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Abstract:  
Current ‘state-of-the-art’ information technologies (IT) utilize two forms of computation namely, 

symbolic computation and sub-symbolic computation. Symbolic computation is performed using 

algorithms on data structures, which contain knowledge about a particular state of the system in the 

form of a sequence of symbols. Sub-symbolic computation is performed by neural networks. 

Biological systems also use both symbolic and sub-symbolic computations in the form of genes and 

neural networks. However, biological systems have evolved one step further by incorporating super-

symbolic computation that performs computations on the combined knowledge from both symbolic and 

sub-symbolic computations to derive higher order autopoietic and cognitive behaviours. 

The new type of computing automata called a structural machine provides means for modelling 

symbolic, sub-symbolic and super-symbolic computations performed on data and knowledge structures. 

In this work we argue that super-symbolic computation adds one more dimension to the general 

schema of computations. Synthesizing it with symbolic computation and sub-symbolic computation in 

one model, we come to symbiotic computation. Structural machines with flexible types of processors 

can accomplish symbiotic computation. Symbiotic computation combines advantages of sub-symbolic, 

symbolic and super-symbolic computations and advance the current state of the art IT with higher-order 

autopoietic and cognitive behaviours. 

1. Introduction: 
There are different types and forms of computations. According to the form of data processed, two pure 

forms of conventional computation are studied – symbolic computation and sub-symbolic computation 

(Burgin and Dodig-Crnkovic, 2015). These are pure types of computations while existing combined or 

amalgamated types and forms of computations are studied in Section 3. 

Symbolic computation is performed with data having the form of explicit symbolic systems, such as 

systems of numbers, icons or letters, and the computing system operates with individual symbols. Here 

symbols are defined as linguistic objects and not in more general philosophical sense. 

Sub-symbolic computation is performed as transformations of data described by non-linguistic objects 

such as specific signs, signals or geometric relationships. Note that sub-symbolic computations can be 

modeled by symbolic computations. 

In both cases, the transformed entities are represented by the states of the computation system and by 

the states of its elements. Thus, to portray and study computation systems and their functioning, 

researchers use various mathematical models of computation, such as recursive functions or Turing 

machines, which work with separate symbols. 



Sub-symbolic (intuitive) computation means that the machine (computation system) uses elementary 

operations with concealed semantics. Examples of such machines are neural networks and cellular 

automata. Sub-symbolic (intuitive) computation allows elimination of explicit algorithms/programs and 

using instead optimization processes, which improve functioning of the machine by upgrading implicit 

algorithms and programs of the machine. 

Sub-symbolic (intuitive) computation is realized by the neural ensembles in the brain. Researchers of 

cognition conjecture that the object formation can function as the transition from a stream of massively 

parallel sub-symbolic micro-functional events to symbol-type, serial processing through sub-symbolic 

integration (Clark, 1989). Sub-symbolic (intuitive) computation is a model of functioning of the 

emotional and effective systems of the human brain (Burgin, 2010). 

Symbolic (rational) computation means that the machine (computation system) uses elementary 

operations with elementary objects having individual semantics. Examples are Turing machines, 

inductive Turing machines, and vector machines (Burgin, 2005). Symbolic (rational) computation is a 

model of functioning of the left hemisphere of the human brain. The advantage of the symbolic 

(rational) computation is the explicit form of the algorithms and programs that control and direct the 

functioning of the machine. 

2. New Pure Type of Computations: 
At the same time, the general theory of structures and brain neurophysiology point to one more pure 

type of computation. Indeed, if there is sub-symbolic computation, then it must be super-symbolic 

computation, in which superstructures are transformed. 

Researchers try to model functioning of the brain using artificial neural networks. It is possible to 

compare this to the situation when using only functioning of biological cells, biologists would try to 

explain the multifaceted functioning of the human organism with its higher functions. 

Super-symbolic (transcendent) computation is a model of functioning of the right hemisphere of the 

brain. Processing of images by operation with holistic shapes is an example of super-symbolic 

computation. The advantage of the super-symbolic (transcendent) computation is its ability to operate 

big formal and informal systems of data and knowledge. Implementation of super-symbolic computation 

is the way to the solution of the problem of big data and information overflow. 

Symbolic structures are composed from symbols in a simple way, that is, these structures have low 

structural complexity. Symbols, words, texts as linear composition of words, and sets are symbolic 

structures. 

Symbolic superstructures are composed from symbols and symbolic structures. Intricate hypertexts, 

multicomponent images, and structures of higher order are symbolic superstructures. 

3. Amalgamation of pure computational types: 
Combination of pure types gives mixed types of information processing. The first step in this direction 

gives us hybrid computation, which comprises both symbolic and sub-symbolic computations being a 

two-fold type of computations (Burgin and Dodig-Crnkovic, 2015). Hybrid computation allows combining 

advantages of both symbolic and sub-symbolic computations. 



Conventional models of computation perform either symbolic computation, e.g., finite automata, Turing 

machines, inductive Turing machines or Random Access Machines (RAM), or sub-symbolic computation, 

e.g., neural networks or cellular automata. New models, such as neural Turing machines (Graves, et al, 

2014; Collier and Beel, 2018) or structural machines with symbolic and sub-symbolic processors, carry 

out hybrid computation. 

A neural Turing machine is a recurrent neural network with a network controller connected to external 

memory resources. As a result, combines sub-symbolic computation of neural networks with symbolic 

computation of Turing machines. 

Super-symbolic (intuitive) computation adds one more dimension to the general schema. Synthesizing it 

with symbolic (rational) computation and sub-symbolic (intuitive) computation in one model, we come 

to symbiotic computation. Structural machines with flexible types of processors can accomplish 

symbiotic computation. Symbiotic computation allows combining advantages of all three pure types of 

computation representing the entire type of computations. 

In addition, there are two more twofold types of computations:  

• Fused computation combines symbolic and super-symbolic computations.  

• Blended computation merges sub-symbolic and super-symbolic computations. 

As a result, we have three pure types, three twofold types and one entire type of computations. 

Structural machines as a tool for amalgamated computations: 
Structural machines allow even higher flexibility when they possess processors of different types 

(Burgin, 2020; Burgin and Mikkilineni, 2021). In particular, structural machines can have processors that 

work as neural networks, Turing machines or inductive Turing machines. Neural Turing machines are 

particular cases of structural machines. 

A structural machine M works with structures of a given type and has three components: 

• The control device CM regulates the state of the machine M and can contain several 

components being distributed 

• The processor PM performs transformation of the processed structures and can contain 

several components (elementary processors) being distributed while their actions 

(operations) depend on the state of the machine M and the state of the processed 

structures 

• The functional space SpM consists of three components: 

o The input space InM , which contains the input structure.  

o The output space OutM , which contains the output structure.  

o The processing space PSM , in which the input structure(s) is transformed into the 

output structure(s).  



We assume that all structures – the input structure, the output structure and the processed structures – 

have the same type. 

Examples of heterogeneous distributed processors are processing devices in evolutionary automata such 

as evolutionary finite automata, evolutionary Turing machines or evolutionary inductive Turing 

machines (Burgin and Eberbach, 2009). 

Cellular automata give examples of structural machines with (potentially) infinite distributed processors, 

in which unit processors are identical finite automata. One-dimensional cellular automata work with 

such structures as words. Two-dimensional cellular automata work with such structures as two-

dimensional arrays. 

It is possible to build structural machines that can work not only with discrete but also with continuous 

data because structures can be continuous and there are no restrictions on relations in processed 

structures. This possibility turns artificial neural networks, Shannon’s differential analyzer (Shannon, 

1941), a finite dimensional and general machine (Blum, et al, 1989) and Type 2 Turing machines 

(Weihrauch, 2000) into special cases of structural machines. 

This shows that it is practical to discern discrete structural machines, which work with discrete 

structures, have discrete systems of states and operations, and continuous structural machines. In 

continuous structural machines one two or all three of the following components can be continuous, 

i.e., continuous processed structures, continuous system of states and/or continuous operations. 

Note that structural machines can be:  

• single-level automata, which process only data and include the majority of conventional 

automata, such as cellular automata, neural networks, Turing machines or inductive Turing 

machines 

• symmetric machines, which process data and software (Schroeder, 2013; Burgin, 2020b) 

• balanced machines, which process data and hardware (Dymond and Cook, 1980) 

• triadic machines, which process data, software and hardware (Burgin, 2020a; Burgin, et al, 

2020) 

Note that depending on the type of its processors, a structural machine can be a single-level automaton, 

symmetric machines, balanced machines, or triadic machine. 

Conclusion: 
We have introduced and discussed a new pure type of computations called super-symbolic 

computation, three twofold types of computations called hybrid, blended and fused computations, and 

one entire type of computations called symbiotic computation. 

Symbiotic computation combines advantages of sub-symbolic, symbolic and super-symbolic 

computations aimed at the advancement of the current state of the art IT with higher-order autopoietic 

and cognitive behaviors as well as at modeling of information processing in the mind. 

Structural and functional analysis of these forms of computation is the further goal of this research. 
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