ﬁ EasyChair Preprint

Ne 8872

Exploring Graph Representation of Chorales

Somnuk Phon-Amnuaisuk

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

September 24, 2022

Exploring Graph Representation of Chorales

No Author Given

No Institute Given

Abstract. This work explores uncharted areas overlapping music, graph
theory, and machine learning. An embedding representation of a node,
in a weighted undirected graph G, is a representation that captures the
meaning of nodes in an embedding space. In this work, 383 Bach chorales
were compiled and represented as a graph. Two application cases were
investigated in this paper (i) learning node embedding representation
using Continuous Bag of Words (CBOW), skip-gram, and node2vec al-
gorithms, and (ii) learning node labels from neighboring nodes based
on a collective classification approach. The results of this exploratory
study ascertains many salient features of the graph-based representation
approach applicable to music applications.

Keywords: Graph representation - Chorales - Learning node embedding
- Node2Vec - Collective classification

1 Introduction

Knowledge representation is one of the fundamental ingredients in intelligent
systems since inference processes operate on the representations that the system
uses. In the past decade, interests in graph representation learning have surged in
correlation with advances in computational power and deep learning techniques.
In this paper, we investigate the graph representation learning of chorales. We
construct monopartite graphs where each node in the graph represents a chorale
composition and an edge linking between any two nodes represents the similarity
between the two chorales.

In this work, the node2vec method [1] is applied to learn low-dimensional
embedding representation of nodes in a chorale graph. The attempts at a novel
application of graph representation learning in the chorales domain entails many
challenges. Hence, methodology and appropriate data must be prepared from
scratch. Thanks to Music21 [2], the process of chorales data preparation has been
simplified substantially. We prepare harmonic progressions from three hundred
and eighty-three (383) chorales retrieved from the Bach chorales corpus available
in Music21. A chorale graph is created based on similarities between harmonic se-
quences of chorales. A low dimensional-embedding representation that preserves
the original neighborhood structure of the graph is learned using the following
three techniques: continuous bag of words (CBOW), skip-gram, and node2vec.
Both CBOW and skip-gram are available from the word2vec [3] class in Gensim
library [4]).

2 No Author Given

Two application cases were presented in this paper (i) learning node embed-
ding representation and then suggesting similar chorales based on similarities
in the embedding space, and (ii) learning node labels from neighboring nodes
using the collective classification approach. The rest of the paper is organized as
follows: Section 2 discusses the background and some related works; Section 3
discusses our approach and gives the details of the techniques behind it; Section
4 provides a critical evaluation and discussion of the empirical results; and the
final section presents the conclusion and further research.

2 Graph Representation Learning of Chorales

Representing music as symbols on staves to signify pitches, durations, dynamics,
and various intended sonorities such as staccato, legato, crescendo, etc., proves
to be an effective means of representation. This representation system has been
widely adopted by music industries and academia. The western music notation
system was designed for humans to read, reason and realize those notations into
sound.

With the progressive development of electronic musical instruments in the
1960s, performance from one keyboard instrument can be transmitted to other
electronic instruments to enrich the sonic texture by combining various sound
sources. The transmission of digital performance data has been standardized to
the MIDI protocol which captures performance information such as pitch, dura-
tion, and pitch bending. MIDI was designed for the transferring of performance
data between electronic music instruments.

2.1 Representing Music for Analysis and Reasoning

Traditional music notation is a native language used by music professionals.
Musicologists reason and discuss music concepts based on this language. To
facilitate automated reasoning of music notations using computers, researchers
have developed various representation systems based on the point of view from
which the problem is being examined e.g. MIDI, **kern, Humdrum [5].

Two important criteria in music representation systems: expressive complete-
ness and structural generality were discussed in [6]. Expressive completeness
refers to the range of raw musical data that can be represented, and structural
generality refers to the range of higher-level structures that can be represented
and manipulated using the representation system.

Since traditional music notations have been developed to abstract sound
streams, the representation system for the purpose of music analysis commonly
represents the basic building blocks of pitches, durations and facilitates func-
tionalities on them for the derivation of more complex knowledge from these
building blocks [7, 8]. For example:

Graph Representation 3

Degree : {1,2,3,4,5,6,7}

Basic types |Accidental : {, 4, x,b,bb}

Octave : {1..8}
Pitch : { Degree, Accidental, Octave)
addgq : Duration x Duration — Duration

Basic operations addiq : Time x Duration — Time

suby : Time x Time — Duration

subgq : Duration x Duration — Duration

In this work, we resort to Music21, a python-based toolkit that facilitates knowl-
edge representation and scores well in both expressive completeness, and struc-
tural generality criteria discussed above. Music21 has been developed since 2008
and was inspired by, notably, Humdrum and musicXML [9].

Apart from viewing music as a stream of note events (pitches and durations).
Musicologists also explore other representation schemes which could facilitate
reasoning about deep structure, for example, Generative Theory of Tonal Mu-
sic (GTTM) [10]; computational models of tonality [11]; reasoning about the
similarity between pitch intervals using a geometric representation of pitch and
harmony: key finding algorithm [12], chord progression sequences [13], and per-
ceived harmonic relations [14].

2.2 Representing Music as a Graph

Describing domain knowledge using graphs by abstracting knowledge into nodes,
and edges (e.g., social networks, communication networks, molecule or protein
structures, visual scene graph) offers additional benefits from information in-
herited or derived from its structures as they present information which would
otherwise be unavailable in traditional non-graph representation approaches.

A musical dice game (Musikalisches Wiirfelspiel) is one of the formal com-
positional processes invented since the 1700s [15] (page 4). This process can be
formulated as a multi-graph where each node represents a measure (i.e. bar) of
pre-composed materials linking to various nodes. This graph can be employed
to generate a new piece of music by traversing the graph in accordance with
imposed constraints.

In [16], a graph structure is employed to represent music scores where termi-
nal nodes describe melodic contents, the internal node represents its incremental
generalization and the edge represents a relationship between nodes. The graph
structure in [16] is employed to calculate melodic similarities for content-based
music retrieval tasks. The design of the graph can be in various forms e.g.,
monopartite graphs (single class of nodes), multipartite graphs, simple graphs,
and multigraphs. The design is application-dependent. In [17], a graph neural
network is designed for music score data and modeling expressive piano perfor-
mance.

4 No Author Given

3 Materials and Methods

3.1 Compute Harmonic Sequences

Music21 provides various modules for musicologists to analyze music. Chordify is
one of the modules provided in Music21. Chordify analyzes polyphonic notes and
reduce them to a chord. These chords can be notated using a Roman numeral in
a functional harmony fashion. For example, I and 16 denotes the tonic chord in
its root and first inversion, respectively. V7 denotes the dominant seventh chord
and viio denotes the diminished leading chord, respectively.

}Fﬁ
b ||
M ||
T
T
N
1l
1l
N~
M
N
T
¢
TN
T
AR
NN
M ||
1l
b ||
T
T
N
10l
b |
e

Kj:E
o
o]
il
o
o]
o
b/ |
J
*
il
N
RN
o]
/|
(I
1l
N
qll
ol
o
|
ol
q]
o
bl |
I
b |
]

r Y] o ry S ”
) f | /s i i i | r_amrs
0 I e f - T T f o} T 1 ® 1 r
1 = T e T —— = i i —-—] = T
L 3 - I — - I — (- I T I ——
v e A [Ee - v e g
y
r) r 3 f T —— r 3 r) f T
i | - i 1 t I t - | r) I 1
— e f r - e T I 1 i f r "
L - T I r) i o 5ol ® i = P w- i I s

Fig. 1. The first ten measures (bars) from chorale BWV269.

We retrieved 383 chorales from the core corpus available in Music21! and
wrote a Python script to extract four voices (i.e., soprano, alto, tenor and bass)
then infer chordal sequences of the four part chorales. Figure 1 shows the first
ten (10) measures from chorale BWV269. Table 2 illustrates representative ex-
amples of harmonic sequences extracted from chorales ID BWV269, BWV86.6,
BWV178.7 and BWV185.6, respectively.

Table 1. Examples of harmonic sequences extracted from Chorales

BWV Harmonic sequence Cadence
86.6 |[I, V6, iiid3, iv74, V7, I, bVII6, iii¢7b53, 1, ...| [I, V, v5, 116, V, I]
148.6 | [i, 11743, 16, ii, vilo#63, 1, i#7, iv6, 11064, ...] | [iv6, i64, ii¢65, V, VT5#3,]
178.7 | [i, 1116, v7, bVI, iio64, II16, bVII64, 111, i, ...] | [iv6, 143, ii¢65, 154, VT5#3, 1]
185.6 |[V6, V65, 1532, i, 117564, V7543, i, ii42, i, i, ...]|[ilo6, 1117, 1752, i54, VT5#3, I]
269 [, I, IV6, vi, V6, 1, iii6, V, vi, IV, 1752, ..] [vi, vi42, ii65, V, V7,]
355 |[L, 16, ii65, V, I, 142, #ivo6, V, V, V42, 16, ...] [I6, ii65, ii7, V, V7, 1]

1 At presence, there are 387 unique Bach chorales in the Music21 corpus, we only use
383 chorales in this work since some chorales formats are not compatible with our
conversion script.

Graph Representation 5

3.2 Compute Harmonic Word Embedding Representation

Recent progress in natural language processing (NLP) promotes the concept of
word embedding representation which is a distributed vectorized representation
of a word w, f(w) — R% Word embedding representation could encode the
meanings of words where words that are close together in the representation
space also share similar meanings or related concepts. For example, the word ice
should be closer to the word cold rather than the word hot.

Music chords abstract polyphonic sound into symbols (i.e., the extracted
harmonic sequences of chorales). These symbols can be considered as a set of
words describing the harmonic vocabulary of chorales. Here, the word2vec model
in Gensim [4] was employed to learn the embedding representation of chords
(i.e., words) in chorales. The embedding representations were used to compute
similarities between chorale nodes when constructing a chorale graph.

Algorithm 1 Graph construction and Similarity computation

Let Comp be a set of chorale compositions.

Let Seq., and Seq, be any two chord sequences having the same length n.
Let ¢4, cj be chords in the sequence and %, j denote index 1...n.

Let w2v(c;, ¢j) — R be a function that computes similarity between chords.
The similarity value is weighted by attention score e~!*~7| emphasizing

a chord pair with the same position f(w) — R?. index.

procedure GraphConstruction (Comp)
forall (u,v) € {Comp x Comp} and u # v
if S (u,v) complies to constraints &
then add nodes u, v to graph G
and add edge (u,v) with weight S (u,v)
return §

procedure S (u,v)
extract Seg,, Seq, from composition u and v
similarity = 0
for ¢; in Seq,
for ¢; in Seq,
similarity += w2v(c;,c;j) x e~ 177!
end for
end for
return similarity

6 No Author Given

3.3 Constructing Chorale Graphs

Let a graph G = (V,€), V denotes a set of vertices and each vertex (node)
represent a chorale composition; and £ denotes a set of un-ordered pairs (u,v) €
{V x V}. A graph G is constructed by connecting any two chorales that satisfies
the required constraints £ imposed by a similarity function S. e.g., S (u,v) > &.

In this paper, a graph was constructed based on the similarity of the har-
monic progression in the intro, and the final cadence between two chorales. The
similarity & between two harmonic progressions (chord sequences taken from
chorales u and v) were estimated using the Algorithm 1.

3.4 Learning Node Embedding of Chorales

Word embedding representation from the word2vec model is a latent variable
learned by training a shallow feed-forward neural network to learn relationships
between target and context words. Training samples for word2vec model are
prepared from the desired text corpus. The same tactic used in word2vec to
learn word embedding representation can be applied to learn relationships among
nodes in a graph. The words are replaced with nodes, and training samples are
prepared by sampling nodes from the graph.

Learning node embedding yields a compact representation of nodes in a
graph. A node embedding representation f : u + R? maps nodes u and v
in a graph to vectors f(u) — 2z, and f(v) — z, where z,,z, still preserves
the original topological structure of graph G in the embedding space. The more
compact representation in the embedding space is effective in computing sim-
ilarity using z, and z,. The function f is unknown but can be approximated
by maximizing the log likelihood of observing neighbouring node of u given the
embedding z,. This can be written down as the objective function below:

max ¢ Z logP (N, (u)|z,,) (1)
u€V

where N,.(u) denotes a neighbourhood function. Let us define neighbouring nodes
of u as nodes in the path walking from u using a random walk policy 7.

Collect Training Samples using Biased Random Walk Starting from node
u, all nodes in the same path starting from u were considered as sharing some
similarities to u since it was within a predefined walking steps. Readers may
foresee that the graph could be traversed in many fashions, by exploring neigh-
boring nodes or wandering deeper and further away from the starting points.
Here, the bias random walk was employed with two hyper-parameters: return
parameter (p) and in-out parameter (q), follows [1].

In brief, if the current node was v, all edges to all neighboring nodes N (v)
were weighted according to parameters p and q. Let u be the previous node, and
w be the next possible node, where u € N(v) Aw € N(v). The edge (u,v) was
assigned with the weight of 1, the edges (v, w) were assigned with the weight 1/p

Graph Representation 7

if w € N(u) else the weight 1/q was assigned to the edges. Finally edge weights
were normalized, and the values conditioned their chance of being sampled as
the next node.

Setting p < 1 encourages local exploration while setting ¢ < 1 encourages
global exploration since a lower value of p will increase probability of exploring
nodes neighboring both previous node w and the current node v, while setting
g < 1 encourages the next node to be further away from u (see Figure 2).

Fig. 2. Left pane: node 260 is the current node and all nodes connected to it are possible
next nodes n € N(260). The edges (260, n) are assigned with the weight either 1, 1/p,
or 1/q (see text for detailed explanation). Right pane: an instance of a chorale graph
used in our study.

One could collect nodes from many traversed paths starting from each node
in the graph. Walk data collection was controlled by the number of steps in each
walk and the number of repeated walks for each node. These walk data samples
constituted a dataset for training node2vec models using CBOW and skip-gram
approaches. These walks were also used to prepare negative sampling training
data. In a negative sampling approach [3], any node pairs in the same path would
be collected as positive (target, context) examples and node pairs not from the
same path would be collected as negative examples.

4 Empirical Results

Two application cases are discussed in this section: (i) learning node embedding
representation and (ii) learning node labels from neighbouring nodes. Both ap-
plications are based on the following assumptions, given a graph G = (V,&): (i)
similarity(u,v) &~ 2,2,, for u,v € V; (ii) Node without label can be inferred

8 No Author Given

Application case 1

G=(V,E)
> ’ biased random wallc " 21K Data
Q N negative
| / sampling
~ node2vec
-~/ /
S
/ \ Skip-gram negative sampling
- CBOW |
~ skipgram ¢
Context —I

Application case 2 ‘

© nodes with labels

'Y
O nodes without Labels
D et
N / N
Wear ’ / ~
Weiz \ -

~

Skip-gram

Target Embedding

Context

Fig. 3. Left column: architecture of CBOW and skip-gram; Right column: a graphical
summary of application case 1 and 2.

from labels from neighbouring nodes. Figure 3 provides a graphical summary of
our empirical study.

4.1 Application Case 1: Learning Node Embedding Representation

A chorale graph, consisting of 194 nodes 861 edges, and average node degree of
8.88, was created using similarities among the first six chords (as discussed in
section 3.3). The construction of this graph can be conceptually understood as,
starting with a complete graph, then removing edges that do not fulfil specified
constraints from the chorale graph, and finally remove all isolated nodes.

Three node embedding algorithms were explored, the first model was the
node2vec trained using the negative sampling tactic [1]. Negative sampling is
a form of noise contrastive estimation (NCE) [18] that approximates the log
probability of P(w|z,). Instead of normalizing with all nodes in the graph i.e.,
2 weN, (v) log(P(w|zy)), it is normalized using only k random negative samples

ie., Zle log(o(zY,z,,)). The negative z,, examples are randomly sampling
over relevant nodes in the graph with a bias towards nodes with higher degree
values.

The other two node embedding models were trained using two popular ap-
proaches CBOW and skip-gram from word2vec class [3] provided in the Gensim
[4]. Algorithm 2 outlines the concepts of the methods used in this work.

Analyzing the Learned Node Embedding We evaluated the quality of
learned node embedding from the three models by querying them for chorales

Graph Representation 9

Algorithm 2 Learning node embedding using node2vec_.SGNS, SG and CBOW

Let Comp be a set of chorale compositions.
Let G = (V,€), YV C Comp and € C{V x V}.
Let 7, be an n-step random walk traversal starting from node wu.

node2vec with skip-gram negative sampling

Let (u,w,lab) denotes target u and context w. If lab = 1 (positive example)
then u € 7, and w € 7y, if lab = 0 (negative example) then v € 7, and w & 7.
Let D be the training data composed of positive and negative samples.

Let Z € RVl denotes an encoder matrix.

Let u,w € V! denotes one hot encoding of node u and w, respectively.

procedure node2vec.SGNS (D)
initialize(Z) to random values Z € R4*!V!
repeat epochs

forall (u,w,lab) € D
Zy =2 -u
Zw =24 -w
ezp(z Zyy)

ea,p(z Zn)

L=— ZuEV ZwEN log P(w|zy)
~ = Zuev ZwEN (u) [log(o (Zuvzw)) - Z log((Zuvzn)]

6£ U
Oz

P(w|z.) = Z

Zoy — Zuw — N

Learning node embedding with CBOW, and skip-gram
Let D be the training data composed of walk 7,,Vu € V
Let ¢ € C be node in the walk 7,, C' denotes context nodes C' C 7,

procedure CBOW _SG (D, method)
initialize(Z) to random values Z € R4V
repeat epochs
forall u € 7,,C C 7, and 7, € D
if method is CBOW
Given P(u|C,Z°) where the expectation Z = %ZC VeeC
Plule, Z) = opzem)

cep(alz,)

ne
L==3"ccueylog(P(ulc,Z)
if method is skip-gram
P(Clu,Z) = [[.cc Plelu, Z)
) = e tepEize)

v e:cp(zZzn)

ne
L= ccueylog(P(clu,Z)

P(clu,Z

No Author Given

10

Excerpts from chorales

=

ol

BWV

148.6

N » | YW H H Hh N I 1 - H H
Nl N u. i . vv 1 M I M
v 1 "L‘ o I e i i b o (s iii (s S iy i S
o N B FL i 1 S i g
n | e e e N [N il J g NG <
m y TP I L iy 8 s i v ik M g o s
|" ﬁl“ i e H ” rlu N N L t ™ [TT™ | B | (&L o HH‘ 3
1y 4 o il Il ol me o 3 P + \ il -
‘-\ N ik I P i H I h \vuu\ M "\u' Lw ™ -P\ N a) .W I m
\1 » N ’ e N M 3] us (L l ' Hy L How \ R Iy
i S i O | i h ! At 1} s I h
\ e (st (T a1 N i his v A j s i L
N i L il il f A
. e e o] by . "rw b { T)] (||
™Ov [N [[s . ik, Ll ik, i N L 1 [I .
H | HJ [“ N e N 5. N Nt b
1l o[[] TN il [l .4 \ ™ .J /1] ™ X ‘| ol w el L
- Lo |is W HH
1l il N ity T . e 1 I i i r MH} i b i 1l
1 Al { ™ b)i \ i il m 1| ¥ R
il i I 1S I il MO B A It @l LT [
3 [W o rl 01 A |
N T U Mt I N ! b
SR 11~ el IR s W 1 Sl b o dn I
i ot e s O 1 O -3 I ,
s [* N~ H_ [T \\Vl JH i) 1 1 Hu .| . u o
m‘u ! H M il ~ WY N " i) ..“ Il " .Hu { e \ Il Cuig [
I [T . -1y .. I8 | i | M ol 1
g Hhalin o\l ‘ I iy ! NO® il i I B i
me el y e | IR e I s ™ 8f ail N AL
W[t I] vv s I I I -
T .Iw i My < ‘| iy Hi all i e . ' i i i i iy i
i i . hil i) V11—] 1A I I N
] ™ W [A His ey LY N my o e L] el o/ [l .| i ,“ Wl
13 1y H4 v [115} NMH T
1 N 1 1 (il
N ([e mm > NN LN (1 7 O 21 i i f iy
] Il i 1 e Al N Fil| H /| [l [l .u.v
(e AE m W I Vi] T8H v A ' h n |
Il Uy M N | L ey s & Il ﬁ S I I I
mee s i S o Ul I i it \ f iy i i N
i in VI i il vl Il . i il
o | R i iy e S g B 1] o v . s i L1 I S
s T il L, | \HH. il iR N M N ™ ” I P | Il I, 1
i Vi 524 11| Rl \ o i [T Il i *x e X i
11 . . ﬁ\ s ! [1] o) H E 1 1 Y1 Lt
e il iy o Hy I i s]l h I o lah i ™ % i i i
1 v " ™ ﬁlua " h b TTe e [.‘4 I A " . " iy
[Ym it 1] eI Il H e ol his n N el I
el i {m U 1 W | s NI oL D e N | x HINR -] [T N I
o N n AN b el A s 1A i GO | s S N
R Wil i I # Th Ml i e e ¥ e 8 ik ! 1M i S N
" SN L L | s N e o (U] P) ™ M N B &
i 3 T 4 8! B - s W B I | I o i B) i = = 4 i
o0 B B e e e | (e e e A Ser fe fe AL e e e B Je e A &
Ne} [3r) <t o0 0
— 0 — — 10
2] [a\] <t 2] 2]

Table 2. Three examples of similar chorales suggested by the models, BWV148.6-

BWV316, BWV253-BWV414, and BWV318-BWV355.

o

Graph Representation 11

similar to a given chorale u. Since similarity(u,v) & z,%,, it was expected that
z, should represent the chorale v which was similar to chorale u according to
the same similarity measures used for constructing the graph.

Hence, the three models i.e., skip-gram with negative sampling (SGNS), skip-
gram (SG), and continuous bag-of-words (CBOW) were queried with all nodes
in the graph. For each queried node, the ten most similar nodes were listed out.
Common nodes between three possible model pairs SGNS-SG, SGNS-CBOW
and SG-CBOW were counted. Ten-counts mean both models agreed perfectly,
while zero-counts mean no matching node was found.

We report the mean values of common nodes as well as the mean similarity
values of the top ten similar nodes suggested by each model. The similarity
metric is based on the similarity of functional harmony as discussed in section
3.3. From Table 3, the model SG and CBOW agree well with each other, with
an average of 6.88 common nodes for every 10 nodes. The model SGNS appears
to suggest a different set of nodes, with an average of 3.79 and 3.57 common
nodes for SGNS-SG and SGNS-CBOW, respectively.

Upon examining the mean similarity of the three model pairs, all pairs show
comparable mean values. This means that even if SGNS suggests a different set
of similar nodes (as those suggested by CBOW and SG), the similarity measures
from all pairs are comparable. Finally, three sets of similar chorales (six chorales)
according to the models are shown in Figure 2 for readers to evaluate.

Table 3. Summary of similarity performances evaluated using common similar nodes
between models (top three rows), and average similarity of all suggested nodes (bottom
three rows).

Mean common nodes between Remarks
SGNS-SG|SGNS-CBOW|SG-CBOW
3.79 3.57 6.88 p=1, q=1
3.76 3.45 714 |p=0.7, q=1
3.67 3.51 6.94 p=1, q=0.7
Mean node similarity from

SGNS SG CBOW

8.22 8.82 879 | p=1, q=1
8.20 8.80 878 |p=0.7, =1
8.27 8.87 8.78 p=1, q=0.7

4.2 Application Case 2: Learning Node Labels from Neighbours

Four chorale graphs used in this task were prepared using four different arbi-
trary similarity threshold values. Hence the four graphs had different number
of nodes, edges, and average node degrees (see Table 4). All edges were labeled
with similarity measures according our descriptions in section 3.3. Each chorale
node in the graph was labeled as either major or minor mode.

12 No Author Given

For this application case, the four graphs were initialized then their node la-
bels were randomly removed using the following rates 10%, 30%, 50%, 70%, and
90% from each graphs?. This was to emulate the common scenario of missing
labels, partially labeled dataset. We investigated the collective classification ap-
proach which aggregate information from neighboring nodes to infer the missing
labels. The aggregation of information was computed using the Algorithm 3.

Algorithm 3 Collective classification

Let W be a weighted adjacency matrix of G = (V, £).Here weights denote

similarity between nodes.

Let label of node u depends on its neighbouring labels: P(y,) = P(yu|N(u))
Let y € {0,0.5,1} denotes labels for class 0, 1 and 0.5 denotes no label.

procedure CollectiveClassification (G)
repeat iterations
forall u in G

P(yu) = ﬁ Z(u,v)eg Waw P (yo)

(u,v)eE
end for

if P(y.) > class 1 threshold then P(y,) =1
if P(y.) < class 0 threshold then P(y,) =0

Table 4. Summary of final accuracies after five iterations. Impressive improvements
are observed from small chorale graphs with lower number of nodes, edges and average
node degree. This is because a smaller chorale graph is constructed with a stronger
similarity constraint (in our case) and therefore reinforce the homophily and influence

concepts in the graph network.

Accuracy Graph info.
% missing labels num. |num. | avr.
10 | 30 | 50 | 70 | 90 |nodes|edges|degree
99.5| 98.1| 96.7| 94.3| 87.0| 79 | 112 | 2.8
99.51 97.9] 96.1| 93.5| 82.3| 194 | 861 | 8.8
98.8] 95.9| 93.6| 87.6| 72.2| 365 |14556| 79.7
96.3| 89.6| 79.2| 67.1| 56.2| 383 |73153| 382

The underlying concepts here are homophily and influence in social network
where characteristics of individuals within the same social group tend to corre-

2 Four different graphs and each with different missing node label rates. Hence, there

are 20 experiments, see Table 4.

Graph Representation 13

1.0 / 1.0 /

0.8

o
o

accuracy
accuracy

I
»

10% missing 10% missing

30% missing 30% missing
0.2 —+— 50% missing 02 —+— 50% missing
: —e— 70% missing . —e— 70% missing
+— 90% missing +— 90% missing
) 1 2 3 4 5) 1 2 3 4 5
iterations iterations
1.0 /. 10 /
0.8 0.8
z 20.6
20.6 g
E 5
g g
® ®
0.4 10% missing o4 10% missing
30% missing 30% missing
—+— 50% missing —— 50% missing
0.2 . 0.2 o rmicei
) —e— 70% missing —— 70% missing
+— 90% missing +— 90% missing
0 1 2 3 4 5 o 1 2 3 4 5
iterations iterations

Fig. 4. Summary of results from four graphs with different rates of missing node labels
after five iterations of the collective classification process.

late well. Table 4 summarizes the accuracy of all 20 outcomes. Each outcome
is averaged from 30 runs and their standard deviation is represented by their
respective shaded areas. Figure 4 shows the plot of nodes that were correctly
labeled after five iterations of message aggregation from neighbouring nodes.

5 Conclusion & Future Direction

This work explores graph representation of chorales. Three hundred and eighty
three Bach chorales were prepared using Music21. Each node in the graph rep-
resents a chorale composition and each edge that connects two chorales was
weighted with the similarity between them. Two application cases were explored
in this study, (i) learning node embedding mapping nodes in a chorale graph to
an embedded space where three algorithms were explored : node2vec, CBOW
and skip-gram.; (ii) learning chorale mode labels from neighboring nodes using
collective classification.

14 No Author Given

In the first application case, the results show that node2vec (trained using
negative samplings) seems to suggest a different set of similar nodes from those
suggested from CBOW and SG. However, the similarity measures appear compa-
rable. This implies that the approach is applicable to various music information
retrieval tasks. In the second application case, the missing labels can be classified
correctly with a high accuracy rate. The severely missing labels case such as 90%
missing labels (10% accuracy) could see the correct classification at 56%-87%.
This is an increment of 46%-77% from 10% correct labels at the initial stage.

In future works, we will explore various graph neural network designs for
other task such as query by humming, genre classification, music synthesis, etc.

Acknowledgments We would like to thank the GSR office for their partial financial
support given to this research.

References

1. Grover, A., and Leskovec, J.: node2vec: Scalable feature learning for networks.
arXiv:1607.006533v1 (2016)

2. Cuthbert, M., Ariza, C.: music21: A toolkit for computer-aided musicology and
symbolic music data. In: Proceedings of the International Symposium on Music In-
formation Retrieval, pp. 63742, (2010)

3. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word represen-
tations in vector space. arXiv:1301.3781 (2013)

4. Rehurek, R., Sojka, P.: Software framework for topic modelling with large corpora.
In: Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frame-
works. pp. 45-50 (2010)

5. Huron, D.: Design principles in computer-based music representation, In: Marsden,
A. and Pople, A. (eds.) Computer Representations and Model in Music. pp. 5-40,
Academic Press. (1992)

6. Smaill, A., Wiggins, G. and Harris, M.: Hierarchical music representation for com-
position and analysis. Computers and the Humanities 27(1): 7-17 (1993)

7. West, R. and Howell, P. and Cross, I.: Musical structure and knowledge representa-
tion. In: Howell, P., West, R., Cross, L. (eds.) Representing Musical Structure, chapter
1, pp. 1-30, Academic Press, (1991)

8. Courtot, F.: Logical representation and induction for computer assisted composition.
In: M. Balaban, K. Ebcioglu, and 0. Laske, (eds.) Understanding Music with AI:
Perspectives on music cognition, chapter 7, pp. 157-181. The AAAI Press/The MIT
Press. (1992)

9. Good, M.: MusicXML for notation and analysis. In: Hewlett, W.B., Selfridge-Field,
E. (eds.) The Virtual Score: Representation, Retrieval, Restoration. Computing in
Musicology 12, pp. 113-124, (2001)

10. Lerdahl, F. and Jackendoff, R.: A Generative Theory of Tonal Music. The MIT
Press. (1983)

11. Chew, E.: Mathematical and Computational Modeling of Tonality: Theory and
Applications. Springer. (2014)

12. Longuet-Higgins, H. and Steedman, M.: On interpreting Bach. Machine Intelli-
gence, 6, 221-241. (1971)

Graph Representation 15

13. Holland, S.: Artificial Intelligence, Education and Music: The use of Artificial In-
telligence to encourage and facilitate music composition by novices. Ph.D. thesis, The
Open University, Milton Keynes. (1989)

14. Cambouropoulos, E.: The harmonic musical surface and two novel chord repre-
sentation schemes. In: Meredith, D. (eds.) Computational Music Analysis. Springer,
Cham. pp. 31-56, (2016)

15. Cope, D.: Virtual Music: Computer Synthesis of Musical Style. MIT Press, Oxford
(2001)

16. Orio, N. and Roda, A.: A measure of melodic similarity based on a graph repre-
sentation of the music structure. In: Proceedings of the 10th International Society
for Music Information Retrieval Conference (ISMIR 2009) pp. 543-548. (2009)

17. Jeong, D., Kwon, T., Kim, Y., and Nam, J.: Graph neural network for music
score data and modelling expressive piano performance. In: Proceedings of the 36th
International Conference on Machine Learning. PMLR 97:3060-3070. (2019)

18. Goldberg, Y., and Levy, O.: word2vec Explained: Deriving Mikolov et al.’s negative
sampling word-embedding method. arXiv:1402.3722v1 (2014)

