
EasyChair Preprint

№ 378

CryptoMiniSat Switches-Optimization for

Solving Cryptographic Instances

Anastasia Leventi-Peetz, Oliver Zendel, Werner Lennartz and
Kai Weber

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

July 24, 2018

CryptoMiniSat Switches-Optimization for Solving

Cryptographic Instances

A.-M. Leventi-Peetz1, O. Zendel1, W. Lennartz2, and K. Weber2

1 Federal Office for Information Security,
Godesberger Allee 185–189, DE-53175 Bonn, Germany

leventi-peetz@bsi.bund.de
2 inducto GmbH,

Karl-Wastl-Straße 13, DE-84405 Dorfen, Germany

Abstract

Performing hundreds of test runs and a source-code analysis, we empirically identified
improved parameter configurations for the CryptoMiniSat (CMS) 5 for solving crypto-
graphic CNF instances originating from algebraic known-plaintext attacks on 3 rounds
encryption of the Small AES-64 model cipher. We finally became able to reconstruct
64-bit long keys in under an hour CPU time which, to our knowledge, has never been
achieved so far. Especially, not without any assumptions or previous knowledge of key-bits
(for instance in the form of side-channels, as in [9]). A statistical analysis of the non-
deterministic solver runtimes was carried out and command line parameter combinations
were defined to yield best runtimes which ranged from under an hour to a few hours in
median at the beginning. We proceeded using an Automatic Algorithm Configuration
(AAC) tool to systematically extend the search for even better solver configurations with
success to deliver even shorter solving times. In this work we elaborate on the systematics
we followed to reach our results in a traceable and reproducible way. The ultimate focus
of our investigations is to find out if CMS, when appropriately tuned, is indeed capable
to attack even bigger and harder problems than the here solved ones. For the domain of
cryptographic research, the duration of the solving time plays an inferior role as compared
to the practical feasibility of finding a solution to the problem. The perspective scalability
of the here presented results is the object of further investigations.

1 Introduction

CryptoMiniSat1 offers a wide range of parameter settings to choose when calling the solver
and these parameters seem to sensitively influence the course of search for a solution in case of
cryptographic CNF instances. Experimenting with these parameters we selected combinations
that especially affect the solver runtime-behavior in the case of CNF instances generated from
algebraic equations systems representing known-plaintext attacks (KPA) on the Small AES-64
model cipher. Within the framework of this kind of algebraic attack, text pairs each consisting
of a plaintext and its corresponding ciphertext are employed to derive a multivariate non-linear
system of equations the solution of which delivers the secret encryption key. Routinely, so
named small scale variants of the AES polynomial system [2] are employed for tests in the
cryptographic community. Relevant to the models are the following numbers:

– n is the number of (encryption) rounds,

– r is the number of rows in the rectangular arrangement of the input,

– c is the number of columns in the rectangular arrangement of the input,

1Developed by Mate Soos as an open source community project [10, 11].

CryptoMiniSat Switches-Optimization Leventi-Peetz, Zendel, Lennartz, and Weber

– e is the size (in bits) of a word.

AES would be considered as broken when the model for (n, r, c, e) = (10, 4, 4, 8) has been
solved and the corresponding 128-bit long key has been recovered. However, already successes to
recover 8-bit and 16-bit long keys for very small AES model ciphers are reported in the literature,
mainly in association with benchmarking of SAT-Solvers in comparison to one another [1]. Here
the solution of the model system SR(3, 4, 4, 4) is discussed using CMS.

The computations have been performed on both four socket AMD Opteron 6378 and two
socket EPYC 7551 systems using 31 threads per job (64 respectively 128 would have been
possible). Details concerning the derivation of the algebraic equations system of the attack and
its transformation to the Conjugated Normal Form will not be discussed here because the focus
of this work lies on the configuration of the solver. The interested reader can find some of these
informations in [7]. CryptoMiniSat solves all cases of 2 rounds encryption for the Small AES-64
model within seconds. Key recovery from 3 rounds encryption can get successfully accomplished
with the solver running in default parameter setting, however mostly within hours. The solution
finding is subjected to distinct statistical variations, due to the indeterministic behavior of the
solver in multi-thread operation mode. When an upper runtime-limit has been set, it is a matter
of chance if the solver will find the solution or not. A systematical statistical investigation of the
solver’s behavior for a multitude of cases helped us find solver parameter combinations which
enable key recovery for 3 rounds AES-64 encryption within predictable time-intervals. We
extended our efforts beyond the empirical parameter optimization by employing an automatic
algorithm configuration tool which we adapted for the problem and applied it to find even
better parameter settings.

This paper is organized in 5 parts as follows: In the first part we give an overview of the size,
format and the density of the CNF instances which we have worked with. In the second part we
present and discuss runtime statistics of the solver in its default parameter settings. In the third
part the empirical parameter optimization investigations and their results are presented and
discussed. Due to the indeterministic behavior of the solver in multi-thread operation mode,
certain changes in the source code have been undertaken, which were seen as necessary in order
to increase the significance of the influence of changes in parameter settings to the benefit of
the generation of distinct results. These source-code changes will be substantiated and the out
of them resultant improvements of the solver runtimes will be graphically demonstrated. In
the fourth part of this paper, the innovative results of an Automatic Algorithm Configuration
for the parameters of CryptoMiniSat which produced even better parameter configurations will
be presented and discussed. We conclude with a summary and description of further planned
investigations to optimize CMS.

2 Classification of CNF-Instances

We have varied the number of text pairs used for the instances generation in order to investigate
also the influence of this number on the solution runtime for instances otherwise created with
the same key. The number of text pairs varied between 16 and 32 pairs. An overview of the
parameters of the tested CNF instances is listed in table 1. We varied also the quality of the
encoding key. Experiments were performed with three different types of keys:

k4 ’0101010101010101’; pathologic or insecure

k3 ’0123456789abcdef’; structured

k6 ’b25286f7d3e7b3e1’; secure, random

2

CryptoMiniSat Switches-Optimization Leventi-Peetz, Zendel, Lennartz, and Weber

Table 1: Some characteristic numbers of the utilized CNF instances. Instance tokens comprise
〈no. of rounds〉-〈key token〉-〈no. of text pairs〉.

Instancea Rounds Text Pairs Variables L Clauses N Density N/L
3-k4-12 3 12 4096 1228120 299.8
3-k4-16 3 16 5376 1626619 302.6
3-k4-30 3 30 9856 3021481 306.6
3-k3-12 3 12 4096 1227940 299.8
3-k3-14 3 14 4736 1427202 301.4
3-k3-18 3 18 6016 1825395 303.4
3-k3-20 3 20 6656 2024600 304.2
3-k3-22 3 22 7296 2224391 304.9
3-k3-30 3 30 9856 3021481 306.6
3-k6s-20 3 20 6656 2025228 304.3
3-k6s-22 3 22 7296 2224391 304.9
3-k6s-24 3 24 7936 2424008 305.4
3-k6s-30 3 30 9856 3021481 306.6
4-k6s-30 4 30 13760 4447760 323.2

ak3: 0123456789abcdef; k4: 0101010101010101; k6: b25286f7d3e7b3e1

All instances contain clauses of varying length and all instances are of the type sparse and
without inclusion of explicit XOR-Clauses.

3 Runtime Statistics for CMS in Default-Setting

The CMS threads work asynchronously and the order in which they exchange information is
unpredictable depending on external influences like the operation system and administrative
tasks running on the computer. Similarly indeterministic and irreproducible is each and every
solver run and solution process. This circumstance leads to the result that repeated solver
attempts to solve one and the same instance under identical parameter configuration can de-
liver very different runtimes, which renders the nature of statements about average runtime
measurements to a statistical one. Boxplots2 have been chosen as proper statistical analysis
method for the runtime measurements.

In Figure 1 the runtime analysis of the solver for the as insecure classified key for 12, 16,
and 30 text pairs respectively is depicted. The median of the runtime varies with the number
of text pairs and the faster key recovery is achieved with the instance created out of 16 text
pairs. Also the mean values of the measured data reflect the same result though each assuming
a higher value than its respective median. In Figure 2 there is depicted the runtime analysis of
the solver for the structured key case and for 12, 14, 18, 20, 22, and 30 text pairs, respectively.
Also in this case does the median of the solution time distinctly vary in dependence of the
number of text pairs, the optimal number appearing to be this time in the case of 22 pairs.
Again mean values and medians stay consistent to this result with the mean values climbing a
bit higher than the medians. Obviously the use of the structured key makes the solution of the
problem considerably more expensive shifting the solution time one order of magnitude towards
higher values. In plot 3 the solver runtime analysis regarding the solution of instances created

2See for example Wikipedia Box plot https://en.wikipedia.org/wiki/Box_plot.

3

https://en.wikipedia.org/wiki/Box_plot

CryptoMiniSat Switches-Optimization Leventi-Peetz, Zendel, Lennartz, and Weber

Figure 1: 3 rounds, key k4: varying number of text pairs.

Figure 2: 3 rounds, key k3: varying number of text pairs.

with the random or secure key is demonstrated. The solution runtime is of the same order
of magnitude as in the case of the structured, or simple key, the optimal number of text pairs
appearing to be 24 this time. The CMS runtime measurements produce a spectrum of random
data representing solver runtimes containing some few extremely long runtimes. However, in
each case the majority of the resulting values lie within a well defined limited region.

Comparing the solution times in the plots, one observes that the number of text pairs is
important, because a convenient choice of this number can occasionally strongly diminish the
solver runtime for instances otherwise created with the same key. Comparing solution runtimes

4

CryptoMiniSat Switches-Optimization Leventi-Peetz, Zendel, Lennartz, and Weber

Figure 3: 3 rounds, key k6s: varying number of text pairs.

for three different keys using instances created with the same number of text pairs, one can
attest that a simple key costs a shorter solution runtime as compared to the runtime needed to
solve the instance generated with a secure key, see Figure 4. In table 2 the runtime statistics

Figure 4: 3 rounds, constant number of text pairs, varying keys.

for the calculations with the CMS in default setting are portrayed.

5

CryptoMiniSat Switches-Optimization Leventi-Peetz, Zendel, Lennartz, and Weber

Table 2: Runtime statistics with CMS in default setting. The instance token comprises 〈number
of rounds〉-〈key token〉-〈number of text pairs〉.

Instancea count median quartile mean σ [%]
3-k4-12 25 2409.6 1243.8 3859.6 3821.9 126
3-k4-16 25 1569.8 993.6 3592.8 2700.8 98
3-k4-30 26 5281.6 4008.6 6221.2 5736.2 47
3-k3-12 17 167460.0 157160.3 175973.7 167778.0 21
3-k3-14 15 66963.4 47415.0 84625.9 74358.1 58
3-k3-18 11 26645.1 14093.4 40702.4 28979.0 71
3-k3-20 31 14073.1 6818.8 23159.6 27382.6 163
3-k3-20b 8 56141.5 16057.7 105700.4 70640.1 98
3-k3-22 36 11788.1 7328.1 20468.9 17610.4 95
3-k3-30 4 34551.3 14286.1 54366.9 34101.8 70
3-k6s-20 50 23925.9 14190.5 34829.1 33958.6 112
3-k6s-22 33 26602.2 17846.1 45668.5 54138.4 157
3-k6s-24 51 9462.4 6100.0 17050.3 17113.6 111
3-k6s-30 22 64556.1 34625.1 96221.0 71600.6 76

ak3: 0123456789abcdef; k4: 0101010101010101; k6: b25286f7d3e7b3e1
bSolution calculated with 21 threads.

4 Empirical Parameter Optimization

A dynamic code-analysis of the solver preceded the practical parameter optimization phase, so
as to investigate how the solver-runtime consumption is distributed between the various solver
sub-processes and functions in dependence of the external parameter settings and the instance
to solve. Again the dynamic analysis results are of statistical character, as the various solver
modules and functions are regularly called many times during the solver runtime. A previous
static code analysis had provided associations between external parameters and according parts
of the code. The question was, if in dependence of the problem at hand, one could possibly
discover some optimal strategy of how to vary on parameters influencing favorably the execution
of the most time-consuming code parts, so as to effectively shorten the solution runtime. For
profiling the CMS program we used the GNU/Linux perf tool3. Flame Graphs generated with
the open source tool of the same name developed by Brendan Gregg [4] are utilized for the
visualization of the profiling results. The code performance profiling has been carried out
in both default solver setting and with certain parameter settings other than default. This
delivered converging and unique results, as regards those parts of the code causing the greatest
CPU-load in case of all instances implementing the attack on the 3 rounds encryption of the
AES-64 model cipher. These results have been verified against different encryption keys and
different numbers of text pairs employed for the generation of the problem instances and they
appear to be stable. 82% to 97% of the runtime the solver invests into its search routine
(especially, the method propagate_any_order_fast() of the propagation procedure) and this
is independent of whether an instance terminates during the observed runtime or not.

Since the solution of the considered CNF instances typically takes a few thousand seconds,
the profiling was performed only during a part of the program run. We chose the measuring
interval big enough to insure a stable result. One has to keep in mind that the performance

3See for example Wikipedia perf (Linux) https://en.wikipedia.org/wiki/Perf_(Linux).

6

https://en.wikipedia.org/wiki/Perf_(Linux)

CryptoMiniSat Switches-Optimization Leventi-Peetz, Zendel, Lennartz, and Weber

profiling for CMS delivers a statistical statement. The reasons are: 1) the program runs of CMS
are indeterministic; 2) in multi-thread modus of CMS the profiling averages over all threads
where the threads are computing independently of each other at different parts of the code; 3)
the interval of the profiling measurement starts at different times of the running program.

Exemplarily, a first profiling visualization is depicted in figure 5, where the relative runtime-
shares which the most used code paths of CMS consume, are depicted for the case of the medium
hard to solve CNF instance 3-k3-22. Apart from the verbosity level and the multi-thread mode,
CMS was here applied in default configuration.

p10: cms5-df0a11b1 --verb=4 --threads=31 s-aes-kpa-3-k3-22-vs.cnf Search

CMSat::Searcher::solve CMSat::Solv..

__clone

CM..

CMS..

CMSat::Solv..

OneThreadCalc::operator

CMSat::Solver::solve_with_assumptions

start_thread

[libstdc++.so.6.0.24]

cryptominisat5-

CMSat:..

CMSat::Solver::iterate_until_solved

CMSat::PropEngine::propagate_any_order_fast

CMSat::Searcher::search<false>

Figure 5: FlameGraph 3 rounds: 3-k3-22 with 31 threads, default parameter configuration,
performance measuring with f = 250 Hz for 300 s.

Of interest is the variation of parameters influencing the whole of the search process or such
that influence the function propagate_any_order_fast() in a direct way. In table 3 there are
listed parameters influencing the solver’s restart process, the choice of variables and the setting
of the so called glue values. The parameter --updateglueonprop is the only one directly af-

Table 3: Explored parameter combinations and their abbreviations. Also set for all CMS runs:
--verb=4 --threads=31 --comps=0. sw3 und sw4 imply the usage of the here modified CMS
source-code.

Abbreviation Parameter Combinations
sw1 --restart=geom --maple=1 --bva=0 --sync=30000

sw2 --gluehist=30 --maple=1 --maxnummatrixes=8 --bva=0

sw6 --restart=glue --gluecut0=4 --updateglueonprop=1

sw7 --gluecut0=5 --gluecut1=7 --updateglueonprop=1

sw3 --restart=geom --maple=1 --cachesize=4096 --cachecutoff=3000

sw4 --restart=glue --gluecut0=4 --updateglueonprop=1

fecting the function propagate_any_order_fast(). The last two parameter combinations, sw3
and sw4, indicate calculations with a modified version of CMS. In the multi-thread mode, CMS

7

CryptoMiniSat Switches-Optimization Leventi-Peetz, Zendel, Lennartz, and Weber

configures most threads slightly different than the command-line settings in order to deliver
good performance with the variety of CNF instances to be solved in SAT solver competitions.
To enhance the influence of the here considered parameter combinations on the solution of the
examined cryptographic CNF instances, we changed the source code so that the solver uses the
same command-line settings for all threads.

In the FlameGraph-visualization of figure 6 there are depicted the relative runtime-shares
which the most used code paths of CMS consume during the calculations for the harder to solve
CNF instance 3-k6s-30. In this case the parameter combination sw4 was employed. Here the

p18: cms5-df0a11b1-sct --verb=4 --threads=31 --restart=glue --gluecut0=4 --updateglueonprop=1 --comps=0 s-aes-kpa-3-k6s-30-vs.cnfSearch

__clone

OneThreadCalc::operator

CMSat::Searcher::search<false>

CMSat::Solver::solve_with_assumptions

cryptominisat5-

CMS..

CMSat::Solver::ex..

CMSat::Searcher::solve

CMSat::PropEngine::propagate_any_order_fast

[libstdc++.so.6.0.24]

start_thread

CMSat..

CMSat::Oc..

C..

CMSat::Solver::iterate_until_solved

C..

CMSat::Solver::si..

Figure 6: FlameGraph 3 rounds: 3-k6s-30 with 31 threads, parameter configuration sw4, per-
formance measuring with f = 250 Hz for 300 s.

solver spends a bit less time in the search as compared to the the case shown in figure 5.
Because instances created with the insecure key k4 could be solved relatively fast with the

CMS in default setting, only instances created with the other two keys have been employed for
the parameter optimization tests. In plot 7 the solver runtime analysis for solving instances
created with the structured key k3 is demonstrated for different parameter combinations. In the
next plot 8 the same instance as in plot 7 is tested with the parameter combinations: default,
sw3 and sw4. Evidently the choice of parameter combinations has a considerable influence on
the solution runtime of the solver. An improvement in the solution time is registered with
the sw4 parameter combination as compared to the default setting. Changing the number of
text pairs we test the stability of the sw4 runtime advantage, as a function of the number of
text pairs. We observe that this advantage can get attenuated or amplified, in dependence of
the chosen number of text pairs, see Figure 9. This suggests that the number of text pairs
should also be observed as a problem optimization parameter. There follows a series of runtime
tests with sw4, solving instances created with the secure key k6. The results are exhibited in
Figure 10. In Figure 10 we see that the instance created with 30 text pairs allows the faster
reconstruction of the key k6 when the parameter combination sw4 is applied. Notably, even
the upper quartile of the optimized best solver runtime, for the instance with the 30 text pairs,
lies underneath the lower quartiles of the runtimes of all other instances, thus establishing the
unambiguity of this result. The following Boxplot in Figure 11 depicts the comparison between

8

CryptoMiniSat Switches-Optimization Leventi-Peetz, Zendel, Lennartz, and Weber

Figure 7: 3 rounds, key k3: 20 pair texts, parameter combinations: default, sw1, sw2, sw6, sw7.

Figure 8: 3 rounds, key k3: 20 pair texts, parameter combinations: default, sw3 and sw4.

the best results for all three different keys. It seems that for every key and independent of its
security quality, there exists a combination of a number of text pairs and a CMS configuration
to find the solution with a statistical median lying well below the 10000 seconds runtime limit
for the solver. This is a significant result because it indicates that a secure key might not
necessarily offer better protection against solving the here discussed instances. In table 4 the
solver runtime statistics for the practically optimized parameter settings are presented.

9

CryptoMiniSat Switches-Optimization Leventi-Peetz, Zendel, Lennartz, and Weber

Figure 9: 3 rounds, key k3: best default, and sw4 with variable number of text pairs.

Figure 10: 3 rounds, key k6: best default, and sw4 with variable number of text pairs.

5 Automatic Algorithm Configuration (AAC)

The adaption of SAT solver configurations to a specific type of instances or instance classes is
a common practice employed by many developers of such programs participating in the inter-
national SAT solver competition.4 Meanwhile, also computer tools for the automatic algorithm
configuration are available. Such programs even participate in the Configurable SAT Solver
Challenge (CSSC), organized by F. Hutter et al. [5]. Led by the results of the CSSC 2016

4International SAT Solver Competitions http://www.satcompetition.org.

10

http://www.satcompetition.org

CryptoMiniSat Switches-Optimization Leventi-Peetz, Zendel, Lennartz, and Weber

Figure 11: 3 rounds best for keys: k4, k3, k6s.

Table 4: Runtime statistics with various parameter combinations for CMS. Instance tokens
comprise 〈no. of rounds〉-〈key token〉-〈no. of text pairs〉.

Instancea count median quartile mean σ [%]
3-k3-20-sw1 4 153149.7 132870.1 172872.3 152592.8 24
3-k3-20-sw2 9 40596.2 9753.6 71882.5 60456.5 121
3-k3-20-sw3 12 23689.6 8963.1 46646.4 32149.3 87
3-k3-20-sw4 35 9227.2 5919.9 13522.9 11828.3 79
3-k3-20-sw6 11 25895.9 6922.7 44363.8 43264.8 148
3-k3-20-sw7 8 36036.9 26012.9 53067.9 37975.0 42
3-k3-22-sw4 35 9761.5 7819.0 16320.9 13895.4 79
3-k6s-20-sw4 60 7575.2 4225.7 12310.2 10686.0 95
3-k6s-22-sw4 74 8142.4 4410.4 11720.8 9535.7 80
3-k6s-24-sw4 59 14547.9 7312.2 23404.8 19408.2 88
3-k6s-30-sw4 197 2581.0 1687.8 4857.5 4110.9 116

ak3: 0123456789abcdef; k6: b25286f7d3e7b3e1

we chose the tool SMACv3, developed by M. Lindauer, F. Hutter et al. [8, 6] at the Universi-
ties of Freiburg and British Columbia, to further optimize the parameter settings of CMS for
cryptographic CNF instances.

In order to apply SMACv3 with CMS, we set up the required Python environment and
implemented a Target Algorithm Evaluator (TAE), a Python wrapper around CMS version
5.0.1, for the SMACv3 optimization API. We defined the legal ranges of the parameters to be
optimized by SMACv3 by setting up a Parameter Configuration Space (PCS). From the PCS,
SMACv3 chooses parameter combinations and calls the TAE with it. The resulting runtime
of a CMS computation returned via the TAE is evaluated by SMACv3 for the parameter
optimization and for further calls of the TAE. SMACv3 is able to deal with indeterministic

11

CryptoMiniSat Switches-Optimization Leventi-Peetz, Zendel, Lennartz, and Weber

runtimes by repeatedly calling CMS with the same parameter configuration and evaluating an
estimator for the runtime. We performed the optimization by using SMACv3 in parallel mode.

All parameter optimization runs were performed with the modified version of the CMS code
with alike configuration for all threads. Starting from our empirical configuration results, we
confined the parameter optimization to few CMS parameters, a typical PCS file of ours looks
like follows:

Restart options

gluehist [40, 250] [50]i

Red clause removal

gluecut0 [1, 6] [3]i

gluecut1 [5, 9] [5]i

adjustglue [0.3, 0.9] [0.7]

Variable branching options

freq {0.0, 0.1, 0.2, 0.3, 0.4} [0.0]

We performed optimizations for the CNF instances 3k3-22 and 3-k6s-30, independently. In
figures 12 and 13 we compare some intermediate states of the optimization (called incumbents by
SMACv3) with the empirical best configuration sw4. From the results of several optimization

Figure 12: 3 rounds, key k3, 22 text pairs: sw4, 3 optimizer incumbents, and sw10.

runs (each computing nearly a week) we excerpted a configuration which reduces the median
runtime for both instances. Compared to the empirical parameter setting sw4, the new best
parameter combination sw10 sets additionally --gluecut1=7 --gluehist 45. The Boxplots
of the runtime analysis for this parameter setting are also shown in figures 12 and 13. The
numerical values of the Boxplot estimators are recapitulated in table 5. The runtime of the
CNF instance 3-k6s-30 could be improved by almost 30% and that of the instance 3-k3-22 even
by nearly 80% in median.

12

CryptoMiniSat Switches-Optimization Leventi-Peetz, Zendel, Lennartz, and Weber

Figure 13: 3 rounds, key k6s, 30 text pairs: sw4, an optimizer incumbent, and sw10.

Table 5: Runtime statistics of better parameter combinations for CMS. Instance tokens comprise
〈no. of rounds〉-〈key token〉-〈no. of text pairs〉. Times are in seconds for the solving-thread.

Instancea count median quartile mean σ [%]
3-k3-22-sw4 35 9761.5 7819.0 16320.9 13895.4 79

3-k3-22-aac-7-1 5 3134.1 1256.4 3212.2 2913.7 68
3-k3-22-aac-7-2 10 3291.5 2360.9 5333.9 3767.1 55
3-k3-22-aac-7-3 25 4925.2 4201.4 5574.6 4792.0 35
3-k3-22-sw10 15 2127.3 1503.9 4993.0 3262.4 72
3-k6s-30-sw4 197 2581.0 1687.8 4857.5 4110.9 116

3-k6s-30-aac-2 8 2966.6 2085.9 3807.3 2956.1 41
3-k6s-30-sw10 15 1830.1 1321.5 2526.4 2057.4 46

ak3: 0123456789abcdef; k6: b25286f7d3e7b3e1

6 Conclusions and Work in Progress

In this paper we describe the steps taken in studying the influence of various CMS configura-
tions on the SAT solver’s performance in trying to find solutions for cryptographic instances
representing algebraic known-plaintext attacks on the 3 rounds small AES-64 model cipher. The
static and dynamic analysis of CMS has pointed to the most computationally intensive parts,
which in turn motivated variations of certain configuration parameters expected to influence
the execution time of mainly these parts of the code. We also modified the source code in a
way that enhances configuration changes and produces clearer results. We performed statistical
runtime analysis of a plethora of results created in both default and other solver configurations
which enabled us to identify solver configurations that solve the here discussed instances and
thus fully recover the 64-bit key in time intervals underneath an hour (real time). This result
is independent of the security quality of the key. By means of an Automatic Algorithm Con-

13

CryptoMiniSat Switches-Optimization Leventi-Peetz, Zendel, Lennartz, and Weber

figuration (AAC) we could even improve the previous best runtimes achieved with empirically
decided configurations. Since CMS has many more parameters than varied here, it potentially
offers possibilities for further configuration optimization. Therefore we intend to expand our
efforts in this direction with AAC. The universality of validity of the here elaborated configu-
rations has still to get verified. This demands the creation of many more instances and running
of many more tests. Also experiments with other types (e.g. dense) of CNF-instances have to
be considered. Perhaps, when appropriately tuned, CMS can solve even bigger cryptographic
problems. Increasing the number of rounds means having to handle CNF-instances with many
more variables and many more millions of constraints in comparison to the here handled prob-
lems. A worst case complexity would be soon formally reached. However, in the SAT solver
context, worst case complexity has no explanatory or predictive power [3].

References

[1] Ahmed Charfi. SAT-Solving in Algebraic Cryptanalysis. B. Sc. thesis, TU Darmstadt, 2014.

[2] Carlos Cid, Sean Murphy, and Matthew Robshaw. Small Scale Variants of the AES. In Fast
Software Encryption, pages 145–162. Springer Berlin Heidelberg, 2005.

[3] Vijay Ganesh. The Impact of Community Structure on SAT Solver Performance. In For-
mal Foundations for Networking (Dagstuhl Seminar 15071), Dagstuhl, Germany, 2015. Schloss
Dagstuhl–Leibniz-Zentrum für Informatik. https://materials.dagstuhl.de/files/15/15071/

15071.VijayGanesh.Slides.pdf.

[4] Brendan Gregg. Flame Graphs: Visualization of Profiled Code. https://github.com/

brendangregg/FlameGraph, 2017.

[5] F. Hutter, M. Lindauer, A. Balint, S. Bayless, H. H. Hoos, and K. Leyton-Brown. The Configurable
SAT Solver Challenge (CSSC). Artificial Intelligence Journal (AIJ), 243:1–25, 2017.

[6] Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. Sequential Model-based Optimization for
General Algorithm Configuration. In Proceedings of the 5th International Conference on Learning
and Intelligent Optimization, LION’05, pages 507–523. Springer Berlin Heidelberg, 2011.

[7] A. M. Leventi-Peetz and J. V. Peetz. Generating and exploring S-box multivariate quadratic
equation systems with SageMath. In 2017 IEEE Conference on Dependable and Secure Computing,
pages 377–383, 2017.

[8] Marius Lindauer, Katharina Eggensperger, Matthias Feurer, Stefan Falkner, André Biedenkapp,
and Frank Hutter. SMAC v3: Algorithm Configuration in Python. https://github.com/automl/
SMAC3, 2017.

[9] M. S. E. Mohamed, S. Bulygin, M. Zohner, A. Heuser, M. Walter, and J. Buchmann. Improved
algebraic side-channel attack on AES. In 2012 IEEE International Symposium on Hardware-
Oriented Security and Trust, pages 146–151, 2012.

[10] Mate Soos. CryptoMiniSat: An Advanced SAT Solver. https://github.com/msoos/

cryptominisat, 2017.

[11] Mate Soos, Karsten Nohl, and Claude Castelluccia. Extending SAT Solvers to Cryptographic
Problems. In Theory and Applications of Satisfiability Testing - SAT 2009, 12th International
Conference, SAT 2009, Swansea, UK, June 30 - July 3, 2009. Proceedings, pages 244–257, 2009.

14

https://materials.dagstuhl.de/files/15/15071/15071.VijayGanesh.Slides.pdf
https://materials.dagstuhl.de/files/15/15071/15071.VijayGanesh.Slides.pdf
https://github.com/brendangregg/FlameGraph
https://github.com/brendangregg/FlameGraph
https://github.com/automl/SMAC3
https://github.com/automl/SMAC3
https://github.com/msoos/cryptominisat
https://github.com/msoos/cryptominisat

	Introduction
	Classification of CNF-Instances
	Runtime Statistics for CMS in Default-Setting
	Empirical Parameter Optimization
	Automatic Algorithm Configuration (AAC)
	Conclusions and Work in Progress

