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The linkage of geometric structures in certain dimensions with each other 

provided the ‘link node’ is stable can in essence establish the Hopf 

fibrations in the homotopy theory but under certain ‘oscillating 

backgrounds’ or ‘topological ghosts’ as termed in this paper might destroy 

the link and make each ‘geometric structure’ independent on their own.  

 
 
   Ghosts – Factor – Nodes  
 
 
 
 
 

 

Taking a background space 𝐵 having the boundary 𝜕 for a coherent norm of boundary space 𝜕𝐵 

there can be a relation through nodes 𝑁 acting on a stable parameter 𝛾 on the before mentioned 

background space 𝜕𝐵 which in essence is a complex topological space denoted as 𝑇⋆ for a mapping 

parameter ⋆ such that the nodes or links 𝑁 can take two values for 𝜕𝐵[1-4], 

 

# {
stable parameter 𝛾

      unstable parameter 𝛾×
 

 

Denoting # as an affine parameter for the periodicity 𝜌 determining the oscillation factor 𝜀 to give 

the notions[5-6], 

 

# =∑𝜀𝜌

<∞

𝜌=1

⟹ ⋆: {
𝛾    ↪    𝛾×
𝛾× ↪    𝛾

 ∃ {

⋆0 ∶  𝛾 ⟶ 𝛾×

 ⋆1∶  𝛾×⟶ 𝛾
 

 

Over a dependency parameter ∇ with a sub ∇𝑓 such that 𝑓 is the frequency parameter which takes 

two values[7-10], 

 

𝑓 ∋

{
 
 
 

 
 
 

𝑓∏1∃1 is the increase in order of frequencies via multiplicity

       𝑓∏0∃0 is the decrease in order of frequencies via no multiplicity

{
 
 

 
 
∀stability and instability conditions

↓

𝑁 ∋ {
𝑁++ ∶= 𝜕𝐵⋆0

         𝑓∏1          
→        𝜕𝐵⋆1

𝑁×× ∶= 𝜕𝐵⋆1
         𝑓∏0          
→        𝜕𝐵⋆1
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Thus, considering two topological structures 𝑇1 and 𝑇2 which can be extended upto 𝑇𝑛 for a finite 

order of 𝑛 < ∞ ; this can be represented via the dependency parameter ∇𝑓 this can be represented 

via[11,12], 

 

𝜂𝜈
𝜁
𝑆𝑖 ∶     𝑇1

                     ∇𝑓                         
→               𝑇2 … 

                     ∇𝑓                         
→               𝑇𝑛 

 

Hopf connectivity can not be possible if in 𝜁𝑆𝑖 for 𝜁 as the mapping with 𝑆𝑖 representing the sphere 

with the suspension 𝜂𝜈 acting on 𝜁𝑆𝑖 for 𝜈 ≡ + in case of suspension with no connectivity or 

fibrations with the background oscillations and 𝜈 ≡ − the structural suspensions without 

background oscillations nulifying the linkage of spheres 𝑆𝑖 for the various dimensions represented 

by 𝑖 if and only if ∇𝑓 represents with the fibration parameter ℱ[Fig. 13, 14-18], 

 

     ℱ𝜖 {

ℱ±⟹ 𝑛𝑜 𝑓𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛𝑠

𝑒𝑙𝑠𝑒
ℱ𝑐⟹      𝑓𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛𝑠

   ∃{±, 𝑐} ⊂ 𝜖
                  𝜂𝜈                  
⇒              

 

 

         

     

∇𝑓= {𝑁++ , 𝑁××}

   𝜂𝜈
𝜁
𝑆𝑖

        𝜂+       
→     ∀𝑁++ ⊆ ∇𝑓

       ℱ±           
→      𝑛𝑜 𝐻𝑜𝑝𝑓 𝑓𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛𝑠

  𝜂𝜈
𝜁
𝑆𝑖

        𝜂−       
→     ∀𝑁×× ⊆ ∇𝑓

       ℱ±           
→      𝑛𝑜 𝐻𝑜𝑝𝑓 𝑓𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛𝑠

𝜂𝜁𝑆𝑖 ∀𝜙# ⊆ ∇𝑓
       ℱ𝑐           
→      {

𝑆0 ↪ 𝑆1 ↪ 𝑆1

𝑆1 ↪ 𝑆3 ↪ 𝑆2

𝑆3 ↪ 𝑆7 ↪ 𝑆4

𝑆7 ↪ 𝑆15 ↪ 𝑆8

 

 

 

 

 
 

                                         
 
#Null set 𝜙 is the element of every set. 
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The ghosts which here termed as instabilities arise out of the background oscillations of the 

topological space 𝑇∗ where the instabilities arise out of two factor and affects the third which is the 

boundary of the geometric structure 𝜕𝐵 which links to each other in a way of dimensions that can 

be same or cannot such that this 𝜕𝐵 can be formulated via the structure dependent on the geometric 

spaces having the form[19-21], 

 
𝑖𝑛𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑖𝑒𝑠

(𝜕𝐵)𝑑 𝑑, �̅� = �̿�{𝑆0 ↪ 𝑆1 ↪ 𝑆1  

(𝜕𝐵)�̅�      𝑑 ≠ �̅� ≠ �̿� {
𝑆1 ↪ 𝑆3 ↪ 𝑆2 
𝑆3 ↪ 𝑆7 ↪ 𝑆4 
𝑆7  ↪ 𝑆15 ↪ 𝑆8

(𝜕𝐵)�̿�

 

 

 

 

The two factor for which the instability arises which has been termed as ghost on the background 

space 𝑇∗ ∃(𝜕𝐵)𝑑,�̅�,�̿� exists on 𝑇∗ are[22,23], 

• 𝑁 the node of the linage between 𝑑, �̅�, �̿� acting on 𝑆. 

• 𝜌 is the oscillation of 𝑁 implying 𝑁 is a function of 𝜌 as 𝑁(𝜌) = 𝜂𝜈 where 𝜈 vanishes 

for Hopf fifration where frequency 𝑓 won’t act on 𝜌, 

 

o ∃𝑓
             {𝜙},ℱ𝑐            
→            𝜌|

𝜈 𝑣𝑎𝑛𝑖𝑠ℎ𝑒𝑠 𝑖𝑛 𝜂𝜈
𝜁
𝑆𝑖  

 

 

▪ 𝑒𝑙𝑠𝑒 𝑓
        ⟶          
→       𝜌  for 

      {𝑁++ 𝑁×× },ℱ±       
→              𝜌|

𝜈=+,− 𝑖𝑛 𝜂𝜈
𝜁
𝑆𝑖  
⟹ no fibration 
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