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ABSTRACT 

In  this research paper,  it  is  reasoned  that  for  a  single  full  adder ( 1-bit  full  adder), the  
sum and  carry  outputs  are  permutation  invariant in  the  three  input  variables. Further,  
for  2-bit  full  adder  and  arbitrary  N-bit  full  adder,  the  sum  and  carry  outputs  are  
partially  invariant  in  the  input  variables.These  results  enable  reducing  the number  of  
input    combinations  (from  truth  table )  for  which  the  1-bit/N-bit  full  adder  needs  to  
be  tested ( for  correctness ) 

1. INTRODUCTION: 

                                      With  the  advent  of  Integrated  Circuit  ( IC )  design based  on packing  
transistors  and  other  electronic  components,  manufacturers  were  led  to  Small  Scale  
Integration (SSI),  Medium  Scale  Integration (MSI),  Large  Scale  Integration (LSI)  and  Very 
Large Scale  Integration (VLSI)  schemes. Particularly, digital  integrated  circuits  were  
commercially  very  successful. Due to  problems  in  manufacturing  process, sometimes  the  
final  IC  products  were  found  to  be  defective.  But,  it  is  very  clear  that  the  defective  
digital  IC  packages  will  drastically  affect  the  success  of  market  penetration.  Hence,  
manufacturers  focused  onto  methods  for  testing  digital  ICs.   

Exhaustive  testing  of  any  combinational  circuit  with  ‘N’  inputs  requires  (2𝑁)T  seconds,  
if  ‘T’  seconds  are  required  for  testing  the  output  of  circuit  for any  one  combination  
of   Boolean  inputs  (  i.e.  any  row  of  the  associated  truth  table z0.  Hence, the  time  
complexity  of  exhaustive  testing  in  this  case  is  exponential  in ‘N’.  Thus,  researchers  
focused  efforts  on  isolating  FAULT  MODELS  which  were  realistic  and  the  IC  testing  
based  on  them is efficient.  Other  innovative  approaches  such  as  Design  for  Testability 
(DFT)  and  Built-in-Self  Test (BIST)  were  also  proposed. 

Motivated  by  the  problem  of  efficient  digital  IC  testing,  the  authors  focused  on  
testing  arithmetic  circuits  such  as  1-bit  full  adder, 2-bit  full  adder  and  so  on. This  
research  paper  is  organized  as follows. In  Section  2,  Boolean  functions  and  truth  table  
of  1-bit  and  2-bit  full  adders   are   given.  In  Section 3, it  is  reasoned  that  the  outputs  
of  2-bit/N-bit  full  adder  are  invariant  under  PARTIAL  permutation  of   input  variables.  
The  research  paper  concludes  in  Section  4. 

 

2. BOOLEAN FUNCTIONS AND TRUTH TABLES FOR 1-BIT AND 2-BIT FULL ADDERS: 

                                 This section provides the Boolean expressions and truth tables for both 1-
bit and 2-bit full adders. 



2.1 1-BIT FULL ADDER: 

The 1-bit full adder adds three input bits: A, B and Cin (carry-in). It produces two outputs 
Sum (S) and Carryout (Cout). The Boolean functions for Sum and Carry are as follows, 

Sum (S) =   A⊕B⊕Ci 

 Carry (Cout) = A.B + AB’Cin + A’BCin   

 = A.B + Cin(A⊕B) 

 

 

 

Truth Table: 

A B Cin S Cout 

0 0 0 0 0 

0 0 1 1 0 

0 1 0 1 0 

0 1 1 0 1 

1 0 0 1 0 

1 0 1 0 1 

1 1 0 0 1 

1 1 1 1 1 

 

2.2 2-BIT FULL ADDER: 

The 2-bit full adder adds 2-bit binary numbers (A1A0 and B1B0) along with a carry-in (Cin) bit. 
The 5 inputs produce a total of 3 outputs Sum (S1, S0) and Carry (C1). The Boolean functions 
for 2-bit full adder are shown below. 

Sum (S0) = A0 ⊕ B0 ⊕ Cin 

Carry (C0) = A0.B0 + Cin(A0⊕B0) 

Sum (S1) = A1 ⊕ B1 ⊕ C0 

Carry (C1) = A1.B1 + C0(A1⊕B1) 

(in terms of the least significant bits/initial input variables): 

Carry (C1) = A1B1 + [A0.B0 + Cin(A0⊕B0)] (A1⊕B1) 

Truth Table: 

A1 B1 A0 B0 Cin S1 S0 Cout 

0 0 0 0 0 0 0 0 



0 0 0 1 0 0 1 0 

0 0 1 0 0 0 1 0 

0 0 1 1 0 1 0 0 

0 0 0 0 1 0 1 0 

0 0 0 1 1 1 0 0 

0 0 1 0 1 1 1 0 

0 0 1 1 1 0 0 1 

0 1 0 0 0 0 1 0 

0 1 0 1 0 1 0 0 

0 1 1 0 0 1 1 0 

0 1 1 1 0 0 0 1 

0 1 0 0 1 1 0 0 

0 1 0 1 1 0 1 1 

0 1 1 0 1 0 0 1 

0 1 1 1 1 1 1 1 

1 0 0 0 0 0 1 0 

1 0 0 1 0 1 0 0 

1 0 1 0 0 1 1 0 

1 0 1 1 0 0 0 1 

1 0 0 0 1 1 0 0 

1 0 0 1 1 0 1 1 

1 0 1 0 1 0 0 1 

1 0 1 1 1 1 1 1 

1 1 0 0 0 1 0 0 

1 1 0 1 0 0 1 1 

1 1 1 0 0 0 0 1 

1 1 1 1 0 1 1 1 

1 1 0 0 1 0 1 1 

1 1 0 1 1 1 0 1 

1 1 1 0 1 1 0 1 

1 1 1 1 1 0 1 1 

 

 

3. SYMMETRY AND PARTIAL SYMMETRY RESULTS  OF  CASCADE  OF  FULL  ADDERS 

3.1 Symmetry in Boolean functions: 

A Boolean function is said to be symmetric if the outputs remain invariant when the inputs 
for that function are permuted. A function f(x1, x2, x3, ..., xn) is said to be symmetric if the 
output of this function remains unchanged even when the order of inputs are changed or 
swapped, i.e., for example, a function having three inputs x1, x2, x3, can be written as     
f(x1, x2, x3) = f(x2, x3, x1) = f(x3, x1, x2). This property presents us with the possibility of 



reducing the number of test cases to examine to a certain extent instead of exhaustive 
testing of the combinations of inputs for the IC’s.  

A ‘n’ input function of a combinatorial circuit would generate a total of 2n input 
combinations. This number of combinations can be reduced from exponential to a linear 
complexity leveraging the concept of symmetry in Boolean functions. It would become 
sufficient to test for ‘n+1’ set of unique combinations based on the number of ones(1’s) in 
the input to validate the function. 

3.2 Symmetry in 1-bit Full Adder: 

A 1-bit Full Adder takes in 3 inputs (A, B, Cin) and produces 2 outputs namely Sum(S) and 
Carry(C). The Boolean functions for these 2 output terms Sum (S) = A⊕B⊕Ci and             
Carry (Cout) = A.B + Cin(A⊕B). These two functions exhibit full symmetry and thus simplifies 
analysis and testing requiring only (n+1) i.e., (3+1 = 4) unique input combinations (based on 
the number of ones in the input) instead of eight. 

 

3.3 Symmetry in 2-bit Full Adder: 

Extending to a 2-bit Full Adder that can be represented as a serial combination of two 1-bit 
Full Adder, which takes in a total of five inputs (A1, B1, A0, B0, Cin) and produces three 
outputs, Sum (S0) = A0 ⊕ B0 ⊕ Cin, Sum (S1) = A1 ⊕ B1 ⊕ C0 and a final Carry (C1) = A1.B1 + 
C0(A1⊕B1) along with an intermediate carry generated by the first Full Adder Carry (C0) = 
A0.B0 + Cin(A0⊕B0) that goes in as the Cin for the second Full Adder. 

While the Boolean function of the outputs generated by the individual 1-bit Full Adders in 
the combination retain the symmetric properties with respect to their individual inputs, the 
hierarchical flow of information from the first 1-bit Full Adder to the second through the 
intermediate carry function introduces dependencies between the subsets of inputs and 
breaks the overall symmetry of the circuit.  

For example, the final Carry (C1) = A1B1 + [A0.B0 + Cin(A0⊕B0)] (A1⊕B1) expressed in terms of 
the least significant bits/initial input values tend to not obey the concept of full symmetry. 
For an example input (A1,B1,A0,B0) = (0,1,0,0) [Cin has been dropped for the example 
purpose] would give us Sum (S0) = 0, Carry (C0) = 0, Sum(S1) = 1 and final Carry (Cout) = 0. 
According to the concept of symmetry in Boolean functions, changing the order of input 
variables should still give the same result. This property does not hold good when we 
permute the input combinations by providing (0,0,1,0) as the inputs. This input combination 
generates Sum (S0) = 1, Carry (C0) = 1, Sum(S1) = 1 and final Carry (Cout) = 1. 

 

3.4  Introducing Partial Symmetry and Testing for Partial Symmetry 

Even though we observed that complete symmetry gets violated in the case of a 2-bit Full 
Adder, we can observe partial symmetry in function at different parts of the circuit. Partially 
symmetric function can be defined as a function whose subsets of inputs exhibit symmetry 
internally but show asymmetry when it interacts with other subsets. 



The example provided in the previous subsection contains two partially symmetric subsets 
(A1B1) [most significant bits] and (A0B0) [least significant bits] where the inputs are 
symmetric among themselves but not between each other. This can be verified by just 
permuting the input values within the subset. For example, inputs (A1,B1,A0,B0) can be tested 
for partial symmetry if we permute the input values within the same subset (A1B1) to be 
(0,1,0,0) and (1,0,0,0,) which would give us Sum (S0) = 0, Carry (C0) = 0, Sum(S1) = 1 and final 
Carry (Cout) = 0. This holds true for the other subset (A0B0) as well. 

If there is no scope for full symmetry in the Boolean functions for which the sufficient 
number of checks would be (n+1) for an ‘n’ input variable function, we can still keep the 
number of tests that could be performed significantly lower by checking for the existence of 
partial symmetry in the circuit. The number of tests required to be deemed sufficient can be 
formulated as (n1 + 1) x (n2 + 1) x ...... x (nM +1) number of test cases where n1, n2, ...... nM 

represents the number of inputs present inside partially symmetric subsets and M 
represents the number of partial subsets present. 

 

For a 2-bit adder which showcased partial symmetry, we can observe two partially 
symmetric subsets where n1 = 3 and n2 = 2. The minimum number of sufficient test cases 
that could be performed considering partial symmetry would be (3+1)  x(2+1) = 12 tests 
which is a drastic reduction in number compared to the total 32 combinations that had to 
be checked if tested exhaustively. 

4. CONCLUSIONS:  

                                             In this  research  paper, it  is  proved  that  for  testing  a  1-bit/N-bit  full  adder,  
only  a  small number  of  input  { 0,1}  combinations ( from  the  truth  table )  can  be  utilized to  test  if 
such a  combinational  circuit  is  functioning  properly. The  results  are  currently  generalized  to  other  
interesting  combinational cicuits 
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