
EasyChair Preprint
№ 14972

Complexity of Monomial Prediction in
Cryptography and Machine Learning

Pranjal Dutta, Mahesh Rajasree and Santanu Sarkar

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

September 21, 2024

Complexity of Monomial Prediction in
Cryptography and Machine Learning*

Pranjal Dutta
School of Computing

National University of Singapore (NUS)
Singapore

duttpranjal@gmail.com

Mahesh Sreekumar Rajasree
Department of Computer Science and Engineering

Indian Institute of Technology Delhi
Delhi, India

srmahesh1994@gmail.com

Santanu Sarkar
Department of Mathematics

Indian Institute of Technology Madras
Tamil Nadu, India
santanu@iitm.ac.in

Abstract—In this paper, we focus on the monomial prediction
problem in two settings: (1) Decide whether a particular mono-
mial m is present in a composite function f := fr ◦ fr−1 ◦ . . . f0,
where fi are quadratic boolean functions, (2) Decide whether a
particular monomial m is present in a composite function f :=
fr ◦fr−1 ◦ . . . f0, where polynomials fi are efficiently computable
by Probabilistic Generating circuits over rationals. Probabilistic
generating circuits (PGCs) are economical representations of
multivariate probability generating polynomials (PGPs), which
capture many tractable probabilistic models in machine learning.

The first problem has a strong connection with the security
of symmetric-key primitives. Dinur and Shamir proposed the
cube attack for distinguishing a cryptographic primitive from
a random function, which can be thought of as an efficient
monomial prediction. In a general setting, over any large finite
field or integers, monomial prediction is known to be NP-hard.
Here, we show that in the quadratic setting, the problem is ⊕P-
complete. ⊕P is an interesting complexity class that is not known
to contain NP, however, it is believed to contain computationally
hard problems. On the other hand, we also present several new
zero-sum distinguishers for 5-round Ascon, which is one of the
ten finalists for NIST light weight cryptography standardization
competition.

We show that the second problem is #P-complete. It is known
that PGCs have efficient inference, i.e. given a monomial, one can
efficiently output (which signifies the probability) its coefficient in
the polynomial computed by the circuit. However, a composition
of such functions makes the inference hard. Composition of prob-
abilistic models and their efficient inference play a crucial role
in the semantic contextualization and framework of uncertainty
theories in graphical modelling.

Index Terms—boolean function, monomial prediction, prob-
abilistic generating circuits, ⊕P-complete, #P-complete, cube
testers, Ascon, zero-sum distinguisher

I. INTRODUCTION

Dinur and Shamir [1] proposed the cube attack against
symmetric-key primitives with a secret key and a public

Some of the results were presented at the Workshop on Coding and
Cryptography (WCC 2022), but it was not published in any proceedings. This
is an extended version along with the new results in the Machine Learning
setting.

input. It has since evolved into a universal tool for assessing
the security of cryptographic primitives, and it has been
successfully applied to a variety of symmetric primitives.
Roughly speaking, the output bit of a cipher can be seen
as an unknown Boolean polynomial f(x,v), over F2, where
x = (x0, . . . , xn−1) is a vector of secret input variables, and
v = (v0, . . . , vm−1) is a vector of public input variables,
and F2 = {0, 1} is the field containing 2 elements. Given
a Boolean function f(x,v) ∈ F2[x,v] and a monomial
t ∈ F2[v], one can express f(x,v) as

f(x,v) = t · pt(x,v) + qt(x,v) ,

such that none of the monomials in qt(x,v) is divisible by
t. The function pt is called the superpoly of t in f . Let I =
(i1, i2, . . . , ik) be the index subset such that t =

∏
i∈I vi.

Then, it can be easily verified that for any constants cj ,∀j /∈ I ,
∑

(vi1 ,vi2
,...,vik)∈Fk

2

vj=cj ,∀j /∈I

f(x,v) = pt(x, c) .

A cube tester basically computes the above summation
(called cube sum) for a carefully chosen monomial t such
that its superpoly pt is equal to constant zero. This serves as
a distinguishing attack between f and a random polynomial.

To broaden the integral and higher-order differential dis-
tinguishers, Todo [2] introduced the division property. Soon
division property based cube attack became a hot topic in
the community. In [3], a new technique termed monomial
prediction was proposed that captures the algebraic basics
of various attempts to improve the detection of division
property. The goal was simple: detect a monomial xu1 in the
product yu2 of any output bits of a vectorial Boolean function
y = f(x). Further, this monomial prediction approach was
shown to be equivalent to the proposed three-subset bit-based
division property without unknown subset [4].

Monomial prediction: What and why? From an algorithmic
perspective, let us ask the following (decision) question:

Given a monomial m, and a given (black-box) polyno-
mial f , over a certain domain R, can we efficiently decide
whether the coefficient of m in f is zero or not?

In [5], Kayal considered this computational problem, known
as ‘monomial prediction’, from a complexity theoretic (hard-
ness) point of view, which can be broadly (re)stated as follows:
Given a black-box access to an n-variate degree-d polynomial
f(x), over a finite field F and a monomial xe = xe1

1 · · ·xen
n ,

determine the coefficient of xe in f(x). Before Kayal, a
similar search problem was also studied by Malod [6] in his
PhD thesis, from an algebraic complexity theoretic lens.

Kayal termed this problem as CoeffSLP and showed that
it is #P-complete over integers (for a self-contained proof,
see [5, Appendix A]). We recall that #P essentially captures
the number of solutions of a given instance, and thus obviously
a #P problem must be at least as hard as the correspond-
ing NP problem. However, roughly speaking, for practical
purposes, f is a composition of easy functions.

(1) In stream ciphers f can be thought as a composition of
a bunch of linear and quadratic Boolean functions, and not
arbitrary compositions,

(2) In machine learning, many probabilistic models are com-
positions of tractable probabilistic model where probabilistic
inference (i.e. coefficient-extraction) is easy.

Motivated thus, one could ask the following:

Given a monomial m, and a given (black-box) polyno-
mial f , over a certain domain R, as a composition of “easy”
functions gi, i.e. f = gr◦gr−1◦. . . g0, can we efficiently decide
whether the coefficient of m in f is zero or not?

Since the inherent assumption that gi as individual functions
are easy functions, it is unclear if [5] would still imply that
the monomial prediction is hard (say over Z). This makes
the monomial prediction paradigm, given as compositions,
both theoretically and practically interesting! So, we restrict
ourselves to two particular cases and ask the complexity of
the following problems. The first problem is motivated as
the theoretical understanding of stream ciphers, viewed as
a composition of quadratic polynomials over F2. Trivially,
quadratic polynomials are easy polynomials.

Problem 1. Given a composition f := (f1, . . . , fn) := gr ◦
gr−1 ◦ . . . g0, and a monomial m, where each gi : Fn

2 −→ Fn
2 ,

is a quadratic function, decide whether m is a monomial in
f1.

The second problem is motivated from the machine learning
perspective. To define the setup, we first define Probabilistic
Generating Circuits (PGCs). In [7], Zhang et al. proposed
this model. These models represent probability distributions by
probability generating functions. Probability generating func-
tions represent the joint distribution of a set of binary random
variables as the coefficients of a multi-linear polynomial.

Definition 1. Let Pr be a probability distribution over binary
random variables X1, X2, · · · , Xn, then the probability gen-

erating polynomial for the distribution is defined as

g(x1, . . . , xn) =
∑

S⊆{1,···,n}
Pr[XS] · xS

where Pr[XS] = Pr[{Xi = 1}i∈S , {Xi = 0}i/∈S] and xS =∏
i∈S xi

This new model is efficiently tractable as it supports an
extremely efficient marginal inference. Furthermore, it is very
efficient, it subsumes all the probabilistic models, e.g. de-
composable probabilistic circuits (PCs), determinantal point
processes (DPPs).

Definition 2 (PGC). A probabilistic generating circuit (PGC)
is a directed acyclic graph consisting of three types of nodes:

1) Sum nodes + with weighted edges to children;
2) Product nodes × with unweighted edges to children;
3) Leaf nodes, which are variables xi or constants.

A PGC has one node of out-degree 0 (edges are directed
from children to parents), and we refer to it as the root of the
PGC. The size of a PGC is the number of edges in it.

Each node in a PGC represents a polynomial, (i) each
leaf in a PGC represents the polynomial xi or a constant,
(ii) each sum node represents the weighted sum over the
polynomials represented by its children, and (iii) each product
node represents the unweighted product over the polynomials
represented by its children. The polynomial represented by a
PGC is the polynomial represented by its root. We know that
inference is extremely efficient for PGCs [8].

Since, we have defined what a PGC is, now we are ready
to state the second problem.

Problem 2. Given a composition f := (f1, . . . , fn) := gr ◦
gr−1◦ . . . g0, and a monomial m, where each gi : Qn −→ Qn,
is computed by a poly(n)-size PGCs, output the coefficient of
m in f1.

The composition of functions introduces complexity into
probabilistic inference and makes it perhaps challenging. In the
realm of graphical modelling, combining probabilistic models
and efficiently inferring their outcomes is fundamental for
semantic contextualization and establishing robust frameworks
for uncertainty theories! This synergy lays the groundwork
for understanding many complex systems with nuanced uncer-
tainties, enriching our ability to model real-world phenomena
accurately.

A. Our contributions

Our paper revolves around the above problems, and con-
tributes in two directions – theoretical and practical.

Theoretical contribution. Though it may sound obvious to
be ‘theoretically’ hard, the hardness proof is far from the
obvious. We consider more general parameters and indeed
show that Problem 1 is ⊕P-complete (see definition 3); for
details see Theorem 1 and its proof in Section III. On the other
hand, using a similar proof strategy, we show that Problem 2

is #P-complete; for details see Theorem 3 and its proof
in Section III.

Practical contribution. From a practical point of view,
we exploit superpoly and monomial prediction to give better
cube attack for Ascon. Most importantly, these attacks are
not restricted to Ascon, and can be used in other cryp-
tosystems as well, since most cryptosystems, e.g., SHA3 [9],
TinyJambu [10], etc. can be thought as a composition of
quadratic functions. Ascon [11] is one of the elegant designs
of authenticated encryption with associated data (AEAD) that
was selected as the first choice for lightweight applications in
the CAESAR competition, which also has been submitted to
NIST lightweight cryptography standardization. On March 29,
2021, NIST announced ten finalists and Ascon is still on the
race. It has been in the literature for a while, however, there
has been no successful AEAD which is secure and at the same
time lighter than Ascon.

In Section IV, we present a new zero-sum distinguisher for
5-round Ascon with complexity 214 which improves the best
known cube distinguishers [12] by a factor of 22. We em-
phasis that the blackbox and the non-blackbox distinguishers
proposed by Gerault et al. [13] possess a generic complexity
greater than 275.

Brief Comparison with the previous methods: In the con-
ventional cube attack papers, one of the obvious ways is to
find an upper bound d on the degree of f(x,v). Once the
upper bound is found, it is not hard to show that a d+1-sized
cube tester works. Moreover, typically the previous methods
wanted pt, the superpoly to be constant zero.

In [3], the authors used MILP to find the monomial with
the largest hamming weight and odd number of monomial
trails, to find the algebraic degree of f(x,v). This is where
our method differs from them. We observe that, as long as
each monomial in the superpoly pt contains a public variable
or is a constant, the indices corresponding to t can be used as a
cube tester! Note that, this is directly related to Problem 1. In
Section IV, we give a procedure that computes an approximate
polynomial f ′(v) for f(x,v) such that if a monomial m ∈
F2[v] is not present in f ′(v), then there does not exist any
monomial p ·m where p ∈ F2[x] in f(x,v). This helps us in
building new zero-sum distinguishers for Ascon. For details,
see Section IV.

II. PRELIMINARIES AND NOTATIONS

A. Complexity Classes

Definition 3 (The class ⊕P). In computational complexity
theory, the complexity class ⊕P (pronounced ‘parity P’) is
the class of decision problems solvable by a nondeterministic
Turing machine in polynomial time, where the acceptance
condition is that the number of accepting computation paths
is odd.

The class #P is the class of function problems of the form
“compute f(x)”, where f is the number of accepting paths

of a nondeterministic Turing machine running in polynomial
time. One can think of ⊕ as #P problems (mod 2).

Definition 4 (⊕P-complete). A problem L is said to be
⊕P-hard if every problem in ⊕P can be reduced to L in
polynomial-time. It is said to be ⊕P-complete if it is in ⊕P
and also ⊕P-hard.

Similarly, one can define #P-complete problems. There are
interesting problems known to be ⊕P-complete (simiarly #P-
complete) [14]. We will also use one of them in our hardness
result, for details see section III.

a) How hard are ⊕P-complete problems?: It is not hard
to show that ⊕P contains the graph isomorphism problem. On
the other hand, P⊕P (oracle power to a machine computing
⊕P function) is not known to contain NP. However, it is not
known (or believed) to be as strong as #P. This distinction
is important in our context since, monomial prediction in
the most general setting over Z or Q, is known to be #P-
complete [5], while the scenario changes when one works over
the field F2, or when the structure of the given function is
restricted.

B. Description of Ascon

Dobraunig et al. designed Ascon. It is a permutation-
based family of authenticated encryption with associated data
algorithms (AEAD). The Ascon AEAD algorithm takes as
inputs a secret key K, a nonce N , a block header AD (a.k.a
associated data) and a message M . It then outputs a ciphertext
C of same length as M , and an authentication tag T which
authenticates the associated data AD and the message M .
There are two variants of Ascon, namely Ascon-128 and
Ascon-128a.

C. The Ascon Permutation

The core permutation p of Ascon is based on substitution
permutation network (SPN) design paradigm. It operates on
a 320-bit state arranged into five 64-bit words and is defined
as p : pL ◦ pS ◦ pC . The state at the input of r-th round is
denoted by Xr

0∥Xr
1∥Xr

2∥Xr
3∥Xr

4 while Y r
0 ∥Y r

1 ∥Y r
2 ∥Y r

3 ∥Y r
4

represents the state after the pS layer. We use Xr
i [j] (resp.

Y r
i [j]) to denote the j-th bit (starting from left) of Xr

i (resp.
Y r
i). We now describe the three steps pC , pS , and pL in detail

(superscripts are removed for simplicity).

a) Addition of constants (pC).: We add an 8-bit constant
to the bits 56, · · · , 63 of word X2 at each round.

b) Substitution layer (pS).: We apply a 5-bit S-box
on each of the 64 columns. Let (x0, x1, x2, x3, x4) and
(y0, y1, y2, y3, y4) denote the input and output of the S-box,
respectively. Then the algebraic normal form (ANF) of the S-
box is given in Equation (1). Note that here xi and yi are the
bits of word Xi and Yi, respectively.

IV�K�N 320 pa

⊕

0∗�K

c

⊕r

A1

pb

⊕

As

pb

⊕

0∗�1

⊕

P1 C1

pb

⊕

Pt−1 Ct−1

pb

⊕

Pt Ct

⊕

K�0∗

pa

⊕

K

T

Initialization Associated Data Plaintext Finalization

Fig. 1. Ascon’s mode of operation (encryption phase)

Table 1. Ascon variants and their recommended parameters

Name State size Rate r
Size of Rounds

Key Nonce Tag pa pb IV

Ascon-128 320 64 128 128 128 12 6 80400c0600000000

Ascon-128a 320 128 128 128 128 12 8 80800c0800000000

Addition of constants (pC). We add an 8-bit constant to the bits 56, · · · , 63 of
word X2 at each round.

Substitution layer (pS). We apply a 5-bit Sbox on each of the 64 columns.
Let (x0, x1, x2, x3, x4) and (y0, y1, y2, y3, y4) denote the input and output of the
Sbox, respectively. Then the algebraic normal form (ANF) of the Sbox is given in
Equation 1. Note that here xi and yi are the bits of word Xi and Yi, respectively.





y0 = x4x1 + x3 + x2x1 + x2 + x1x0 + x1 + x0

y1 = x4 + x3x2 + x3x1 + x3 + x2x1 + x2 + x1 + x0

y2 = x4x3 + x4 + x2 + x1 + 1

y3 = x4x0 + x4 + x3x0 + x3 + x2 + x1 + x0

y4 = x4x1 + x4 + x3 + x1x0 + x1

(1)

Linear diffusion layer (pL). Each 64-bit word is updated by a linear operation
Σi which is defined in Equation 2. Here ≫ is the right cyclic shift operation
over a 64-bit word.





X0 ← Σ0(Y0) = Y0 + (Y0 ≫ 19) + (Y0 ≫ 28)

X1 ← Σ1(Y1) = Y1 + (Y1 ≫ 61) + (Y1 ≫ 39)

X2 ← Σ2(Y2) = Y2 + (Y2 ≫ 1) + (Y2 ≫ 6)

X3 ← Σ3(Y3) = Y3 + (Y3 ≫ 10) + (Y3 ≫ 17)

X4 ← Σ4(Y4) = Y4 + (Y4 ≫ 7) + (Y4 ≫ 41)

(2)

Fig. 1. Ascon’s mode of operation (encryption phase)

TABLE I
ASCON VARIANTS AND THEIR RECOMMENDED PARAMETERS

Name State size Rate r
Size of Rounds

Key Nonce Tag pa pb IV

Ascon-128 320 64 128 128 128 12 6 80400c0600000000
Ascon-128a 320 128 128 128 128 12 8 80800c0800000000





y0 = x4x1 + x3 + x2x1 + x2 + x1x0 + x1 + x0

y1 = x4 + x3x2 + x3x1 + x3 + x2x1 + x2 + x1 + x0

y2 = x4x3 + x4 + x2 + x1 + 1

y3 = x4x0 + x4 + x3x0 + x3 + x2 + x1 + x0

y4 = x4x1 + x4 + x3 + x1x0 + x1

(1)
c) Linear diffusion layer (pL).: Each 64-bit word is up-

dated by a linear operation Σi which is defined in Equation (2).
Here ≫ is the right cyclic shift operation over a 64-bit word.





X0 ← Σ0(Y0) = Y0 + (Y0 ≫ 19) + (Y0 ≫ 28)

X1 ← Σ1(Y1) = Y1 + (Y1 ≫ 61) + (Y1 ≫ 39)

X2 ← Σ2(Y2) = Y2 + (Y2 ≫ 1) + (Y2 ≫ 6)

X3 ← Σ3(Y3) = Y3 + (Y3 ≫ 10) + (Y3 ≫ 17)

X4 ← Σ4(Y4) = Y4 + (Y4 ≫ 7) + (Y4 ≫ 41)

(2)

III. ON THE HARDNESS OF MONOMIAL PREDICTION:
ANSWERING PROBLEM 1 AND PROBLEM 2

To show the hardness of problem 1, formally, we define the
following language.

L := {(f,m) | coefm(f1) = 1 , where f = (f1, . . . , fnr+1
)

= gr ◦ gr−1 ◦ . . . g0 and gi : Fni
2 −→ Fni+1

2 ,

ni ∈ N, ∀ i ∈ [r + 1],with n0 = n,

monomial m ∈ F2[x1, . . . , xn], and
deg((gi)j) ≤ 2 } .

In general, we will be working with r, ni = poly(n) (so
that one can think of the input complexity with respect to
parameter n). Given (f,m) as an input where f is described by

providing a compact representation of gi’s, we want to decide
whether (f,m) ∈ L. Note that this maybe ‘easier’ than solving
a large system of multivariate polynomial equations over F2,
and thus one cannot rigorously argue the hardness. However,
we show that deciding (f,m) ∈ L is ⊕P-complete.

Theorem 1 (⊕P-completeness). Given a composition of
quadratic functions f and a monomial m, deciding whether
(f,m) ∈ L is ⊕P-complete.

Remark 1. The hardness proof can be adapted to work over
a finite field F or integer ring Z. In fact, over integers, one
can show NP-hardness of the above problem, by adapting
the proof strategy of [5]. Of course, a hardness proof over Z
usually does not translate to very small characteristic fields
like F2.

Remark 2. We are unable to show NP-hardness of L. We do
not know whether ⊕P contains NP or not. In fact, P⊕P is
not known to contain NP. Therefore, it will be interesting to
show NP-hardness of the above problem.

Proof. The proof is motivated from algebraic complexity the-
ory and uses the Hamiltonian Cycle polynomial, HCn, defined
below, which is a well-known VNP-complete1 polynomial
over F2 [6], [15]. Remarkably the motivation of studying the
hardness of HCn is quite different from ours and concerns
arithmetic circuit complexity while in this paper, we are
interested in Boolean hardness results!

Recall the definition of Hamiltonian cycle: it is a closed
loop on a graph where every node (vertex) is visited exactly
once. It is known that the problem Odd Hamiltonian
Cycle – deciding whether a given graph G = (V,E) has

1The class VNP, Valiant’s NP, is known as the algebraic NP class in
the algebraic complexity theory.

an odd number of Hamiltonian cycles, is ⊕P-complete [14],
i.e., it is in ⊕P and also is ⊕P-hard. We will use Odd
Hamiltonian Cycle to show the completeness of L. In
particular, we will show the proof in two parts –

1) Part A – a reduction from Odd Hamiltonian
cycle≤P L this implying that our problem is ⊕P-
hard, and

2) Part B – L is in ⊕P.

Part A: Proof of ⊕P-hardness

Define the Hamiltonian Cycle polynomial (HCn) for a graph
with n nodes, with the adjacency matrix (xi,j)1≤i,j≤n (they
are just elements from {0, 1}), as follows:

HCn (x1,1, . . . , xn,n) =
∑

σ∈Sn

n∏

i=1

xi,σ(i) ,

where Sn is the symmetric group on a set of size n and the
sum is taken over all n-cycles of Sn (i.e. , every monomial
in HCn corresponds to a Hamiltonian cycle in the complete
directed graph on n vertices). Here is the crucial lemma.

Lemma 2 (Composition lemma). Let G = (V,E) be a
given graph with the adjacency matrix x = (xi,j)i,j∈[n]. Let
y = (y1, . . . , yn) and z = (z1, . . . , zn) be 2n variables. Then,
there exist g0, . . . , gn, polynomial maps such that

(i) g0 : Fn2+2n
2 −→ F2n2

2 , and gi : F2n2

2 −→ F2n2

2 , for
i ∈ [n], with deg((gi)j) ≤ 2, and

(ii) coefy1···yn·z1···zn(f1(x,y, z)) = HCn(x), where
(f1, . . . , f2n2) = gn ◦ . . . ◦ g0.

The above lemma directly implies that for a given graph
G = (V,E) with adjacency matrix (xi,j)i,j , (f := gn ◦ . . . ◦
g0,m := y1 · · · ynz1 · · · zn) ∈ L ⇐⇒ G has odd number of
Hamiltonian cycles, which would finish the proof.

Proof of Lemma 2. In the proof, we will often interchange k-th
coordinate with (i, j)-th position, for k ∈ [n2], where k−1 =
(i−1) + n(j−1), and i, j ∈ [n]. Since, k−1 ∈ [0, n2−1] can
be uniquely written as (i− 1) + n(j − 1), for some i, j ∈ [n],
there is a one-to-one correspondence. We divide the proof into
two:

Part 1 : Construction of gi’s. Define the polynomial map
g0 : Fn2+2n

2 −→ F2n2

2 , by defining each coordinate of g0,
namely (g0(x,y, z))k, for k ∈ [2n2] by:

(g0(x,y, z))k :=





xi,j , when k ≤ n2,where
k − 1 = (i− 1) + n(j − 1),

yi · zj , when n2 < k ≤ 2n2,where
k − 1− n2 = (i− 1) + n(j − 1).

In the above, we used the fact that k − 1 − n2 ∈ [0, n2 − 1]
and hence the one-to-one correspondence exists. Trivially any
coordinate (g0(x,y, z))k is at most a quadratic polynomial.

Now define g1 : F2n2

2 −→ F2n2

2 , on 2n2 variables w :=
(wi,j)i,j∈[n] and s := (si,j)i,j∈[n], as follows:

(g1(w, s))k :=





wi,j · si,j , when k ≤ n2,where
k − 1 = (i− 1) + n(j − 1),

(g1(w, s))k−n2 , when n2 < k ≤ 2n2.

Basically, g1 repeats the first n2 coordinates. Again, by defi-
nition, each ordinate is a quadratic polynomial. Now, we can
define gℓ : F2n2

2 −→ F2n2

2 , again on 2n2 variables (w, s), for
ℓ > 1, as follows:

(gℓ(w, s))k :=


∑n

r=1 wi,r · sr,j , when k ≤ n2,where
k − 1 = (i− 1) + n(j − 1),

si,j , when n2 < k ≤ 2n2,where
k − 1− n2 = (i− 1) + n(j − 1).

It is easy to see that, by definition, gℓ, restricted to the last n2

coordinates, is an identity map. Also, trivially, each coordinate
is a quadratic polynomial.

Part 2 : Getting HCn as a coefficient of gn ◦ . . . ◦ g0. We
will prove two claims about the structure of the compositions.
Here is the first claim.

Claim 1. For any ℓ ≥ 1, we have (gℓ(. . . (g0(x,y, z) . . .)k =
xi,j · yi · zj , for k ∈ [n2 + 1, 2n2], where k − 1 − n2 =
(i− 1) + n(j − 1).

Proof. First let us prove this for ℓ = 1. Since, there is a one-
to-one correspondence between the k-th coordinate and the
pair (i, j), by definition,

g1(g0(x,y, z))k = g1(g0(x,y, z))k−n2 = xi,j · yi · zj .
Since, gℓ is an identity map in the last n2 coordinates, for
ℓ > 1, the conclusion follows immediately.

We remark that, in fact, in the above, it can be easily seen
that g1(g0(x,y, z))k = xi,j · yi · zj , for k ∈ [n2], where
k−1 = (i−1)+n(j−1). However, since ℓ grows, gℓ ◦ . . . g0
looks complicated. Here is the main claim, about the structure
of the composition, for the first n2 coordinates.

Claim 2 (Main claim). For any ℓ ≥ 2, and k ∈ [n2], such
that (k − 1) = (i− 1) + n(j − 1), the following holds:

(gℓ(. . . (g0(x,y, z) . . .))k

= yizj ·
∑

1≤m1,...,mℓ−1≤n

xi,m1
xm1,m2

· · ·xmℓ−2,mℓ−1
xmℓ−1,j

·
(

ℓ−1∏

s=1

ymszms

)
.

Proof of the Claim. We will prove this by induction on ℓ.

Base case: ℓ = 2. For ℓ = 2, by definition, we have

(g2(g1(g0(x,y, z))k =

n∑

r=1

(xi,ryizr) · (xr,jyrzj)

= yizj ·
∑

1≤r≤n

xi,rxr,jyrzr ,

as desired. In the above, we implicitly used the (i, r)-th
coordinate, by which we mean the k′-th coordinate such that
k′− 1 = (i− 1)+n(r− 1), the similar correspondence as we
mentioned at the beginning of the proof of Lemma 2. Thus,
base case is true.

Inductive step: (ℓ+ 1)-th step. Let us assume that it is true
for some ℓ. To show this for ℓ + 1, again, by definition (and
the one-to-one correspondence between k and (i, j)), we have

(gℓ+1(. . . (g0(x,y, z) . . .)k

=

n∑

r=1

(gℓ(. . . (g0(x,y, z) . . .)i,r · (xr,jyrzj)

=

n∑

r=1

(
ℓ−1∑

i=1

n∑

mi=1

xi,m1

(
ℓ−2∏

t=1

xmt,mt+1

)
xmℓ−1,r

(
ℓ−1∏

s=1

ymszms

)
yizr

)
(xr,jyrzj)

= yizj ·
∑

1≤m1,...,mℓ−1,mℓ≤n

xi,m1xm1,m2 · · ·xmℓ−1,mℓ
xmℓ,j ·

(
ℓ∏

s=1

yms
zms

)

The second last equality is by induction hypothesis while in the
last equality, we renamed r by mℓ. In the above, by (i, r)-th
coordinate, again, we mean k′-th coordinate such that k′−1 =
(i−1)+n(r−1). This finishes the induction and the conclusion
as well.

Claim 2 with k = 1 (i.e. i = j = 1) and ℓ = n, gives the
following identity:

(gn(. . . (g0(x,y, z) . . .)1

= y1z1 ·
∑

1≤m1,...,mn−1≤n

x1,m1
xm1,m2

· · ·xmn−2,mn−1
xmn−1,1

·
(

n−1∏

s=1

yms
zms

)

The coefficient of the monomial y1z1 · · · ynzn is the Hamil-
tonian Cycle polynomial HCn(x), because for any Hamil-
tonian cycle of length n, we must choose m1, . . . ,mn−1,
each between 2 and n, so that such a choice generates the
monomial x1,m1xm1,m2 · · ·xmn−2,mn−1xmn−1,1. Since, it vis-
its each node exactly once, y1 · · · ynz1 · · · zn is also generated
with the x-monomial. This finishes the proof of the part 2.

Since, Lemma 2 is now proved, the ⊕P-hardness follows,
as well, finishing the proof of Part A.

Part B: Proof of L ∈ ⊕P
We now show that deciding whether (f,m) ∈ L is ⊕P. To do
this, we need to construct an NP machine M such that the
number of accepting paths is odd due to definition 3. The input
to the machine M is (f,m), where m =

∏
i∈I xi, I ⊆ [n].

The output ofM is the evaluation of f1 by setting xi = 0,∀i ∈

[n] \ I , whereas non-deterministically picking rj ∈ {0, 1} and
setting xj = rj ,∀j ∈ I .

Let |I| = k. As mentioned in the introduction, we can
express f1(x) as

f1(x) = m · pm(x) + qm(x)

and we have

Σ
(xi1

,...,xik
)∈Fk

2

xj=0,∀j /∈I

f1(x) = pm(x) ∈ {0, 1}

where pm(x) does not contain any variable xi where i ∈ I and
none of the monomials in qm(x) is divisible by m. Therefore,
the above sum evaluates to 1 iff m is a monomial in f1. It
is easy to see that each accepting path of M is essentially a
term in the above summation being evaluated to 1. Hence, m
is a monomial in f1 iff the number of accepting path in M
is odd. This finishes the proof of Part B.

For problem 2, let us define the problem in a slightly more
general setting, similar to problem 1. Let

f = (f1, . . . , fnr+1
) = gr ◦ gr−1 ◦ . . . g0 , gi : Qni −→ Qni+1 ,

ni ∈ N, ∀ i ∈ [r + 1],with n0 = n,

gi are computable by poly(n)− size PGCs .

Let m be a given monomial. Given (f,m), we want to
compute the coefficient of m in f1. Below, we show that this
is #P-complete.

Theorem 3. Given a composition of quadratic functions f =
gr ◦ gr−1 ◦ . . . ◦ g0 where gi can be computed by a poly-sized
PGCs and a monomial m, computing the coefficient of m in
f is #P-complete.

Proof sketch. The proof is very similar to the proof of The-
orem 1. The part A of the proof will work with a modified
version of gi denoted as g̃i such that g̃i can be computed
in poly(n)-sized PGCs. This is achieved by normalizing each
output p(i)j (x,y, z) of gi with Ni,j , the number of non-zero
coefficients of p

(i)
j . To be precise, g̃0 and g̃1 are exactly g0

and g1, whereas for ℓ > 1 and k ≤ n2, where k − 1 =
(i− 1) + n(j − 1),

(gℓ(w, s))k :=

n∑

r=1

wi,r · sr,j
n

and when n2 < k ≤ 2n2, where k−1−n2 = (i−1)+n(j−1),

(gℓ(w, s))k := si,j

Claim 1 essentially remain the same, whereas in claim 2, the
output polynomial contains some additional low-degree terms.
To be precise,

(gℓ(. . . (g0(x,y, z) . . .))k

= hk(x,y, z) +
yizj
nℓ−1

·
∑

1≤m1,...,mℓ−1≤n

xi,m1
xm1,m2

· · ·

xmℓ−2,mℓ−1
xmℓ−1,j ·

(
ℓ−1∏

s=1

yms
zms

)
.

where hk(x,y, z) ∈ Q[x,y, z] and deg(hk) < 3 · ℓ.
Similar to the previous proof, we can show that the coef-
ficient of the monomial y1z1 · · · ynzn for k = 1, ℓ = n
is HC(x)/nn−1. However, if we were to work with poly-
nomials over Q[x,y, z], the presence of nn−1 factor in the
denominator would affect the value in the numerator, making
it impossible to extract the exact number of Hamiltonian
cycles. To avoid this, we need to work with polynomials over
Fp[x,y, z] rather than Q[x,y, z] where p is a prime strictly
greater than n!. The reason for choosing such a prime is that
the number of Hamiltonian cycles in a graph with n vertices
is at most n!. These changes are sufficient to show that the
problem is #P-hard. For part B of the proof, i.e., it can be
computed by a #P machine, can be achieved by interpolation,
as described in [5, Appendix A].

IV. NEW ZERO-SUM DISTINGUISHERS FOR ASCON

In this section, we present several distinguishers for 5-round
Ascon-128. As shown in Figure 1, X0

0 is set to IV whereas,
X0

1 , X
0
2 are set to key bits (secret bits) and X0

3 , X
0
4 to nonce

bits (public bits). Since, the ciphertext C1 is obtained by
XOR-ing the message P1 to X5

0 , we will consider zero-sum
distinguisher at X5

0 positions only.
In [12], the authors found a distinguisher with complexity

216 for 5-round Ascon by setting X0
3 = X0

4 and finding an
upper bound on the algebraic degree in nonce variables using
division property. In our experiments, we also set X0

3 = X0
4 .

The road-map. We first show that there is a degree-15
monomial that is not present in X5

0 [1], and thus, we find a
15 sized cube as a zero-sum distinguisher. Observe that it
is impossible to construct the exact polynomials of X5

0 with
respect to the key and cube variables because the number
of key variables is 128, and this naturally results in a huge
number of monomials.

Instead of finding the exact polynomial in X5
0 [1], which we

denote as f(x,v) ∈ F2[x,v], we will come up with an ap-
proximate polynomial denoted as g(v) ∈ F2[v]. Observe that
g contains only cube variables. The approximate polynomial
and the exact polynomial has the following relationship.

Property 1. If the exact polynomial, f(x,v) has a monomial
p · q where p ∈ F2[v] and q ∈ F2[x], then the approximate
polynomial, g(v) will contain p.

In other words, if a monomial p is missing from g(v), then
it is guaranteed that p · q for any q ∈ F2[x] would not be
present in f(x,v). But, this does not say anything about the
presence or absence of p · q′ in f(x,v) where q′ ∈ F2[v], i.e.,

q′ contains only nonce variables. We do not have to worry
about such terms because p · q′ can be ignored by setting the
appropriate nonce variables to 0, to satisfy q′ = 0.

To build these approximate polynomials, we will work over
the ring of integers Z, rather than F2. We start by building the
exact polynomial over Z up-to 2 rounds, i.e., we will consider
both key and cube variables as integer variables and replace
XOR with integer + and · with integer ×. This will give rise
to two issues.

1) Firstly, the coefficients of the monomials will blow-up.
This can be handled by reducing the polynomial modulo
2.

2) Secondly, the monomials are no longer multi-linear. This
also can fixed by reducing the polynomial by modulo
v2i − vi,∀i.

Observe that as an alternative, we can simply work over
F2, find the exact polynomials and then convert them into
polynomials over Z. But, this approach seems to be time
consuming in SAGE [16].

Next, we get rid of the key variables by evaluating the
polynomial at xi = 1,∀i. Again, the coefficients may blow-
up which is handled by replacing all non-zero coefficients
with 1. Observe that these new polynomials have Property 1.
We will apply the rest of the 3 rounds on these approximate
polynomials to get the approximate polynomials for X5

0 [1]. In
our experiment, while considering cube indices 0, 1, . . . , 14,
the approximate polynomial for X5

0 [1] does not contain the
monomial

∏14
i=0 vi. This gives us a zero-sum distinguisher for

5-round with complexity 215. Observe that this experiment
is essentially solving Problem 1 for 5-round Ascon with the
monomial m being

∏14
i=0 vi. The source code is available on

GitHub and can be provided upon request.
In Table II, we provide more cubes which can serve as a

distinguisher for 5-round Ascon-128. We start by randomly
guessing a few cubes (i.e., a subset of bit indices in X0

3 and
X0

4) of size ℓ that is strictly smaller than 16, and set the rest of
the bits of the nonce (non-cube bits) to 0. For each u ∈ {0, 1}ℓ,
we set the cube variables to u and run 5-round Ascon-128.
The output X5

0 with respect to each u is summed up to get
the cube sum. We analyse the cube sum at X5

0 bits for 215

randomly generated keys and observe the following:
1) For all the 14 sized cubes, the sum at the output

mentioned in Table II was 0 for every key.
2) For 13 sized cubes, the sum was 0 with high probability.

All indices mentioned in Table II have an offset of 0. Since,
the 14 sized cubes are giving 0 as the cube-sum for all 215

randomly chosen keys, we can use them as a distinguisher for
5-round Ascon with very high confidence, owing a complexity
of 214 and beating the best known cube distinguisher [12], by
a factor of 22.

REFERENCES

[1] I. Dinur and A. Shamir, “Cube attacks on tweakable black box polynomi-
als,” in Annual international conference on the theory and applications
of cryptographic techniques. Springer, 2009, pp. 278–299.

TABLE II
LIST OF CUBES FOR 5-ROUND ASCON-128

Rounds Cube size Cube indices (X0
3 = X0

4) Output indices (X5
0)

5 13
0, 1, 2, 3, 4, 5, 7, 8, 10, 11, 12, 13, 16 4
0, 1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 16 4
0, 1, 2, 4, 5, 6, 7, 8, 10, 11, 12, 13, 16 4

5 14
0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14 1, 4
0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 16 4, 15, 24, 36
0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 18 4

[2] Y. Todo, “Structural evaluation by generalized integral property,” in
Annual International Conference on the Theory and Applications of
Cryptographic Techniques. Springer, 2015, pp. 287–314.

[3] K. Hu, S. Sun, M. Wang, and Q. Wang, “An algebraic formulation of
the division property: Revisiting degree evaluations, cube attacks, and
key-independent sums,” in International Conference on the Theory and
Application of Cryptology and Information Security. Springer, 2020,
pp. 446–476.

[4] Y. Hao, G. Leander, W. Meier, Y. Todo, and Q. Wang, “Modeling
for three-subset division property without unknown subset,” Journal of
Cryptology, vol. 34, no. 3, pp. 1–69, 2021.

[5] N. Kayal, “Algorithms for arithmetic circuits,” in Electron. Colloquium
Comput. Complex., vol. 17, 2010, p. 73.

[6] G. Malod, “Polynômes et coefficients,” Ph.D. dissertation, Université
Claude Bernard-Lyon I, 2003.

[7] H. Zhang, B. Juba, and G. Van den Broeck, “Probabilistic generating
circuits,” in International Conference on Machine Learning. PMLR,
2021, pp. 12 447–12 457.

[8] J. Harviainen, V. P. Ramaswamy, and M. Koivisto, “On inference
and learning with probabilistic generating circuits,” in Uncertainty in
Artificial Intelligence. PMLR, 2023, pp. 829–838.

[9] M. J. Dworkin et al., “SHA-3 standard: Permutation-based hash and
extendable-output functions,” 2015.

[10] H. Wu and T. Huang, “Tinyjambu: A family of lightweight authenticated
encryption algorithms (version 2),” Submission to the NIST Lightweight
Cryptography Standardization Process, 2021.

[11] C. Dobraunig, M. Eichlseder, F. Mendel, and M. Schläffer, “Ascon v1.
2. submission to nist (2019),” 2020.

[12] R. Rohit, K. Hu, S. Sarkar, and S. Sun, “Misuse-free key-recovery
and distinguishing attacks on 7-round ascon,” IACR Transactions on
Symmetric Cryptology, pp. 130–155, 2021.

[13] D. Gerault, T. Peyrin, and Q. Q. Tan, “Exploring differential-based
distinguishers and forgeries for ascon,” Cryptology ePrint Archive, 2021.

[14] L. G. Valiant, “Completeness for parity problems,” in Computing and
Combinatorics, 11th Annual International Conference, COCOON 2005,
Kunming, China, August 16-29, 2005, Proceedings, ser. Lecture Notes
in Computer Science, vol. 3595, 2005, pp. 1–8.

[15] P. Bürgisser, “Completeness and reduction in algebraic complexity
theory,” vol. 7, 2000.

[16] The Sage Developers, SageMath, the Sage Mathematics Software System
(Version 7.6), 2017, https://www.sagemath.org.

	Introduction
	Our contributions

	Preliminaries and Notations
	Complexity Classes
	Description of Ascon
	The Ascon Permutation

	On the hardness of monomial prediction: Answering and
	New Zero-Sum Distinguishers for Ascon
	References

