
EasyChair Preprint
№ 3135

Optimization of Multi-way Join Cost using System
R* and SharesSkew

Leela Krishna Chittem and Venkata Subba Reddy Poli

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

April 8, 2020

Optimization of Multi-way Join Cost using
System R* and SharesSkew

Chittem Leela Krishna Dr. Poli Venkata Subba Reddy

 Research Scholar Professor
 Dept. of CSE Dept. of CSE
 S.V.U. College of Engineering S.V.U. College of Engineering
 Tirupati, India Tirupati, India

chittem.leelakrishna03@gmail.com vsrpoli@hotmail.com

Abstract—In a distributed environment relations are
stored at different sites. To perform algebraic
operations such as join, the relations are to be
transferred from one site to the other in such a way
that the total communication cost is minimized. This
paper deals with the problem of computing the
transmission cost using two approaches. The first
uses System R* algorithm approach when the data is
of non-skew nature and the second uses SharesSkew
algorithm when the data has skews i.e., same value
for a specific join attribute, named as Heavy
Hitter(HH). Rules of the two algorithms to be
followed for performing join are specified and by
illustrating with Banking System, the communication
cost is evaluated.

Keywords—Distributed Databases, Communication
Cost, System R* algorithm, SharesSkew algorithm,
Heavy Hitter

1. Introduction

 A database is said to be distributed if its data
is stored at different locations[1]. To get access of
such data, multiple computers are to be connected
through a communication link (channel). To perform
algebraic operations on relations stored at different
locations such as join, tuples are to be transferred
from one location/site to the other in an optimized
manner i.e., the cost of transmission is to be
minimized.

 Data in the relations is said to be skewed in
nature if there exists same value for a specific
attribute frequently, named as a heavy hitter(HH). To

handle skewed data in multi-way joins, the first step
is to identify the attributes with heavy hitters and
others in a normal manner.

In this paper, we have numerically solved
two problems. First, we have evaluated the cost
function of joining three relations stored at three
different locations. To do this, we made use of the
System R* optimization algorithm[1], which assumes
the relations participating in the join as the leaf nodes
of an unordered tree with a CHOICE operator to
choose among various combinations to minimize the
total transmission cost.

The second problem deals with the
computation of cost for a multi-way join of relations
with skewed data using MapReduce[2,8] mechanism.
The map phase results in generating key-value pairs
for the tuples using a Hash function[8], and the keys
are sent to the reducers. If the data is skewed (contain
heavy hitters), then the join is decomposed into
several residual joins[2]. The cost of transmitting
data from mappers to reducers is the communication
cost which is to be minimized using SharesSkew[2]
algorithm.

The paper is organized as follows: Section 2
provides related work which deal with the two
problems mentioned. In Section 3, the rules of system
R* algorithm that are to be followed and the formulae
to calculate total transmission cost are given. Finally,
we have evaluated the total cost of joining three
relations at three different sites by considering
Banking system as a numerical example. In Section
4, an overview of Shares algorithm is given, followed
by the SharesSkew phases and evaluation metrics. At
last, the formation of residual joins and the total cost
of each join are calculated by taking Banking system
as an example.

2. Related Work

In [3], a new approach to identify the map-key with
each attribute getting a share to find the reduce
process on a large-scale data is given. Once the
values of attributes are hashed, the tuples are

replicated to the reducers. The problem of optimizing
shares for a fixed number of reducers is also
discussed.

The problem of computing a parallel query that is run
in multiple servers in one round of communication
with two cases is discussed in [4]. First, by
considering only the statistical parameters of the
database with a skew-free data viz., relation
cardinality. Second, data in the relations with skews
(heavy hitters). For both cases, upper and lower
bounds are also expressed.

In [5], communication cost is evaluated for complex
parallel queries involving data reshuffling.
Algorithms for evaluating Multi-join query and
optimal-communication in distributed environment
are also discussed.

Handling skewed data during joins in MapReduce
using SkewTune is discussed in [6, 7]. Mitigating
skews in real time applications at runtime in a public
cloud and through a Graphical User Interface
environments are also demonstrated.

3. System R* Optimization

System R* is used in a distributed environment
where algebraic operations such as select, project,
join, union etc. are to be performed on the relations
stored at different locations. R* algorithm performs
query evaluations in an optimized manner by
introducing a new operator, namely CHOICE[1],
which gives a provision for the system to pick an
identical copy of a relation among its replicas.
Suppose, if we want to perform R⨝S and relation R
has three replicas R1, R2, R3 at three different
locations and relation S has two replicas S1, S2 at
different locations, then the join operation can be
expressed as CHOICE(R1, R2, R3) ⨝ CHOICE(S1,
S2) as shown in Fig 1. The cost of transferring the
relations R and S can be minimized by picking the
replicas near to each other using the CHOICE
operator.

Figure 1 Joins possible with CHOICE operator

A. Description of R* Algorithm

To perform join operation between two relations R
and S stored at different locations, R* algorithm
follows the below rules:

 Fetch relation R to the site of S and perform
join there. The cost will be the size of
relation R plus a constant.

 Fetch relation S to the site of R and perform
join there. The cost will be the size of
relation S plus a constant.

 Fetch relations R and S to a new site and
perform join there. The cost will be the sizes
of relations R and S plus a constant.

 Perform a lookup of all tuples of relation R.
For each tuple in R, find a matching tuple in
S and fetch only such tuples to the site of S
and join there. The cost will be the product
of the size of R and expected tuples to be
shipped plus a constant.

 Perform operation similar to the above step
with the relations R and S being swapped.

To perform join operation between two relations R
and S stored at the same location, the below rules are
followed:

 Compute the join at the same site where R
and S reside. Since there is no transfer of
relations involved, the cost is zero.

 Compute the join at the same site where R
and S reside and transfer the result to a new
location. The cost will be the size of the
result relation plus a constant. Or the
relations R and S can be shipped to a new
location and perform join there, and the
transmission cost will be the sizes of
relations R and S plus a constant.

B. Evaluation of Cost Function

 When dealing with the relations distributed
across various sites, evaluating the total cost using
system R* will be equal to the cost of transmission
and the cost of computing the algebraic operation.
From the rules given above, the cost of fetching a
relation R to the new site and perform an operation
with other relation residing at the same site will be
given as size(R)+c0, where c0 is a constant. Similarly,
the cost of performing a lookup of the tuples of a
relation R with the other relation S for matching
tuples will be size(R)[c0+(size(S)/I)], where c0 is a
constant and I is the image size of the projection of
attribute of S onto R∩S. After performing the join

between relations R and S, i.e., R⨝S, the new image
size will be [size(R)*size(S)]/max(I(R),I(S))

C. Applying R* Algorithm on an Example

Consider a Bank information system contains
three relations Customer(C), Account(A) and
Balance(B) with their schemas C(cname,custid),
A(custid,acno) and B(acno,bal) and sample data as
given in Table 1:

Table 1 Sample data of Banking System
 Customer Account Balance

Cname Custid

Custid Acno

Acno Bal

C1 101 101 1001 2001 1000

C2 102 102 1002 2002 1000

C3 103 103 1003 1001 1500

C4 104 104 1004 1002 1500

…

201 2001 … …

202 2001

 … …

Assume the three relations are stored at three
different sites L1,L2,L3 respectively, and a join of the
three relations C⨝A⨝B is to be performed with the
following parameters initialized:

Size(C) = TC = 10, Size(A) = TA = 1000, Size(C) =
TB = 100.

Image ICcustid = 10, Image IAcustid = 20, Image IAacno =
500, Image IBacno = 25 and c0 = 10.

Fig 2 gives all the possible ways of computing a
three-way join among the relations C,A and B in the
form of unordered trees.

Figure 2 Unordered Tree Structure for 3-way join

We choose the first unordered tree structure to
compute the result i.e., calculate C⨝A first and later
include B. By considering the rules of R* algorithm,
the computation of result at each location is given
below:

1. At location L1, we can either fetch A to L1 at
a cost of c0+TA = 10+1000=1010 or perform
a lookup of the matching tuples of A with C,
at a cost of
TC[c0+(TA/IAcustid)] = 10(10+(1000/20)) =
10(10+50)=600.
The cost of computing C⨝A at location L1
will be min(1010,600) = 600.

2. Similarly, at location L2, a similar approach
to the above can be followed and the cost of
computing the result will be
min(20,11000) = 20.

3. At location L3, both the relations C and A
are to be fetched at a cost of 2c0+TC+TA =
20+10+1000 = 1030.

The new size of the join of TCA = TC* TC /
max(ICcustid, IAcustid) = 10*1000/20 = 500 and the
image size of C⨝A with the attribute acno will be
approximately 3/4th of the IAacno.[] i.e.,

ICAacno = ¾(IAacno) = ¾(500) = 375.

To compute the result of C⨝A⨝B, the size of the
join of three relations will be

TCAB = TCA*TB / (max (ICAacno,IBacno)) = 500 *
100/375 = 133.

Table 2 gives the evaluation strategies involved in
calculating C⨝A⨝B in (C⨝A) ⨝B manner. i.e.,
first by computing (C⨝A) and later joining the result
with B. From the table, we can infer that minimum
cost of evaluating C⨝A⨝B at location L1 can be
obtained by first computing C⨝A at L2 and fetching
the relations CA, B to the destination. The same
inferences can be made at the other locations as well.

The process can be continued by considering other
possibilities like joining C with B first and later with
A or joining A with B and later with C to obtain
minimum cost.

TABLE 2 Total Cost Evaluation Using System R*
C⨝A⨝B
site result

C⨝A
site
result

Approach Cost
(D)

Cost
C⨝A
(E)

Total
Cost
(D+E)

L1

L1
Fetch B 10+100 = 110 600 710

Lookup B 500(10+100/25
) = 7000 600 7600

L2
Fetch
CA,B

20+500+100 =
620 20 640

L3

Fetch
CA⨝B 10+133= 143 1030 1173

Fetch CA,
B

20+500+110 =
620 1030 1650

L2

L1
Fetch CA,
B

20+500+110 =
620 600 1220

L2
Fetch B 10+100 = 110 20 130

Lookup B 500(10+100/25
) = 7000 20 7020

L3

Fetch
CA⨝B 10+133 = 143 1030 1173

Fetch CA,
B

20+500+100 =
620 1030 1650

L3

L1
Fetch CA 10+500 = 610 600 1210
Lookup
CA

100(10+500/37
5) = 1133 600 1733

L2
Fetch CA 10+500 = 510 20 530
Lookup
CA

100(10+500/37
5) = 1133 20 1153

L3
No
Transfer 0 1030 1030

4. SharesSkew Algorithm Using MapReduce

 To perform join on two relations R(A,B) and
S(B,C) through MapReduce mechanism, several
systems implement a two-round algorithm. The first
round is to identify the tuples with Heavy
Hitters(HH), i.e., same value for a specific attribute
and the second round deals with the tuples without
HH for the join attribute. The map phase results in
producing key-value pairs for each attribute using a
hash function[8]. Each key is associated with a
reducer, where the tuples are shuffled from mappers
to reducers, termed as communication cost.

 SharesSkew algorithm is extended from
Shares algorithm where the data of the join attribute
deal with skews, in the form of heavy hitter(s). The
shares algorithm primarily focuses on distributing the
data from mappers to k reducers. For instance, to
perform a 3-way join on R(A,B) ⨝ S(B,C)
⨝T(C,A), a tuple (a,b) of a relation R is sent to
(h1(a),h2(b),i) reducers. The communication cost will
be r1x3+ r2x1+ r3x2 with the constraint x1x2x3=k,
where r1, r2, r3 are the relation sizes and x1, x2, x3
represent shares of the relations respectively. The
Cost expression can be minimized using Lagrange’s
Method[], which results in a minimum
communication cost of 3(kr1r2r3)1/3.

A. Attribute Dominance

If an attribute B appears in all relations
where attribute A appears during join operation, then
B is said to dominate A. If an attribute is found to be
dominated, then its share is treated as 1. For the three
relations R(A,B), S(B,C) and T(C,D), if r,s,t are their
relation sizes and w,x,y,z are the shares of the
attributes respectively, then it is observed that
attribute A is dominated by B and D is dominated by
C. Hence the share of attributes A and C i.e., w,z will
be 1 and the communication cost expression is
ry+s+tx with the constraint xy=k.

B. Relation Partition

After obtaining dominating attributes, the
next task is to find the HHs for each of the attributes
and perform relation partition. For each dominating
attribute, partitioning is done by checking whether it
has a HH or not. Consider three relations R(A,B)
⨝S(B,E,C) ⨝T(C,D) with attribute B containing 2
HHs b1,b2 and attribute C with one HH c1. Then
relation R can be partitioned into 3 pieces i.e., B with
b1, b2 and others, relation S into 6 pieces and T into 2
pieces. Every partition is named as a Residual
Join[2]. The six residual joins possible are given
below:

1. All attributes with no heavy hitters (T_). r is
the tuple count of R with b≠b1 and b≠b2, s is
tuple count of S with b≠b1, b≠b2 and c≠c1
and t is the tuple count of T with c≠c1.

2. Attribute B of type Tb1 and all other
attributes with no heavy hitters (T_). r is the
tuple count of R with b=b1, s is tuple count
of S with b=b1 and c≠c1 and t is the tuple
count of T with c≠c1.

3. Attribute B of type Tb2 and all other
attributes with no heavy hitters (T_). r is the
tuple count of R with b=b2, s is tuple count
of S with b=b2 and c≠c1 and t is the tuple
count of T with c≠c1.

4. Attribute C of type Tc1 and all other
attributes with no heavy hitters (T_). r is the
tuple count of R with b≠b1, b≠b2, s is tuple
count of S with c=c1 and t is the tuple count
of T with c=c1.

5. Attribute B of type Tb1 and C of type Tc1 and
all other attributes with no heavy hitters
(T_). r is the tuple count of R with b=b1, s is
tuple count of S with b=b1 and c=c1 and t is
the tuple count of T with c=c1.

6. Attribute B of type Tb2 and C of type Tc1 and
all other attributes with no heavy hitters
(T_). r is the tuple count of R with b=b2, s is

tuple count of S with b=b2 and c=c1 and t is
the tuple count of T with c=c1.

C. Description of SharesSkew

SharesSkew algorithm follows the below four steps
to obtain minimum communication cost during
joining of relations with the tuples containing HHs:

Step 1: Form all the possible Residual Joins

Step 2: For every residual join, form a set of keys
using a Hash function to compute the share of each
attribute in the join.

Step 3: Evaluate the cost expression of each residual
join by assigning the share of each attribute with HH
equal to one in the generic cost expression.

Step 4: Distribute tuples to the set of keys
constructed for every residual join.

D. Evaluation of Cost Function for Residual Joins

For the 3-way join between relations R,S and T given
in above example, if r,s,t are the relation sizes and
a,b,c,d,e are the shares of the respective attributes, the
generic cost expression will be rcde+sad+tabe. The
minimum cost expression is to be evaluated for the
six residual joins as in below:

1. Since all attributes are normal (no HHs) and
attribute A is dominated by B and attributes
D and E are dominated by C, the shares of
a,d,e is 1. The resultant cost = rc+s+tb.

2. Attribute B has a HH and its share b=1.
Attributes D and E are dominated by C, and
their shares d,e are also 1. The resultant cost
= rc+sa+ta.

3. In 2, B has b1 as HH and now the HH is b2,
so the resultant cost = rc+sa+ta.

4. Attribute C has a HH and its share c=1.
Attributes A and E are dominated by B, and
their shares a,e are also 1. The resultant cost
= rd+sd+tb.

5. Attributes B and C have HHs and their
shares b,c is 1. The resultant cost =
rde+sad+tae.

6. The resultant cost is same as that of 5, since
B and C have HHs i.e., rde+sad+tae.

E. SharesSkew on Banking System

Consider a bank database consisting of three relations
R(A,B), S(B,E,C) and T(C,D) representing
Branch(bid,cid), Customer(cid,age,acno) and
Account(acno,bal) with the tuples given below. To

perform a 3-way join R⨝S⨝T through SharesSkew
algorithm, relations with skewness in their tuples is
considered as shown in table 3.

TABLE 3 Banking System Relations with Skewed Tuples
 R(A,B) S(B,E,C) T(C,D)

A B

B E C

C D

10 1 2 24 301 300 500

11 2 3 27 302 300 501

10 3 3 24 300 303 600

12 3 3 25 300 302 600

10 9 4 26 300 301 1000

12 9
7 25 300

3 28 303

The join attribute B has two heavy hitters 3 and 9,
and C has one heavy hitter 300. A total of six residual
joins listed above are possible. Joins are represented
from J1 to J6.

J1 considers tuples satisfying B≠3, B≠9 and C≠300.
The resultant tuples from table 2 are R(10,1) R(11,2)
S(2,24,301) T(303,600) T(302,600) T(301,1000) with
relation sizes r=2, s=1, t=3. Attribute shares are b=2
and c=3 with the total cost (rc+s+tb) will be
(2*3)+1+(3*2)=13.
J2 considers R(10,3) R(12,3) S(3,27,302) S(3,28,303)
T(303,600) T(302,600) T(301,1000) for B=3, B≠9
and C≠300.

J4 considers R(10,1) R(11,2) S(4,26,300) S(7,25,300)
T(300,500) T(300,501) for B≠3, B≠9 and C=300.
J5 considers R(10,3) R(12,3) S(3,24,300) S(3,25,300)
T(300,500) T(300,501) for B=3, B≠9 and C=300.
Joins J3 and J6 are not considered for cost evaluation
as the size of relation S (s) is zero i.e., there is no
value for a join attribute. Table 3 presents share of
each attribute and total communication cost
computed for all the valid residual joins.

TABLE 3 Total Cost Evaluation Using SharesSkew
Join Attribute

Type
Relation
Size

Attribute
Share

Cost
Expression

Total
Cost

J1
B≠3, B≠9
C≠300

r=2, s=1,
 t=3 b=2, c=3 rc+s+tb 13

J2
B=3, B≠9
C≠300

r=2, s=2,
 t=3 a=2, c=3 rc+sa+ra 16

J4
B≠3, B≠9
C=300

r=2, s=2,
 t=2 b=4, c=2 rd+sd+tb 16

J6
B=3, B≠9
C=300

r=2, s=2,
 t=2

a=2, d=2,
e=3 rde+sad+tae 24

Conclusions

In this paper, we evaluated the communication cost
of joining relations at different sites using the System
R* algorithm when the data is non-skewed. By
considering three Banking system relations
Customer, Account and Balance at three locations,
we have calculated total cost and showcased the
optimized cost among various possible cases. For the
data with heavy hitters (skewed), we used
SharesSkew algorithm using MapReduce mechanism.
The same Banking System relations with skewed data
is considered. The total multi-way join is partitioned
into several residual joins depending on the shares of
the attributes and the total cost is evaluated.

References

[1] Ullman D.J., “Principles of Database Systems”,
Second Edition, Galgotia Publications, 1984.

[2] Afrati N.F., Stasinopoulos N and Ullman D.J.,
“SharesSkew: An Algorithm to handle skew for joins
in MapReduce”, Information Sytems 77, Elsevier,
pp. 129-150, 2018.

[3] Afrati N.F and and Ullman D.J., “Optimizing
Multiway Joins in Map-Reduce Environment”, IEEE
Transactions on Knowledge and Data Engineering,
23(9), pp. 1282-1298, 2011.

[4] Beame P., Koutris P and Suciu D., “Skew in Parallel
Query Processing”, Proc. 33rd ACM SIGMOD
Symposium on Principle of Database Systems, USA,
June 22-27, pp. 212-223, 2014.

[5] Chu. S, Balazinska M and Suciu D., “From Theory to
Practice: Efficient Join Query Evaluation in a Parallel
Database System”, Proc. 2015 ACM SIDMOD Int’l
Conf. on Management of Data, SIGMOD, ACM,
2015.

[6] Kwon Y., Balazinska M., Howe B and Rolia J.,
“SkewTune: Mitigating Skew in Mapreduce
Applications”, Proc. 2012 ACM SIDMOD Int’l Conf.
on Management of Data, SIGMOD, pp. 25-36, ACM,
USA, 2012.

[7] Kwon Y., Balazinska M., Howe B and Rolia J.,
“SkewTune in Action: Mitigating Skew in
Mapreduce Applications”, PVLDB, 5(12), pp. 1934-
1937, 2012.

[8] Ullman D.J., “Designing Good MapReduce
Algorithms”, XRDS, 19(1), pp. 30-34, September
2012.

