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Abstract. The article focuses on the dynamic update of the distance matrix, one 

of the key datasets used in the optimization of transport issues. In the case of a 

dynamically changing list of destinations, a continuous and effective update of 

the data is required, e.g. from more and more popular services such as Mapping 

APIs. The time-consuming nature of this process, which may extend the plan-

ning process, was emphasized. The article discusses the possibility of generat-

ing temporary values of the distance matrix based on the correction of the qua-

si-Euclidean distance. The impact of update progress on the some optimization  

algorithms was investigated. The research was carried out on the example of the 

real VRP problem.  The obtained post-optimization results could be compared 

with the results obtained manually by experienced planners. It was found that 

the degree of update of the distance matrix influences the cost reduction  in a 

nondeterministic way. 

Keywords: WorkForce Management, Vehicle Routing Problem, Distance Ma-

trix, Greedy Algorithm, evolutionary algorithm 

1 Introduction 

One of the basic requirements signaled by the TLS (Transport, Logistic, Spedition) 

market is the development of an IT solution enabling effective, quasi-optimal and 

quick planning of deliveries to given recipients (destinations). The challenges are 

variants of well-known issues such as VRP (Vehicle Routing Problem) [1-2] and 

WFM (Work Force Management) [3-4].  However, optimization tasks are often per-

formed manually, and the effectiveness of tasks is related to the competence and ex-

perience of logistics and planners. The proposed routes are usually beneficial in the 

case of a static list of delivery points, but they may differ from optimal solutions, in 

particular frequent changes in the distribution of delivery points.  Therefore, improv-

ing management efficiency by implementing automated WFM problem optimization 

systems is still a key market challenge.  

In the case of transport companies (transport fleets) the WFM is strongly related to 

the VRP, one of the most popular combinatorial, NP-difficult problem. The issue is to 

find an optimal set of routes for a fleet of vehicles to traverse in order to deliver to a 

given set of customers. There are many different variants of the VRP problem and 

methods for solving them. In [5], scientific related paper from 2009-15 were ana-
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lyzed, in which 327 computational models were presented. Among the methods of 

solving the problem, metaheuristic methods dominate: Genetic Algorithm, Simulated 

Annealing (SA), Tabu Search (TS) Ant Colony Optimisation (ACO), Particle Swarm 

Optimisation (PSO), which were used in over 70% of models. Often there are two-

stage solutions, in which the first stage is based on a simple heuristic and gives an 

approximate solution, while the second one allows you to improve the obtained re-

sults. The above-mentioned paper [5] and authors’ experience point to the growing 

importance of the Dynamic VRP variant, which takes into account dynamic request 

updates during the service provision. However, the concept of a request should be 

understood not only as the quantity and type of goods, but also the place of their des-

tination. This means that the number and / or geolocation of destinations may change 

continuously, for example, in companies that operate portable toilets. In such a case, it 

may be necessary to re-plan routes, taking into account changes in the spatial distribu-

tion of recipients. 

This article focuses on the issues of dynamic and quick recalculation of the value 

of the so-called Distance Matrix  (DistMx) [6].It is one of the most key data structures 

used in planning and optimization algorithms. Regardless of the applied problem, the 

DistMx must present the current distances between the objects, generating from their 

current position. The proposed solution is dedicated to the dynamic VRP variant, in 

which the set of current delivery points (destinations) may change frequently. It was 

pointed out that a reasonable updating of the distance matrix may be a key factor af-

fecting the effectiveness of the optimization algorithms in the variant of dynamically 

changing requests. Moreover, in evaluation the effectiveness of the optimization algo-

rithm, the influence of the current values of the distance matrix is rarely examined. 

This aspect needs to be discussed. 

2 Methods and Data Sets 

In the case of transport companies, the issue of WFM is related to the proper assign-

ment of resource space elements (vehicles, drivers) to the request space elements 

(orders, requests) in such a way as to minimize the defined cost function. Acceptable, 

quasi-optimized solution must be find  within several minutes. It should be remem-

bered that after planning, the goods are loaded in a given order, as a result, subsequent 

corrections may be limited. The challenge that was encountered belongs to both the 

Capacitated [7] and Split Delivery [8] variant of the VRP problem. Moreover, the 

considered variant takes into account the existence of several types of vehicles with 

different capacitance. In addition, selected destinations are subject to availability re-

strictions for a given type of vehicle. This means that not every vehicle can be used to 

service every request. 

For the needs of the study, a two-stage optimization algorithm was developed, en-

suring a favorable balance between the degree of optimization and time-consumption, 

as well as characterized by good scalability. The first stage is based on the "greedy" 

algorithm, which in the selection of orders for vehicles is guided by the local best hop 

approach. this stage is deterministic, i.e. it always returns the same result with the 
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same input data set. In the second stage, the orders are randomly adjusted based on 

the so-called "Reasonable" Exchange (RandSwap). It was a proprietary implementa-

tion of a variant of the 2-opt algorithm, often used to solve the traveling salesman 

problem [9]. Total distance  and total  fuel cost criteria were the main optimization 

criteria. Full and detail description of the algorithm and its performance tests go be-

yond the scope of this article. However, in order to investigate of the proposed solu-

tions, a demonstration version of the algorithm was used to compare the influence of 

the matrix form on the efficiency of the optimizer. 

The algorithm uses the following main inputs: RequestList, TruckList, and Dis-

tance Matrix. Representative and actual input data of RequestList and TruckList was 

obtained from a local shipping company – Alma-Alpinex Join-Stock Company, which 

redistributes food products and  manages a fleet of approx. 100 vehicles. The sample 

output problem solution of the problem (Service Record), including route sequences, 

proposed by experienced planners, was obtained from the same source. Total 1103 

pallets divided to 416 individual request were redistributed to 202 destination from 

one central depot. The six type of trucks with different capacity (27, 21, 20,18, 10 and 

8 pallets) were considered as candidates. Obtaining the details data regarding the Des-

tination List and Distance Matrix will be described in below section. 

The Distance Matrix (DistMx) is a square matrix of values where the value DistMx 

[i] [j] denotes the distance (in km) from destination number i (DestNo = i) to destina-

tion number j (DestNo = j). Due to the possibility of the occurrence of one-way 

routes, the matrix is not necessarily symmetrical. In general, the quantities in the table 

can be any measure of any metric space, however the simplest example is the distance 

represented by total mileage. Alternative variations are elementary costs represented 

by travel time or fuel consumption. The significance of the distance matrix in 

transport issues was discussed e.g. in the work [10]. In [11] several different models 

that allow you to estimate the value of the distance based on the knowledge of the 

location of the destinations were presented.  The trend of moving away from the uni-

versal, static matrix of distances towards individual and dynamic personalized vari-

ants was, in turn, shown in [12]. The basis for creating the DistMx matrix is a list of 

DestPos destinations, containing at least the destination identifier (DestId) as well as 

geolocation coordinates (latitude, longitude). Location coordinates are the basis for 

obtaining the distance value. For N destinations, a matrix with dimensions NxN will 

be created. 

3 Results 

3.1 Getting the Destination List 

The basic step is to obtain an up-to-date list of destinations with their coordinates. In 

the system under development, these data are obtained in integration with the GPS-

based vehicle location system - the ABC-Track system. The Information was obtained 

thanks to courtesy of the owners -  ABC-Track Ltd company. In order to obtain re-

sources, requests were sent using the HTTP - GET method to the address indicated in 
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the documentation. The data returned in response to the sent request was in JSON 

(JavaScript Object Notation) format. The system includes many services – in this 

moment the most important was getPoints, responsible for providing information 

about individual points on the route map. The data was collected and processed using 

scripts written in Python. The obtained data structures in JSON format were imported 

to the newly created DataFrame object of the Pandas library for further analysis and 

visualization. As a result of a query to the site, a list of objects was returned. Each of 

the objects is a representation of a particular point on the map, and has the following 

information: 

● pointId - unique identifier of the point. 

● pointName - point name. 

● pointLatitude - the latitude of the point. 

● pointLongitude - the longitude of the point. 

● pointStreet - the street where the point is located. 

● pointHouseNumber - number of the house where the point is located. 

● pointPostalCode - zip code of the place where the point is located. 

● pointCity - name of the city in which the point is located. 

● pointDescription - point description. 

Using the APIs the basic list includes 203  points (1 Depot and 202 destinations) 

were downloaded . The presented destinations were located in an area with an esti-

mated size of 160 (E-W) x 145 km (N-S).  

3.2 Getting the DistMx from Mapping APIs 

Based on the list of destinations, it is possible to obtain information about mutual 

distances thanks to the use of “Mapping APIs”. Currently, many geo-location services 

are known, capable of generating an distance matrix based on a given list of destina-

tions [13-16]. One of the most popular is the Google API [16], associated with the 

popular Google Maps service. More precisely, it is the Distances-Matrix API service 

that allows you to calculate the distance between given points on the map. This ser-

vice takes the coordinates of the given points and returns the travel distance in kilo-

meters. Accessing the Distance Matrix service is asynchronous, since the Google 

Maps API needs to make a call to an external server. For that reason, you need to pass 

a callback method to execute upon completion of the request, to process the results. 

The access the Distance Matrix service is possible within a code via the 

google.maps.DistanceMatrixService constructor object. The DistanceMatrix-

Service.getDistanceMatrix() method initiates a request to the Distance Matrix service, 

passing it a DistanceMatrixRequest object literal containing the origins, destinations, 

and travel mode, as well as a callback method to execute upon receipt of the response. 

The limitation of this service is the number of API requests that can be made with-

in the free account - it is possible to obtain a travel distance between 40,000 pairs of 

points on the map, which allows you to create an DistMx with a maximum size of 200 

x 200. In addition, the service is paid, but the current the cost is estimated at around 

5$ per 1 thousand queries. For about 200 destinations, the cost of the service is esti-

mated at just over 200 USD.  
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An alternative solution is a free service offered by the Open Source Routing Ma-

chine (OSRM) [17]. OSRM is a C++ implementation of a high-performance routing 

engine for shortest paths in road networks. As part of the creation of the Distance 

Matrix, the Table service was used, which calculates the duration of the fastest route 

between all pairs of given coordinates. Returns the duration and distances between 

pairs of coordinates. This service takes 4 arguments:  

• coords_src - list of geographical coordinates of the starting points. 

• coords_dest - list of geographic coordinates of endpoints. 

• ids_origin - list of identifiers of starting points. 

• ids_dest - list of endpoint identifiers.  

In order to create an Distance Matrix, the identifiers and geographical coordinates 

of all destinations should be provided as starting and ending points. 

In the event that a new destination appears, there is no need to recalculate the entire 

matrix. A version of the script has been created, which works in such a way that for a 

particular destination (column) it calculates the distances between it and the rest of the 

destination (lines). Thus, iterating over N destinations creates an NxN matrix. This 

way is to work around the limit on the engine side of the simultaneous number of data 

sent in the query. In order to add a new destination, it will only need to calculate one 

new column for a given destination. And transpose that column into a row, which 

then also add to the Distance Matrix. Such a solution is beneficial in the situation of a 

dynamically changing list of destinations. It has been experimentally found that up-

dating the distance table in the event of an additional destination takes an average of a 

few seconds. 

3.3  Temporary  distance values 

It was found that acquiring distance values from the OSRM website is possible, how-

ever, it may be long. In the case of sending individual inquiries, the time to complete 

the distance matrix was approx. 5 hours for N = 203 points. In the case of sending 

aggregated questions, it was possible to shorten this time to about 20 minutes, with 

this time being approximately linearly dependent on N. In the event of unfavorable 

connectivity or problems with the service overflow, this time may be extended. 

Therefore, an alternative method of generating provisional values should be proposed. 

In the absence of current values obtained, for example, from the OSMR website, 

the distance can firstly be estimated based on the quasi-Euclidean metric. In order to 

find the shortest route d between two points located on a sphere with radius R, the 

“haversine” formula can be used (1). 

� = 2 ∙ � ∙ ���	
��
ℎ���φ1 − φ2� + cos��1� ∙ ��	��2� ∙ ℎ����1 − �2��        (1) 

where  

φ1 , φ2 - latitude of point 1 and 2, respectively 

λ1 , λ2 - longitude of point 1 and 2, respectively 

R – Earth’s radius (~6371 km) 
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Used above the haversine function has the form 

ℎ���Θ� = 	
��  !
�" = #$%&'�!�

�          (2) 

The distance determined from relation 1 is usually underestimated as the routes 

connecting 2 points are usually not a straight line. The relative underestimation error 

is derived from the following formula (3).  

(�� = )*+,$)-./
)-./              (3) 

where: 

dOSM – the actual distance obtained from the OSMR service 

dhav – theoretical distance calculated from the dependence (1) 

The dependence of the error value on the actual distance value was investigated. Fig-

ure 1 shows the scatter plot, in which the error values are presented on the horizontal 

axis (in linear scale), and the actual distance value on the vertical axis (in log scale). 

The range of the error value is 0.0184 – 7.358 

 

 

Fig. 1. Scatter plot of error-distance relation (up) and relative error distribution (down)..  
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The distribution is characterized by a clear skewness (mean value 0.296, median 

0.260, standard deviation 0.1886, interquartile range 0.1832-0.3677). It was found 

that ~ 0.4% of the results refer to errors above 100%. 

The scatter plot suggests that for short distances (<3 km) the error value (underestima-

tion  level) may be significantly higher than for the entire sample. Therefore, the data 

set was segmented in relation to the distance value and for each of the segments the 

average error value was determined with the 95% confidence interval - Figure 2. The 

preliminary analyzes show that for ultra-short distances (below 3 km) the theoretical 

value of the distance should be corrected (multiplied) by a factor as high as 1.7. For 

longest distances (3-6 km) the correction factor can be estimated at the level of 1.35, 

and for the remaining distances at the level of ~1.28. 

 

 

Fig. 2. Bar plot with errors representing relative error values in different distance range 

Obtaining more correct values of the distance matrix can be achieved by designat-

ing an appropriate scaling function. This function can be an approximation of a 

d_OSM=f(d_hav ) relation. On the other hand, it may be more advantageous to find a 

function that approximates the dependence of the error value (3) on the distance (1). 

In such a case, the general form of the function may be as follows (4): 

(��0112&3��405� = � + 6 ∙ �405 + � ∙ 7$)∙)-./         (4) 

In these considerations, it was decided to approximate the error value using the (3) 

formula.  The a, b, c and  d coefficients were determined by the method of minimizing 

the mean square error (MSE). Optimization calculations were made using non-linear 

Generalized Reduced Gradient method [3, implemented in the Solver tool of Mi-

croSoft Excel software. For the data set (~ 40,000 values), the following coefficients 

were obtained: a = 0.2871, b = 0, c = 1.254 and d = 0.7663. Based on the dependence 

3, the distribution of the correction coefficient as a function of the original value of 
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the distance calculated from the dependence (1) was also determined – fig. 3.

 

Fig. 3. Proposed distribution of correction factor vs original haversine distance 

As a result of applying the dependencies (1) and (4), a distance matrix named           

DistHavCorr was calculated as follow: 

 

8
	9:��;���<
, >? = @ 0                  
B 8
	9:��<
, >? = 0
�1 + (��0112&3�8
	9:��<
, >?� ∙ 8
	9ℎ��<
, >?�  �9ℎ7�C
	7               (5) 

 

It was found that the arithmetic mean of the relative error between  corresponding 

values of the DistOSRM and DistHavCorr matrices was <0.00001. Standard deviation 

(SD) was 0.1226 and was smaller than the deviation between DistOSRM and           

DistHav, where it was 0.1887. This was due to the introduction the exponential com-

ponent in the approximation function, as a result of which the small values of the 

distance matrix were more effectively corrected. The average value of non-zero ele-

ments of the DistHavCorr matrix was about 0.5% higher than the corresponding value 

for DistOSRM. 

3.4 Dynamic DistMx update 

The idea of generating a dynamic Distance Matrix is presented in Figure 4. According 

to the proposed concept, the DistMx used in the optimization process is generated in 

the first stage on the basis of the relationship 1, taking into account experimentally 

proposed correction factors - see equation (5) and fig.3. However, the obtained cor-

rected matrix is still characterized by a fairly large discrepancy in relation to the em-

pirical data - the average error was estimated at approx. 12%. 

For the generation and updating of the Distance Matrix for the purposes of the opti-

mization algorithm the following flow-chart was proposed:  
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1. Get the actual DestPos list 

2. Calculate the distance matrix based on the haversine distance (1). 

3. Correct the haversine (quasi-Euclidean) distance according to formula (4). 

4. Make an additional list containing distances sorted in increasing order 

5. Send inquiries updating the distance values to the OSRM service, starting from the 

smallest values. 

6. (Optional) Simultaneously send update queries to the database of routes included 

in the ABC-Track system. If the route is in the base (the distance is known), update 

the distance value.  

 

 

Fig. 4.    Distance matrix actualisation idea for dynamic VRP problem 

As indicated - step 6 is optional and depends on the completeness of the databases 

in the GPS-based vehicle traffic monitoring system. Such systems have become popu-

lar in recent years and are widely used in the process of managing vehicle fleets. One 

of such systems is the abovementioned ABC-track system. The resources of the sys-

tem were available thanks to the getHistory service, which provides information about 

the historical journeys of individual vehicles, which was used to obtain the history of 

the journey of a particular vehicle. In order to obtain historical data, the sent query 

had to be parameterized with three attributes:  

• vehicleId - unique identifier of the truck. The identifiers of each vehicle were ob-

tained using the website getVehiclesExtended. 

• datetimeStart - Date (Year-Month-Day hh:mm:ss format  in the UTC time zone) 

that marks the start of the period from which to retrieve historical trip data.  

• datetimeStop - Date (Year-Month-Day hh:mm:ss format  in the UTC time zone) 

that marks the finish of the period from which to retrieve historical trip data. 

 Single inquiries about the history of journeys of individual vehicles, whose 

identifiers were collected from the getVehiclesExtended service, are sent to the web-

site, from the period of 3 months (typical retention policy of database)  The reply was 

a list of objects containing datetime, longitude, latitude, mileageKm (vehicle mileage 

in kilometers), as well as information such as heading (value read from the compass, 

which informs about the direction in which the vehicle is moving) and ignitionStatus 

(engine ignition status:  1 - ignition on, 0 - ignition off).  
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According to the assumption, the highest priority is assigned to routes and                  

ABC-Track databases, then from the OSRM database and the lowest for data from the 

updated haversine distance. The ABC-Track distance has the greatest credibility, 

because it takes into account real driving conditions, restrictions imposed on trucks 

and the resulting vehicle behavior on the route, and also allows for labeling drivers in 

the long run. The least reliable is the theoretical temporary distances stored in                  

DistHavCorr matrix. At the same time, the mean error is negligible, which makes it 

possible to accept these values as acceptable from the point of view of minimizing the 

global cost in the process of optimizing the WFM problem.  

3.5 Influence of DistMx  on optimizer cost reduction 

One of the best methods of estimating the effectiveness of an optimizer is to compare 

the solutions it returns with the solutions proposed by experienced planners. As men-

tioned in section 2, both the order parameters (the size of requests, types and load 

capacity of vehicles, the location of destinations), as well as the proposed “manual” 

solution, including route sequences, were known.  Thanks to this, it was possible to 

calculate the real distance (RealDist) as the resulting cost function. this value was a 

reference to the values obtained in the optimizer (OutCost). Obviously, both the 

RealDist and OutCost values are depended on the form of the assumed distance ma-

trix. An open question is the dependence of the optimizer cost reduction on the form 

of the used matrix. This parameter can be defined simply as follows: 

;�	9�7�D�9
��<%? = FG0HIJ'K$LMKN&'K
FG0HIJ'K ∙ 100       (6) 

Using the optimization algorithm mentioned in section 2, OutCost values were ob-

tained for both stage I (Greedy) and stage II (RandSwap). In the second stage, due to 

the stochastic approach, the 25 attempts with 100000 iteration were calculated.  

 

  

Fig. 5. Optimizer effectivity vs type of DistanceMatrix 

Figure 4 shows a comparison of the cost values (in km of the route) obtained from 

the optimizer (stage I and stage II) for the two proposed  forms of the used distance 

matrix. Although the average distance values in DistHavCorr were slightly higher 

than DistOSMR (~ 0.5%), the distance (cost) calculated on the basis of the result se-
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quences was higher  (by ~ 2%) for the case of using the temporary matrix. This result 

may be due to the fact that the proposed routes do not contain the hops corresponding 

to the largest values in distance matrix.  

For the temporary distance matrix (DistHavCorr) obtained from the dependencies 

(1) and (5) it was found that after the first optimization stage it is possible to obtain a 

positive efficiency, which is then improved in stage II. However, in the case of using 

real distances obtained from the OSRM (DistOSRM) service, the Greedy stage is 

characterized by negative cost reduction. Only stage II allows you to obtain satisfacto-

ry results. 

The observation made shows how important the correct form of the Distance Matrix 

is from the point of view of the optimizer’s effectiveness. Assuming the theoretical 

values based on Euclidean metrics, one can erroneously hypothesize that the greedy 

algorithm is sufficiently effective (~ 3.7% cost reduction) in the process of planning 

deliveries. Meanwhile, substituting real values contradicts previous observations. 

Another unfavorable information is the fact that the efficiency of the optimizer turns 

out to be on the level of ~8.17% compared to the previously assessed ~10.37%, alt-

hough it is still a satisfactory and acceptable value.  

 

 

Fig. 5. Evolution of cost reduction in case dynamic matrix upload (starting from highest and 

lowest matrix values, respectively) 

The order of updating individual elements of the distance matrix is another aspect 

worth to analyzing. As mentioned, it may take several hours to get the full real dis-

tance data. Communication interruptions and service loads must be taken into ac-

count. For this reason, it is advisable to successively update the DistHavCorr matrix 

values. The analysis of the resulting sequence of the optimization algorithm allowed 

us to make the following observations. First of all, the maximum value of a single 

distance (hop) is comparable to half of the maximum value contained in the DistMx 

table. This means that extremely large values do not need to be updated urgently. It 

was estimated that on the basis of the considered case, such values constitute approx. 

10% of all matrix elements. Moreover, approx. 60% of the appeals used in the case of 

distances shorter than 20 km. For this reason, it makes sense to update the short dis-



12 

tances first. They are, firstly, more often used in the optimizer, and secondly, the rela-

tive error value is greater for smaller distance values.  

According to the assumptions made, more in-depth analyzes were made by exam-

ining the impact of the update level (in %) on the level of cost reduction. The 10 dif-

ferent mixed matrices were generated, divided to two series. In first series matrices 

data (so called mixed-matrices) was uploaded starting from  lowest distance values, in 

the second – starting from highest ones, respectively. Upload level  was 10%, 20%, 

30%, 40% and 50%  numbers of matrix’s elements. Total cost reduction (in %) were 

calculated for any case. Results are presented in figure 5. 

In both cases, the evolution of the cost reduction value starts from  the 10.37% val-

ue previously returned for the DistHavCorr temporary matrix. With the "from high-

est" approach, the trend seems to be quasi constant in the update range of the first 

50% of the values and is not tending to the final value of ~ 8.17%. In the "from low-

est" approach, the trend seems to be tending towards the final value. This allows to 

defend the thesis about the validity of updating distances starting from smaller values. 

4 Conclusion 

In the article some aspects of the optimization issues in the field of WFM and VRP 

were discussed. In the case of dynamically changing destination lists, constant updat-

ing of the matrix form is required. The update process is possible thanks to services 

such as Mapping APIs, such as OSRM, and it can take a long time. The article pro-

poses a method of initial initialization of the matrix form and then a reasonable ap-

proach in the method of successive updating of individual values. 

There was shown, the form of the distance matrix may also affect the assessment 

of the effectiveness of individual algorithms. Obsolete or approximate (approximated) 

values may significantly affect the assessment of the effectiveness of a certain class of 

algorithms, in particular the greedy algorithm. Differences of more than 7 percentage 

points were found here. On the other hand, in the case of the RandSwap metaheuristic 

algorithm, these differences are slightly smaller - at the level of less than 2.5 percent-

age points. 

The experiments and analyzes performed are part of a wider project, the aim of 

which is, inter alia, development of a practical, fast and effective quasi-optimal re-

source allocation algorithm in the conditions of dynamically changing conditions of 

the request space. Such issues were named as Agile Work Force Management and 

constitute an advantage over the used static solutions. 
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