way that they are readable and verifiable by humans. In
real-world applications of RL, it is instrumental to make the
system behavior interpretable to human, so as to make the
system user-friendly and gain trust from the user to employ
a model or system (Israelsen & Ahmed, 2019; Došilović
et al., 2018).

In this work we propose to use model-based Hierarchical
RL (HRL) via inductive logic programming (ILP) to tackle
problems mentioned above. First, HRL is a promising ap-
proach to reducing sample complexity and scaling RL to
long-horizon tasks (Peng et al., 2017). The idea is to use
a high-level policy to generate a sequence of high-level
goals, forming subtasks, and then use low-level policies to
generate sequences of actions to solve every subtask. By ab-
stracting many details of the low-level states, the high-level
policy can efficiently plan over much longer time horizons,
reducing sample complexity in many tasks. In addition,
because of explicit knowledge representation in the hier-
archical formulation, performing reasoning and planning
on high-level goals become an effective way to introduce
interpretability into deep RL. Different from previous work
on HRL with symbolic planning (Leonetti et al., 2016; Lyu
et al., 2019; Illanes et al., 2020), we do not need any prior
knowledge on symbolic transitions in the high-level part. In-
stead, by leveraging the inductive logic programming (ILP)
(Evans & Grefenstette, 2018; Garcez et al., 2019), we adopt
the model-based RL (Janner et al., 2019; Kurutach et al.,
2018), which learns a transition model of the high-level sym-
bolic states via predicate logic language in ILP and utilize
this model to generate subtask sequences improving data-
efficiency and interpretability. Moreover, we propose to use
an abstract graph to abstract the primitive state in the high
level, encoding each edge of the graph as a goal-oriented
RL subtask.

As a result, the proposed framework provides the following
benefits: (1) it improves the sample efficiency by leveraging
the hierarchical learning framework and the symbolic state

ar
X

iv
:s

ub
m

it/
36

96
28

9
 [

cs
.L

G
]

 1
2

A
pr

 2
02

1

Interpretable Model-based Hierarchical Reinforcement Learning Using Inductive Logic Programming

transition model, (2) it introduces interpretability into deep
RL via the learned symbolic state transition rules, and (3) it
provides the compositional generalization via the ILP. The
effectiveness of the proposed method is verified by empirical
experiments, compared with previous methods such as HRL
(Kulkarni et al., 2016).

2. Preliminary
In this section, we establish relevant notation and review
key aspects of symbolic reinforcement learning.

2.1. Reinforcement Learning

For the purposes of this work, we will say that the envi-
ronment with which an RL agent interacts is formalized
as a Markov Decision Process (MDP) M = (S,A, r, p, γ),
where S is the state space, A is the set of actions, r : S ×
A→ R is the corresponding reward function, p(st+1|st, at)
is the state transition probability given any state-action pair,
and γ ∈ [0, 1) is the discount factor. A policy for M is
defined as a probability distribution π(a|s) representing the
probability of the agent taking action a given that its current
state is s. Therefore, the RL problem is to find the opti-
mal policy π∗ maximizing the expected discounted future
reward obtained from all states s ∈ S (Sutton et al., 1999):

π∗ = argmax
π

∑
s∈S

vπ(s)

where vπ(s) is defined as the value function, approximat-
ing the expected discounted future reward obtained when
starting at state s ∈ S following the policy π, i.e.,

vπ(s) = Eπ
[∞∑
t=0

γtrt

∣∣∣∣s0 = s

]
In this work, our method is built on Q learning (Watkins
& Dayan, 1992), which is an RL approach that learns op-
timal policies (in the limit) by using sampled experiences
to estimate the optimal q-function q∗(s, a) for every state
s ∈ S and action a ∈ A. The optimal q-function q∗(s, a)
is equal to the expected discounted future reward received
by performing action a in state s and following an optimal
policy. Given an experience tuple (s, a, r′, s′), the q-value
estimate q̃(s, a) is updated as follows

q̃(s, a)←−
(
r′ + γmax

a′∈A
q̃(s, a′)

)
Here the optimal policy π∗ can be easily derived from
q∗(s, a) by selecting the action a ∈ A with the largest
q-value under the current state s ∈ S. In order to explore
the environment, the ε-greedy exploration strategy is often
used in Q-learning, selecting the random action with prob-
ability ε and the action with the largest q̃(s, ·) value with
probability 1− ε.

2.2. Using Options in RL

Standard RL techniques are faced with significant problems
when applied to environments with large state or action
spaces. In practical terms, RL algorithms need a large
amount of interactions with the environment before con-
vergence. A popular technique for dealing with these issues
is to consider temporally extended macro-actions that rep-
resent useful high-level behaviours, forming the basis of
hierarchical reinforcement learning (HRL) (Barto & Ma-
hadevan, 2003). Generally, human make decisions by utiliz-
ing temporal abstractions. An option is temporally extended
course of action consisting of three components: a policy
π : S ×A→ [0, 1), a termination condition β : S → [0, 1],
and an initial set I ∈ S. An option (I, π, β) is available
in state st if and if only st ∈ I . After the option is taken,
a sequence of actions is selected according to π until the
option is terminated with the probability of the termination
condition β. With the introduction of options, we can formu-
late the decision-making as a hierarchical process with two
levels, where the high level is the option level (also termed
as task level) and the lower level is the action (sub-task)
level. Markovian property exists among different options at
the option level.

2.3. Inductive Logic Programming

Logic programming languages are a class of programming
languages using logic rules rather than imperative com-
mands. By adopting the programming language of DataLog
(Koller et al., 2007), we define our logic language as be-
low. Having predicate names (predicates), constants, and
variables as three primitives, the predicate name is defined
as a relation name, and a constant is termed as an entity.
An atom α is defined as a predicate followed by a tuple
p(t1, . . . , tn), where p is an n-ary predicate and t1, . . . , tn
are terms, i.e., variables or constants. For example, the atom
on(X, ground), denotes the predicate called on with X as
variable and ground as constant. If all terms in an atom are
constants, this atom is called a ground atom. In this work
the set of all ground atoms is denoted as G. A predicate,
which can be defined by a set of ground atoms, is called an
extensional predicate. Further, a clause is defined as a rule
in the form of α← α1, . . . , αn, where α is the head atom,
and α1, . . . , αn are body atoms. The predicates defined by
clauses are termed as intensional predicates.

Inductive logic programming (ILP) is a task to derive a defi-
nition (set of clauses) of some intensional predicates, given
some positive examples and negative examples (Koller et al.,
2007; Evans & Grefenstette, 2018). Conducting ILP with
differentiable architectures has been investigated in many
previous work (Evans & Grefenstette, 2018; Rocktäschel &
Riedel, 2017; Dong et al., 2019; Payani & Fekri, 2019). In
this work, we adopt ∂ILP (Evans & Grefenstette, 2018) as

Interpretable Model-based Hierarchical Reinforcement Learning Using Inductive Logic Programming

the base method. With the differentiable deduction, the sys-
tem can be trained with gradient-based methods. The loss
value is defined as the cross-entropy between the confidence
of predicted atoms and the ground truth. Compared with
traditional ILP methods, ∂ILP has advantages in terms of
robustness against noise and ability to deal with fuzzy data
(Evans & Grefenstette, 2018).

3. Related Work
Interpretability There have been a lot of recent papers in-
vestigating the interpretability in deep learning (Doshi-Velez
& Kim, 2017; Gilpin et al., 2018; Roscher et al., 2020). Mak-
ing the black-box deep neural network explainable to human
is also an active research area, having strong practical im-
pact (Tjoa & Guan, 2020). There are some papers studying
interpretable RL from the perspective of programming syn-
thesis (Bunel et al., 2018; Verma et al., 2018). However,
many unsolved problems on interpretable RL are left to be
investigated.

Symbolic RL Some recent papers study the interpretability
of RL by integrating symbolic planning (Leonetti et al.,
2016; Lu et al., 2018; Yang et al., 2018; Lyu et al., 2019;
Illanes et al., 2020), which inherit the interpretability of
symbolic planning with symbolic knowledge. However,
all of them require prior knowledge on action description,
i.e., the effects of symbolic actions on the symbolic state
representations, and they only conduct model-free RL in the
symbolic state space. In this work, this prior knowledge is
not required, and the learned symbolic transition model can
enable the model-based RL in the high level and improve
both the data-efficiency and interpretability.

4. Methodology
As discussed above, the primitive state and action spaces are
defined as S,A, whereas symbolic state and action spaces
in the high level are defined as S̃ and Ã. The target of
the proposed method is to learn the optimal sequence of
subtasks and find policies to solve them, so that the agent
can achieve maximal cumulative reward executing the policy
for each subtask sequentially.

Following previous work (Leonetti et al., 2016; Lyu et al.,
2019; Illanes et al., 2020), we assume the availability of
symbolic information given by human experts, i.e., a set of
propositional symbols, representing important state prop-
erties and structures that may determine the outcomes of
actions or their reward. It has been observed that majority
of discrete dynamic domains have similar structures and
can be generally formulated as action modules (Erdogan &
Lifschitz, 2006; Garnelo et al., 2016; Garcez et al., 2018).
Different from previous work, we do not need any prior
knowledge on the symbolic state transition, i.e., the effects

of symbolic actions.

High-level
agent

Subtask
solver

Real
environment

Symbolic
transition

model

subtask

extrinsic reward

state, reward

action

subtask

symbolic state, reward

Figure 1: Diagram of Hierarchical Framework

4.1. Hierarchical Framework

By utilizing the symbolic representations given by the hu-
man expert, we can decompose the original MDP into low-
level and high-level parts, and solve it in a hierarchical way,
as shown in Figure 1. The high-level agent works on ab-
stracted states with environmental symbolic information and
generates sequence of subtasks, whereas the sub-task solver
in the low level works on the primitive states and solves
subtasks in the given sequence one by one. We assume that
there is a set of propositional symbols (existential predi-
cates) available, describing abstracted states and symbolic
information given by the environment. We denote the set
of propositional symbols as F . E.g, in the room environ-
ment in Figure 2(a), F consists of room indices and possible
status of locks and keys.

In our work the state abstraction is formulated over an ab-
stract graph. Similar to previous works (Gopalan et al.,
2017; Lyu et al., 2019; Abel et al., 2020), which assume
that the state abstractions are provided by the user or expert,
we also assume that the mapping from the primitive state
to its abstraction (a node in the abstract graph) is given by
the user. Given the abstract graph and its mapping, our
algorithm uses model-free RL to automatically train options
that serve as transitions between nodes in the abstract graph
including changes in the symbolic information. Further, the
logic rules governing these transitions are induced via ILP.
For example, the primitive state of the room environment is
shown in Figure 2(a), and the state abstraction is formulated
as an abstract graph in Figure 2(c), where the node denotes
the index of the robot’s current room and each edge repre-
sents an transition between two rooms including changes of
status of locks and keys. Thus, every edge corresponds to
an option, forming a subtask to be solved by the sub-task
solver in the low level.

In the high-level, based on propositional symbols, the policy
of selecting subtasks is learned in the symbolic state S̃
and action Ã spaces which are power sets of propositional
symbols in F . Different from previous HRL approaches,
leveraging ∂ILP, we specifically learn a transition model
for high-level symbolic states. In additional to the real
environment M , as shown in Figure 1, the high-level agent

Interpretable Model-based Hierarchical Reinforcement Learning Using Inductive Logic Programming

updates its policy also by interacting with the symbolic
transition model in a symbolic MDP M̃ . This transition
model introduces both compositional generalization and
task-level interpretability. In the low-level part, the subtask
solver solves subtasks with Q learning, working on primitive
states S.

4.2. Options and Rewards

In this section, we are going to formally define the sym-
bolic MDP, subtask, and the intrinsic and extrinsic rewards
used in the hierarchical learning. The high-level learning
is conducted over abstracted states with symbolic informa-
tion from the environment. This can form the symbolic
MDP M̃ = 〈S̃, Ã〉, where S̃ is symbolic state space, i.e., a
power set of propositional symbols (existential predicates)
S̃ := 2F including indices of abstracted states (nodes in
the abstract graph) and symbolic information of the environ-
ment. For any s̃ ∈ S̃, the atoms in s̃ are all true and those
not in s̃ are false. We also assume the existence of a label-
ing function from the primitive state to the corresponding
symbolic state, i.e., L : S → S̃, giving all the symbolic in-
formation received and abstracted state entered when a state
s ∈ S is reached. For example, in the room Environment
shown in Figure 2(a), s̃ ∈ S̃ can be the set of the index of
robot’s current room and status of keys and locks, and each
ã can denote the index of robot’s intended (next) room.

Each subtask is defined by the symbolic state-action pair
(s̃, ã) for ∀s̃, ã ∈ S̃ × Ã, where the termination condition
of each subtask is only determined by the symbolic action
ã. E.g., the subtask in room environment is defined by the
pair of indices of current and intended rooms together with
the status of locks and keys, and its termination condition is
whether the robot enters the intended room or not.

For every ã ∈ Ã, we define a termination condition set
α(ã) ∈ S̃ containing every symbol (atom) in F related
with the termination condition defined by ã, and denote Tã
as the set of all primitive states in S satisfying the termi-
nation condition of ã. Then we can have the relationship
Tã = L−1(α(ã)), where L−1 is the inverse of the labeling
function. Specifically, in room environment, for subtask
(s̃, ã), α(ã) is the index of robot’s intended room and Tã
can be the set containing all the primitive states where the
robot has entered room α(ã). Both α(ã) and Tã can deter-
mine the success of the subtask. Hence we can define the
set of options as O(M) = {〈πã, Tã〉|ã ∈ Ã}, where every
policy πã is specifically trained for reaching states in Tã.
E.g., in room environment, the policy πã can be a policy
specifically trained for a certain subtask, such as going to
the neighboring room on the right.

In the proposed framework, as shown in Figure 1, the sub-
task solver and high-level agent are trained by intrinsic re-
wards and extrinsic rewards, respectively (Yamamoto et al.,

2018; Le et al., 2018; Illanes et al., 2020). The policies
in the low level for solving subtasks are learned using Q-
learning with intrinsic rewards, which have pseudo-rewards
to encourage the agent to finish each subtask successfully.
For certain subtask ã ∈ Ã, the intrinsic reward at state
s ∈ S is defined as

ri(s; ã) =

{
η α(ã) ⊆ L(s)
r otherwise

(1)

where η is a large number to encourage the agent to achieve
the target of the subtask, and r is the reward for valid move-
ment or environmental reward. We know that α(ã) denotes
symbols representing the success conditions of the subtask,
e.g., the index of robot’s intended room, and L(s) is the
symbolic state corresponding to s ∈ S, e.g., robot’s current
room and status of locks and keys. Hence α(ã) ⊆ L(s)
denotes that successful conditions of the subtask have been
satisfied in the current state. Moreover, the high-level agent
performs Q learning with extrinsic rewards. For subtask
ã with initial symbolic state L(s), the extrinsic reward is
defined as

re(L(s), ã) =


R(L(s), ã), 0.9 < t(L(s), ã)

−ξ0, 0 < t(L(s), ã) < 0.9

−ξ1, t(L(s), ã) < 0.9 and
N < n(L(s), ã)

(2)

where t(L(s), ã) denotes the success rate of the subtask
based on learning history, and n(L(s), ã) is the number
of that subtask having been tried so far. Specifically
0 < ξ0 � ξ1 refers to the penalty for immature and un-
learnable subtasks respectively. Immature subtasks refer to
those without sufficient training, and unlearnable subtasks
are those too difficult to solve. We penalize unlearnable sub-
tasks more heavily than immature ones. If the subtask can be
solved robustly, the extrinsic reward is set to be R(L(s), ã)
which is the environmental rewards accumulated when solv-
ing the subtask ã starting at s ∈ S.

4.3. Learning Symbolic Transition Model

For symbolic state and action spaces, we define the state
transition and reward as P̃ : S̃ × Ã → S̃. We denote the
logic transition model as P̃φ, parameterized by φ. In this
work, we propose to use ∂ILP to learn the logic rules de-
scribing the state transition in the symbolic space. It is to
conduct regression over collected experience tuples in the
symbolic state and action spaces, which uses the symbolic
state of current state (L(s)) and symbolic action (ã) as in-
puts to predict the next abstracted state (next position in
the abstract graph) and reward information described in a
predicate language.

Specifically ∂ILP operates on the valuation vectors whose
space is E = [0, 1]|F|, each element of which represents

Interpretable Model-based Hierarchical Reinforcement Learning Using Inductive Logic Programming

the confidence that a related grounded symbol (atom) in
F is true. Denote e0 as the valuation (true or false) of all
the symbols in F . We define a mapping dφ : E → E
with parameters φ, which performs deduction of facts e0
using weights ω associated with all the possible clauses.
dφ always consists of repeated applications of single-step
deduction function gφ, shown as below,

dtφ(e0) =

{
gφ(d

t−1
φ (e0)) if t > 0

e0 if t = 0
(3)

where t is the deduction step, and gφ represents one-step
deduction of all the possible clauses weighted by their
confidences. Defining probabilistic sum ⊕ as a ⊕ b =
a+ b− a� b,∀a, b ∈ E, we can express the operation of
single-step deduction as below

gφ(e) =

(⊕∑
i

∑
j

ωi,jfi,j(e)

)
+ e0 (4)

where function fi,j implements one-step deduction using
jth definition of ith possible clause, with ωi,j as its weight
(Evans & Grefenstette, 2018; Jiang & Luo, 2019). For the
specific ith clause, we can constrain the sum of its weights
to be 1 by letting ωi = softmax(φi), where φi are related
parameters to be trained. Then the transition model can be
denoted as P̃φ, parameterized by the same parameters as
ILP model. In addition, we propose to define an extensional
predicate CurAct(X,Y), with variables X and Y denoting
current symbolic state and intended symbolic action respec-
tively. Several auxiliary predicates are also introduced to
facilitate the logic induction in ∂ILP.

4.4. Algorithm

The details of the proposed method is described in Algo-
rithm 1 in Appendix. It is based on the HRL setting shown in
Figure 1, where the high-level agent selects the goal, form-
ing a subtask, and asks the sub-task solver to learn the policy
for this subtask by regular Q-learning. For the symbolic
MDP M̃, we propose to learn a symbolic state transition
model P̃φ by ILP and form a simulated environment M̃′, so
as to reduce the sample complexity and introduce task-level
interpretability. The high-level agent interacts with the real
environment via sub-task solver and simulated environment
M̃′ in an alternating way, described in Line 10-18 and Line
20 of Algorithm 1 in Appendix respectively. The transition
model P̃φ is updated by ∂ILP in Line 32, with the objectives
(3)(4).

In order to better control estimation bias which is especially
harmful in discrete state-action environments, the high-level
agent performs Maxmin Q learning (Lan et al., 2019) with
extrinsic rewards (2). Its core idea is to obtain N estimates
of the action (Q) value, i.e., Q1

h, . . . , Q
N
h , and use the min-

imum of these estimates as the target in Q learning, i.e.,
maxãmini∈{1,...,N}Q

i
h(s̃, ã).

5. Experiments
We evaluate the proposed approach in two environments,
having different propositional symbols and dynamics. The
first environment is the modified room environment (Le
et al., 2018; Abel et al., 2020). We extended it to have more
complex high-level states, with more propositional symbols
added. The second is Montezuma’s Revenge, one of the
most difficult game in Atari games (Mnih et al., 2015), con-
cerning the movement of an Avatar among a set of locations
(ladders, platforms, doors, ropes, etc), picking up a key and
using the key to open a door. The first environment has
simple low-level subtasks and complex high-level states,
whereas the second one has complex subtasks and relatively
simple high-level states. We quantitatively verify the ad-
vantage of the proposed method in sample efficiency and
compositional generalization. The interpretability can only
be presented qualitatively.

In the experiments, only minimal set of propositional sym-
bols is provided to describe the background and auxiliary
predicates are not provided as prior knowledge. The rela-
tionships about auxiliary predicates are learned by the agent
automatically. Our proposed method is not dependent on
that the agent knows the meaning of provided symbolic
propositions.

5.1. Navigation in Room Environment

The room environment was a classical testbed for hierarchi-
cal RL, used in many previous papers (Gopalan et al., 2017;
Le et al., 2018; Abel et al., 2020). It is to navigate the robot
to the target room. In this work, in order to complicate the
symbolic state, we add locks and keys in various colors and
place them in different rooms.

Setup The training map consists of 17 × 17 grids, evenly
partitioned into 4× 4 rooms, shown in Figure 2(a). Every
room occupies 3×3 grids, and adjacent rooms are separated
by wall segments (yellow blocks). Some pairs of adjacent
rooms are connected by corridors. Some rooms have keys,
and some corridors are blocked by locks. The lock can
only be opened by the key in the same color. And the robot
has to open several locks before reaching the target room.
In addition, the robot can only observes the current room
without knowing the connectivity of rooms or locations of
locks and keys.

Every movement of the agent incurs a reward of−1, encour-
aging the agent to follow the shortest path. The reward of
reaching the target is 100, and opening each lock can receive
a reward of 10. There are no rewards for other situations,
making the environmental rewards sparse. The robot can

Interpretable Model-based Hierarchical Reinforcement Learning Using Inductive Logic Programming

(a) Training Environment (b) Learning Curves

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

(c) Abstract Graph (d) Subtask Success Rate

Figure 2: Room Environment for Training and Learning Perfor-
mance. There are two pairs of locks and keys in red and green.
The robot starts at black grid and targets at the green grid. The
state abstraction is also shown in abstract graph.

only hold one key at the same time.

Symbolic Representation The high-level state consists of
the index of current room, the intended symbolic action
of the robot, whether the room has been visited or not,
and color of the lock and key in the current room. The
graph of the training environment is shown in Figure 2(c).
Rooms are nodes and corridors or locks are edges. Keys
are contained in rooms in different colors and locks are
represented by dashed lines. The symbolic actions are room
indices, referring to the next room the robot intends to go.

The predicates used in learning the abstract graph are for-
mally defined in Table 1 in Appendix, where variables are
X and A, referring to room indices and colors of locks and
keys, respectively. Specifically, if Connect(X,Y) is true,
subtask of going from room X to Y is feasible. They are all
initialized to be false. These properties are unknown to the
robot apriori. The reward of opening a lock is formulated as
part of the transition rules, and the reward of reaching the
target is not formulated due to its simplicity.

Experiment Result The first experiment is to compare the
sample efficiency of the proposed method with baselines,
i.e., symbolic deep RL (SDRL) (Lyu et al., 2019) and hier-
archical DQN (Kulkarni et al., 2016), on the training map in
Figure 2(a). The second experiment is to verify the compo-
sitional generalization introduced in the proposed method,
where the baseline is hierarchical DQN. The maximum
episode in training and testing is 200.

The symbolic state transition model M̃φ is trained by the
experience collected from the symbolic MDP M̃ . By opti-

mizing the objective (4), the symbolic state transition rules,
readable to human, can be induced as below,

• 1: CurAct(X,Y), Connect(X,Y)→Next(Y)

• 2: RoomHasKey(X,Y), Visited(X)→invent1(A)

• 3: invent1(A), Lock(X,Y,A)→invent2(X,Y)

• 4: CurAct(X,Y), invent2(X,Y)→Next(Y)

• 5: CurAct(X,Y), invent2(X,Y)→RewardOpenLock(Y)

In the induced transition rules, several invented predicates,
labelled as invent1, invent2, are used to represent auxiliary
concepts inherent in symbolic state transitions. CurAct is the
input to the transition model, and Next is the output which
is also the training target. The rest of above predicates are
all extensional predicates, grounded by the subtask solver.
The rule 1 above denotes the transition of going to another
room through a corridor. The rule 2 denotes that the key in
color A has been obtained by the robot (agent). The rule
3 tells us that the lock in color A has been opened by the
correct key. Finally the rule 4 refers to the event that the
agent goes to the intended room Y through an opened lock,
with reward information formulated in 5. These rules 1-5
are learned via the ILP and unknown to the agent apriori.

We first verify the sample efficiency by comparing the pro-
posed method with baselines on the training environment.
Specifically, the action description in SDRL (Lyu et al.,
2019) is reformulated here and anything about state transi-
tions are removed. We adopt ε-greedy for action selection
in the high level, where ε is linearly decreasing from 0.3 to
0.03. And in order to reduce estimation bias, we use N = 4
tables for Q values in Maxmin Q-learning (Lan et al., 2019).
The learning curves of cumulative rewards are shown in
Figure 2(b). We can see that the proposed method is around
40% more sampling efficient than hDQN, and 30% more
efficient than SDRL. That is because the Q function in the
high level is also updated via the learned transition model,
and the induced rules can also explain new transition tuples,
e.g., the rule for opening locks can be generalized to locks
in different locations. Moreover, the number of trials for
each subtask K is set to 10, and the subtask success rate is
shown in Figure 2(d), compared with the case of K = 5. It
is observed that the subtask success rate can quickly become
close to 1, and it is not equal to 1 because the high-level
agent can always select some infeasible subtasks with some
probability due to the ε-greedy strategy.

We then evaluate the capability of compositional generaliza-
tion of the proposed method. The training is still performed
on the map in Figure 2(a). However, the testing is on three
different maps shown in Figure 3. The first testing map in
Figure 2(a) has similar difficulty as the training map, the
second one in Figure 3(b) has more locks to open than train-
ing map, and the third one in Figure 3(c) has larger size with

Interpretable Model-based Hierarchical Reinforcement Learning Using Inductive Logic Programming

(a) Test 1 (b) Test 2 (c) Test 3

(d) Test 1 (e) Test 2 (f) Test 3

Figure 3: Testing Environments and Compositional Generalization. Three testing environments are shown in the first row, and performance
comparisons are in the second row. The hierarchical DQN did not solve test 3 in 200 episodes.

a deceptive lock leading to dead-end. The first baseline is
the proposed method without utilizing the transition model
learned in the training environment, and the second base-
line is the HRL (Kulkarni et al., 2016) without any specific
design for generalization.

During testing, the Q function learned in training cannot
be used directly, since the room connectivity has changed
in the testing maps. However, as shown in Figure 3, the
proposed method can still solve testing maps significantly
faster than baselines, since the symbolic transition rules
learned in the training map still hold in the testing maps.
More interestingly, the regular HRL cannot solve Test 3
in 200 episodes, and the proposed can solve that within
100 episodes. We can also see that the first baseline, i.e.,
the proposed method without using learned transition rules
in the training map, learn slower in all the testing maps,
showing the effectiveness of the symbolic transition model.

5.2. Montezuma’s Revenge

“Montezuma’s Revenge” requires the player to navigate the
agent through several rooms while collecting treasures. For
the first room, as shown in Figure 4(a), in order to open
the door, the player has to first climb down the ladders to
pick up the key, jumping over the moving skull for twice,
resulting in a long sequence of actions before receiving a
reward for collecting the key (+100). After that, the player
has to return back and walk towards the door and open it,
which results in another reward (+300). Optimal execution
requires more than 200 primitive actions. Vanilla DQN
frequently achieves a score of 0 on this domain (Mnih et al.,
2015).

(a) Game Screen and Abstrac-
tion

1

23

4
5

6

(b) Abstract Graph

Figure 4: The game screen with 6 pre-defined nodes is shown in
the left picture. And feasible subtasks are also presented as edges
in the abstract graph.

Setup For this high-dimensional environment, our exper-
iment is based on the DQN architecture (Kulkarni et al.,
2016) with double-Q learning (Hasselt et al., 2016) and
prioritized experience replay (Schaul et al., 2015). Based
on the Arcade Learning Environment (ALE) (Bellemare
et al., 2013), we use ALE API to recognize the locations
of the agent, the skull, ladders and platforms from pixels,
realizing the mapping function L from observation to sym-
bolic propositions F . Here we only use hierarchical DQN
(hDQN) (Kulkarni et al., 2016) as baseline. That’s because
SDRL had many assumptions on symbolic transition rules as
prior knowledge (Lyu et al., 2019), which are not avoidable
here. The prior knowledge in the proposed method is only
about 6 pre-defined locations and symbolic propositions
given by the environment.

The high-level representation (abstraction) of this environ-
ment is based on 6 pre-defined locations: middle platform
(1), lower left ladder (2), lower right ladder (3), key (4),
right door (5) and left of rotating skull (6), with indices
denoted in the brackets. All of these nodes are shown in
Figure 4(a). The symbolic proposition given by the envi-

Interpretable Model-based Hierarchical Reinforcement Learning Using Inductive Logic Programming

Figure 5: Learning Curves for Symbolic Monetzumar’s Revenge.

(a) (b)

Figure 6: The success rate for all the subtasks.

ronment is the predicate hasKey() with 0 arity, denoting
whether the key has been picked up or not. The subtask
in this environment is defined as the transition from one
node to another with or without key, on the abstract graph
in Figure 4(b). We only consider 13 subtasks here, defined
in Table 2 in Appendix. Each subtask is handled by an
independent DQN, and the architecture of deep neural net-
works follows the classical design (Mnih et al., 2015), used
in most Atari games. Similar as the previous section, be-
sides hasKey(), we also adopt some regular predicates in
this environment, including CurAct(·, ·),Connect(·, ·) and
Next(·). In addition, to formulate reward function here, we
define predicates RewardKey() and RewardDoor(), corre-
sponding to the events of receiving reward +100 and +300
for getting the key and opening the right door, respectively.

The baseline is hDQN, where subtask is associated with an
object and the state transitions in the high level are restricted
to cases shown in Table 2 in Appendix, same as those in
the propose method. However, our method learns a logic-
based transition model in the high-level by ∂ILP (Evans
& Grefenstette, 2018). Further, instead of interacting with
the environment, the optimal sequence of subtasks is found
by planning on the learned transition model, i.e., traversing
over the abstract graph, which improves data-efficiency and
introduces the interpretability of the learned policy.

Experiment Results In this environment, we learn tran-
sition rules for both symbolic states and reward function.
Based on the experience tuples collected during the explo-
ration, we induce the following transition rules via ∂ILP, by
optimizing objectives in (3) and (4).

• 1: CurAct(X,Y), Connect(X,Y)→Next(Y)

• 2: ¬hasKey(), Next(4)→RewardKey()

• 3: hasKey(), Next(5)→RewardDoor().

Here node 4 and 5 denote the key and right door respectively.
The rule 1 above denotes that the agent goes from nodeX to
Y by successfully finishing subtask (X,Y). The rules 2 and
3 formulate the reward of obtaining the key and opening the
right door. All of these rules are learned based on collected
experience via ILP and unknown apriori.

As shown in Figure 5, the proposed method is around 50%
faster than hDQN. That is because the sequence of subtasks
is determined over the abstract graph. Although optimal
low-level policies for the subtasks may not be well learned
(subtask success rate < 0.9) in early episodes, the optimal
subtask sequence with highest accumulated rewards can be
discovered, as long as the connectivity of nodes in the graph
is discovered. For the environment given in Figure 4(a), the
optimal path on the abstract graph is 1 → 2 → 3 → 4 →
3 → 2 → 1 → 5. Then the subtask solver can focus on
subtasks along this sequence, without trying other subtasks,
improving data efficiency significantly. We also present the
success rate of 7 subtasks along the optimal path in Figure
6. It reflects more details on how the optimal solution is
learned.

6. Conclusion
In this work, we proposed a new hierarchical framework
for symbolic RL. In order to improve data efficiency and
interpretability, leveraging the power of inductive logic pro-
gramming (ILP), we learn a symbolic transition model in
abstracted states and the high-level agent can also conduct
learning over this learned model in addition to the real envi-
ronment, which saves a lot of samples and improves data-
efficiency. The transition rules induced by ILP can also
reveal the working mechanism inherent in the symbolic
information and the environment, introducing task-level in-
terpretability and gaining more trust from the human user.
In the future, we are going to investigate new hierarchical
algorithm which can specify the state abstraction automati-
cally without relying on any prior knowledge given by an
expert.

References
Abel, D., Umbanhowar, N., Khetarpal, K., Arumugam, D.,

Precup, D., and Littman, M. Value preserving state-action
abstractions. In International Conference on Artificial
Intelligence and Statistics, pp. 1639–1650. PMLR, 2020.

Akkaya, I., Andrychowicz, M., Chociej, M., Litwin, M.,
McGrew, B., Petron, A., Paino, A., Plappert, M., Powell,
G., Ribas, R., et al. Solving rubik’s cube with a robot
hand. arXiv preprint arXiv:1910.07113, 2019.

Andrychowicz, O. M., Baker, B., Chociej, M., Jozefowicz,
R., McGrew, B., Pachocki, J., Petron, A., Plappert, M.,

Interpretable Model-based Hierarchical Reinforcement Learning Using Inductive Logic Programming

Powell, G., Ray, A., et al. Learning dexterous in-hand
manipulation. The International Journal of Robotics
Research, 39(1):3–20, 2020.

Barto, A. G. and Mahadevan, S. Recent advances in hier-
archical reinforcement learning. Discrete event dynamic
systems, 13(1-2):41–77, 2003.

Bellemare, M. G., Naddaf, Y., Veness, J., and Bowling, M.
The arcade learning environment: An evaluation plat-
form for general agents. Journal of Artificial Intelligence
Research, 47:253–279, 2013.

Bunel, R., Hausknecht, M., Devlin, J., Singh, R., and Kohli,
P. Leveraging grammar and reinforcement learning for
neural program synthesis. In International Conference
on Learning Representations, 2018.

Dong, H., Mao, J., Lin, T., Wang, C., Li, L., and Zhou, D.
Neural logic machines. arXiv preprint arXiv:1904.11694,
2019.

Doshi-Velez, F. and Kim, B. Towards a rigorous sci-
ence of interpretable machine learning. arXiv preprint
arXiv:1702.08608, 2017.

Došilović, F. K., Brčić, M., and Hlupić, N. Explainable arti-
ficial intelligence: A survey. In 2018 41st International
convention on information and communication technol-
ogy, electronics and microelectronics (MIPRO), pp. 0210–
0215. IEEE, 2018.

Erdogan, S. T. and Lifschitz, V. Actions as special cases. In
KR, pp. 377–388, 2006.

Evans, R. and Grefenstette, E. Learning explanatory rules
from noisy data. Journal of Artificial Intelligence Re-
search, 61:1–64, 2018.

Falco, P., Attawia, A., Saveriano, M., and Lee, D. On policy
learning robust to irreversible events: An application
to robotic in-hand manipulation. IEEE Robotics and
Automation Letters, 3(3):1482–1489, 2018.

Garcez, A., Gori, M., Lamb, L., Serafini, L., Spranger,
M., and Tran, S. Neural-symbolic computing: An effec-
tive methodology for principled integration of machine
learning and reasoning. Journal of Applied Logics, 6(4):
611–632, 2019.

Garcez, A. d., Dutra, A. R. R., and Alonso, E. Towards sym-
bolic reinforcement learning with common sense. arXiv
preprint arXiv:1804.08597, 2018.

Garnelo, M., Arulkumaran, K., and Shanahan, M. Towards
deep symbolic reinforcement learning. arXiv preprint
arXiv:1609.05518, 2016.

Gilpin, L. H., Bau, D., Yuan, B. Z., Bajwa, A., Specter, M.,
and Kagal, L. Explaining explanations: An overview of
interpretability of machine learning. In 2018 IEEE 5th
International Conference on data science and advanced
analytics (DSAA), pp. 80–89. IEEE, 2018.

Gopalan, N., desJardins, M., Littman, M. L., MacGlashan,
J., Squire, S., Tellex, S., Winder, J., and Wong, L. L.
Planning with abstract markov decision processes. In
27th International Conference on Automated Planning
and Scheduling, 2017.

Hasselt, H. v., Guez, A., and Silver, D. Deep reinforcement
learning with double q-learning. In Proceedings of the
Thirtieth AAAI Conference on Artificial Intelligence, pp.
2094–2100, 2016.

Illanes, L., Yan, X., Icarte, R. T., and McIlraith, S. A. Sym-
bolic plans as high-level instructions for reinforcement
learning. In Proceedings of the International Conference
on Automated Planning and Scheduling, volume 30, pp.
540–550, 2020.

Israelsen, B. W. and Ahmed, N. R. “dave... i can assure
you... that it’s going to be all right...” a definition, case for,
and survey of algorithmic assurances in human-autonomy
trust relationships. ACM Computing Surveys (CSUR), 51
(6):1–37, 2019.

Janner, M., Fu, J., Zhang, M., and Levine, S. When to
trust your model: Model-based policy optimization. In
Advances in Neural Information Processing Systems, pp.
12519–12530, 2019.

Jiang, Z. and Luo, S. Neural logic reinforcement learning.
In International Conference on Machine Learning, pp.
3110–3119. PMLR, 2019.

Koller, D., Friedman, N., Džeroski, S., Sutton, C., McCal-
lum, A., Pfeffer, A., Abbeel, P., Wong, M.-F., Heckerman,
D., Meek, C., et al. Introduction to statistical relational
learning. MIT press, 2007.

Kulkarni, T. D., Narasimhan, K., Saeedi, A., and Tenen-
baum, J. Hierarchical deep reinforcement learning: In-
tegrating temporal abstraction and intrinsic motivation.
Advances in neural information processing systems, 29:
3675–3683, 2016.

Kumar, V., Gupta, A., Todorov, E., and Levine, S. Learn-
ing dexterous manipulation policies from experience and
imitation. arXiv preprint arXiv:1611.05095, 2016a.

Kumar, V., Todorov, E., and Levine, S. Optimal control with
learned local models: Application to dexterous manipula-
tion. In 2016 IEEE International Conference on Robotics
and Automation (ICRA), pp. 378–383. IEEE, 2016b.

Interpretable Model-based Hierarchical Reinforcement Learning Using Inductive Logic Programming

Kurutach, T., Clavera, I., Duan, Y., Tamar, A., and Abbeel,
P. Model-ensemble trust-region policy optimization. In
International Conference on Learning Representations,
2018.

Lan, Q., Pan, Y., Fyshe, A., and White, M. Maxmin q-
learning: Controlling the estimation bias of q-learning. In
International Conference on Learning Representations,
2019.

Le, H. M., Jiang, N., Agarwal, A., Dudı́k, M., Yue, Y.,
and Daumé, H. Hierarchical imitation and reinforcement
learning. In 35th International Conference on Machine
Learning, ICML 2018, pp. 4560–4573. International Ma-
chine Learning Society (IMLS), 2018.

Leonetti, M., Iocchi, L., and Stone, P. A synthesis of auto-
mated planning and reinforcement learning for efficient,
robust decision-making. Artificial Intelligence, 241:103–
130, 2016.

Lu, K., Zhang, S., Stone, P., and Chen, X. Robot represen-
tation and reasoning with knowledge from reinforcement
learning. arXiv preprint arXiv:1809.11074, 2018.

Lyu, D., Yang, F., Liu, B., and Gustafson, S. Sdrl: inter-
pretable and data-efficient deep reinforcement learning
leveraging symbolic planning. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 33,
pp. 2970–2977, 2019.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness,
J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidje-
land, A. K., Ostrovski, G., et al. Human-level control
through deep reinforcement learning. nature, 518(7540):
529–533, 2015.

Payani, A. and Fekri, F. Learning algorithms via neural
logic networks. arXiv preprint arXiv:1904.01554, 2019.

Peng, X. B., Berseth, G., Yin, K., and Van De Panne, M.
Deeploco: Dynamic locomotion skills using hierarchi-
cal deep reinforcement learning. ACM Transactions on
Graphics (TOG), 36(4):1–13, 2017.

Puiutta, E. and Veith, E. Explainable reinforcement learning:
A survey. arXiv preprint arXiv:2005.06247, 2020.

Rocktäschel, T. and Riedel, S. End-to-end differentiable
proving. In Advances in Neural Information Processing
Systems, pp. 3788–3800, 2017.

Roscher, R., Bohn, B., Duarte, M. F., and Garcke, J. Ex-
plainable machine learning for scientific insights and dis-
coveries. IEEE Access, 8:42200–42216, 2020.

Schaul, T., Quan, J., Antonoglou, I., and Silver, D. Priori-
tized experience replay. arXiv preprint arXiv:1511.05952,
2015.

Sutton, R. S., Precup, D., and Singh, S. Between mdps
and semi-mdps: A framework for temporal abstraction in
reinforcement learning. Artificial intelligence, 112(1-2):
181–211, 1999.

Tjoa, E. and Guan, C. A survey on explainable artificial in-
telligence (xai): Toward medical xai. IEEE Transactions
on Neural Networks and Learning Systems, 2020.

Van Hoof, H., Hermans, T., Neumann, G., and Peters, J.
Learning robot in-hand manipulation with tactile features.
In 2015 IEEE-RAS 15th International Conference on Hu-
manoid Robots (Humanoids), pp. 121–127. IEEE, 2015.

Verma, A., Murali, V., Singh, R., Kohli, P., and Chaudhuri,
S. Programmatically interpretable reinforcement learning.
In International Conference on Machine Learning, pp.
5045–5054. PMLR, 2018.

Watkins, C. J. and Dayan, P. Q-learning. Machine learning,
8(3-4):279–292, 1992.

Yamamoto, K., Onishi, T., and Tsuruoka, Y. Hierarchical
reinforcement learning with abductive planning. arXiv
preprint arXiv:1806.10792, 2018.

Yang, F., Lyu, D., Liu, B., and Gustafson, S. Peorl: In-
tegrating symbolic planning and hierarchical reinforce-
ment learning for robust decision-making. arXiv preprint
arXiv:1804.07779, 2018.

Interpretable Model-based Hierarchical Reinforcement Learning Using Inductive Logic Programming

Algorithm 1 Model-based Hierarchical Reinforcement Learning

Require: Propositional symbols (fluents) F , labeling function L, termination condition α(ã),∀ã ∈ Ã, replay buffer B,
number of Q estimates N , exploration parameter ε > 0, maximum steps in one episode Tmax, symbolic transition model
P̃φ;

1: Initialize N high-level Q networks Q1
h, . . . , Q

N
h randomly;

2: for e = 1, . . . , do
3: l← 0
4: Reset the environment and observe the initial state s;
5: Obtain the current symbolic state s̃← L(s)
6: while the goal has not been reached or l < Tmax do
7: Qmin

h (s̃, ã)←− mink∈{1,...,N}Q
k
h(s̃, ã),∀ã ∈ Ã

8: Choose symbolic action ã by ε-greedy according to Qmin
h

9: if e is even then
10: Starting at initial state s, the subtask solver tries to solve subtask (s̃, ã) for K times.
11: Update success ratio t and number of trials n for subtask (s̃, ã)
12: Compute the extrinsic reward re(s̃, ã) as (2)
13: s′ ← s and s̃′ ← L(s)
14: if any successful trials then
15: Assign s′ by the last state of certain successful trial.
16: Update s̃′ ← L(s′) and s← s′

17: end if
18: Store the transition tuple (s̃, ã, s̃′, re) into replay buffer B
19: else
20: Predict the reward re and next state s̃′ by transition model P̃φ

21: end if
22: Update Q networks
23: l← l + 1
24: s̃← s̃′

25: end while
26: Randomly sample a minibatch of transitions {(s̃, ã, s̃′, re)} from B, and fit the model P̃φ over these transitions by

∂ILP
27: end for

Algorithm 2 Maxmin Q Learning

Require: Q networks Q1
h, . . . , Q

N
h , and replay buffer B

1: Select a subset S from {1, . . . , N}
2: for each i ∈ S do
3: Randomly sample a minibatch of transitions {(s̃, ã, s̃′, re)} from B
4: Obtain the target for every sampled transition:

Y ← re + γmax
ã∈Ã

Qmin
h (s̃′, ã) (5)

5: Update Q network Qih(s̃, ã)← Qih(s̃, ã) + α[Y −Qih(s̃, ã)], with step size α.
6: end for

Interpretable Model-based Hierarchical Reinforcement Learning Using Inductive Logic Programming

Table 1: Definitions of Propositions (Predicates) in Room Environment

Name Definition

CurAct(X,Y)
The room X the robot currently stays, and the intended symbolic

action Y of the robot
Next(X) The robot will come to room X at next time step

Visited(X) Room X has been visited by the robot in current episode
Connect(X,Y) Room X and room Y are connected by a corridor without any lock

RoomHasKey(X,A) Room X has a key in color A
Lock(X,Y,A) There is a lock between room X and Y in color A

RewardOpenLock() Reward for opening a lock

Table 2: Subtasks Definition (From: source node, To: target node)

No. From To hasKey() Feasible
1 1 2 False Yes
2 2 3 False Yes
3 3 4 False Yes
4 4 3 True Yes
5 3 2 True or False Yes
6 2 1 True or False Yes
7 1 5 True Yes
8 2 6 True or False Yes
9 6 4 True or False No

10 1 5 False Yes
11 2 4 True or False No
12 4 2 True No
13 2 5 True No

