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Abstract

Recent research in extensions of Answer Set Programming has included a renewed interest in the language
of Epistemic Specifications, which adds modal operators K (“known”) and M (“may be true”) to provide for
more powerful introspective reasoning and enhanced capability, particularly when reasoning with incom-
plete information. An epistemic logic program is a set of rules in this language. Infused with the research
has been the desire for an efficient solver to enable the practical use of such programs for problem solving.
In this paper, we report on the current state of development of epistemic logic program solvers.
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1 Introduction

In the study of knowledge representation and reasoning as related to logic programming, the need
for sufficient expressive power in order to correctly represent incomplete information and per-
form introspective reasoning when modeling an agent’s knowledge of the world has been slowly
realized. As such, Michael Gelfond’s language of Epistemic Specifications (Gelfond 1991; Gel-
fond 1994) has seen renewed interest (Faber and Woltran 2011; Truszczyński 2011; Gelfond
2011; Kahl 2014; Kahl et al. 2015; Su 2015; Fariñas del Cerro et al. 2015; Shen and Eiter 2016;
Zhang and Zhang 2017a). Much of the focus of late has been on semantic subtleties, particu-
larly for rules involving recursion through modal operators. However, concomitant interest in
the development of solvers for finding the world views (collections of belief sets analogous to
the answer sets of an ASP program) of an epistemic logic program has progressed to the point
that a number of choices are now available: ESmodels (Zhang et al. 2013b), ELPS (Balai 2014),
ELPsolve (Leclerc and Kahl 2016), EP-ASP (Le and Son 2017), Wviews (Kelly 2018), EHEX
(Strasser 2018), and selp (Bichler et al. 2018). Additionally, GISolver (Zhang et al. 2015a) and
PelpSolver (Zhang and Zhang 2017b) are tools for finding the world views of extensions of
Epistemic Specifications that can also be used for epistemic logic programs with minor syntactic
translation. For awareness and to promote continued research, development, and use of Epistemic
Specifications and its variants, we present a survey of epistemic logic program solvers.1

1 DISCLAIMER: The views and opinions expressed may not reflect those of the US Government.
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The paper is organized as follows. In section 2 we provide a brief overview of the language
of Epistemic Specifications including a synopsis of the syntax and semantics of the different
versions supported by the solvers included in this survey. In section 3 we discuss the solvers
themselves and consider history, influences, implementation, and key features. In section 4 we
include performance data on extant solvers compiled from experiments on select epistemic logic
programs. We close with a summary and statements about the future of ELP solvers.

2 Epistemic Specifications

Gelfond presented the following example in (Gelfond 1991) to demonstrate the need for extend-
ing the language of what we now call answer set programming (ASP) in order to “allow for the
correct representation of incomplete information in the presence of multiple answer sets.”

% rules for scholarship eligibility at a certain college
eligible(S)← highGPA(S).

eligible(S)← fairGPA(S), minority(S).

¬eligible(S)← ¬highGPA(S), ¬fairGPA(S).
% ASP attempt to express an interview requirement when eligibility cannot be determined
interview(S)← not eligible(S), not ¬eligible(S).
% applicant data
fairGPA(mike) or highGPA(mike).

This program correctly computes that the eligibility of Mike is indeterminate, but its answer sets,
{fairGPA(mike), interview(mike)} and {highGPA(mike), eligible(mike)}, do not conclude
that an interview is required since only one contains interview(mike).

Gelfond’s solution was to extend ASP by adding modal operator K (“known”) and changing
the fourth rule above to:

% updated rule to express interview requirement using modal operator K
interview(S)← not K eligible(S), not K ¬eligible(S).

The updated rule means that interview(S) is true if both eligible(S) and ¬eligible(S) are each
not known (i.e., not in all belief sets of the world view).

The new program has a world view with two belief sets: {fairGPA(mike), interview(mike)}
and {highGPA(mike), eligible(mike), interview(mike)}, both containing interview(mike).
It therefore correctly entails that Mike is to be interviewed.

Since its 1991 introduction, four revisions of the language of Epistemic Specifications have
been implemented in solvers. Other revisions of Epistemic Specifications have been proposed
(Fariñas del Cerro et al. 2015; Zhang and Zhang 2017a), but to the best of our knowledge, no
solvers for those versions were implemented. The revision we call ES1994 is described in (Gel-
fond 1994; Baral and Gelfond 1994). With a renewed interest in Epistemic Specifications nearly
two decades later, Gelfond proposed an update (Gelfond 2011) to the language in an attempt
to avoid unintended world views due to recursion through modal operator K. We refer to this
version as ES2011. Continuing with Gelfond’s efforts to avoid unintended world views due to
recursion, but through modal operator M, Kahl proposed a further update (Kahl 2014). We refer
to this version as ES2014. Most recently, Shen and Eiter proposed yet another update (Shen and
Eiter 2016) to address perceived issues with unintended world views remaining in the language.
We call this version ES2016.

A synopsis of the syntax and semantics of the different versions of Epistemic Specifications
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covered by the surveyed solvers is given below. We encourage the reader to see the papers previ-
ously referenced for more detailed discussions of individual language versions.

In general, the syntax and semantics of Epistemic Specifications follow those of ASP with the
notable addition of modal operators K and M and the new notion of a world view. A world view
of an ELP is a collection of belief sets (analogous to the answer sets of an ASP program) that
satisfies the the rules of the ELP and meets certain other requirements as given in the table below.

Syntax
An epistemic logic program (ELP) is a set of rules in the language of Epistemic Specifications, a rule having the form

`1 or ... or `k ← e1, ..., en.

where k ≥ 0, n ≥ 0, each `i is a literal (an atom or a classically-negated atom; called an objective literal when needed
to avoid ambiguity), and each ei is a literal or a subjective literal (a literal immediately preceded by K or M) possibly
preceded by not (default negation).2 As in ASP, a rule having an objective/subjective literal with a variable term is a
shorthand for all ground instantiations of the rule. The ← symbol is optional if the body of the rule is empty (i.e., n=0).

When a Subjective Literal Is Satisfied

3 Solvers

In the subsections below we discuss the ELP solver development efforts spanning, in chrono-
logical order, the years from 1994 to 2018. Included in the group are two solvers, GISolver and
PelpSolver, which were designed for different extensions of ASP, but nevertheless are able to
compute the world views of ELPs given simple translations of the input language encoding.

We note that all of the extant solvers discussed operate from the command line, which is to say
that no Integrated Development Environment (IDE) or Graphical User Interface (GUI) currently

2 In ES1994 and ES2011, negated subjective literals have their modal operators prefaced with ¬ rather than not. In
the semantics given above, we extend the syntax by allowing default-negated literals to follow modal operator K and
consider M ` to be simply a shorthand for not Knot ` (or ¬Knot ` in ES1994/ES2011 syntax).
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exists for solving ELPs. We also note that all extant ELP solvers generate what can be called
an epistemic reduct framework for the ELP. This is a core ASP program that when instantiated
with a “guess” (truth value assignments for the subjective literals represented by a subset of the
epistemic negations that are considered true) will correspond to the epistemic reduct for that
guess. An underlying (or background) ASP solver such as DLV (DLVSYSTEM S.r.l. 2012),
DLVHEX2 (Redl et al. 2017), claspD, or clingo (Kaminski and Kaufmann 2018)) is then used to
compute the answer sets of the epistemic reduct.

The terms “loosely coupled” and “tightly coupled” are used in our discussions of the imple-
mentations of the solvers. By loosely coupled we mean that the underlying ASP solver is invoked
as a separate process rather than through a library with a specific Application Programming In-
terface (API). A loosely coupled implementation has the advantage that it can be easily modified
to utilize a different underlying ASP solver, assuming the capabilities and input language syntax
of the ASP solvers are similar. A tightly coupled implementation is not as flexible but generally
more efficient, as it avoids the overhead of creating and communicating with a separate process.

The input language of a given solver is typically a subset of the ASP Core 2 standard (Cal-
imeri et al. 2013) with the addition of modal operators K and M. For example, the “←” symbol is
typically represented by the 2-character string “:-” though some solvers may accept other rep-
resentations. ELPsolve and EP-ASP rely on ELPS for preprocessing the input program, which
requires additional statements in the program to explicitly define the domain for predicate terms
as a sorted signature. The input language of ELPS also uses “K$” and “M$” to represent modal
operator symbols “K” and “M” (respectively). The selp system accepts the same input language
as ELPS, but does not depend on ELPS for processing. It can alternatively accept “$not$” as the
epistemic negation operator, which is equivalent to “notK” in our notation. We refer the reader
to documentation and example programs available with the solver distributions for specifics on
the individual input languages. We will continue to use the notation described in Section 2 with
the understanding that it differs from the actual input languages of the various solvers.

Near the end of the paper are a number of summary tables. These include a historical synopsis
of solver development (Table 1), a brief summary of solver features (Table 2), and a listing of
solver contacts & download information (Table 4).

3.1 ELMO

The earliest work on the development of an ELP solver was that of Richard Watson in 1994
while a graduate student of Michael Gelfond when he was at the University of Texas at El Paso.
Though not a solver per se, Watson’s ELectronic MOnk (ELMO) was a Prolog implementation of
an inference engine for a limited class of ELPs. ELMO also required the SLG system developed
at Southern Methodist University and State University of New York (SUNY) at Stony Brook
(Chen and Warren 1993). There is no extant electronic binary or source; however, the printed
source code is listed as an appendix of Watson’s master’s thesis.

In his thesis, Watson demonstrates the efficacy of ELMO by reporting the answers to queries
using ELMO for various examples, including the scholarship eligibility problem of Section 2.

3.2 sismodels

In 2001, Marcello Balduccini, working as a graduate student with Michael Gelfond at Texas
Tech University, began work on a solver that extended Smodels (Simons 2000; Syrjänen and
Simons 2010) with strong introspection. He called his solver sismodels. The work, however,



Advances in ELP solvers 5

never progressed beyond proof-of-concept. As with ELMO, there is no extant electronic binary
or source for sismodels. It is included here as it is the first known attempt to implement an ELP
solver in the sense that its output was the world views of the input ELP.

3.3 Wviews

Working with Yan Zhang as his advisor for his honours thesis (Kelly 2007) at the University
of Western Sydney, Michael Kelly implemented an ES1994 solver Wviews based on the algo-
rithm suggested in (Zhang 2006). Kelly’s implementation features a grounder and a solver in
a single executable that is loosely coupled with DLV as the background ASP solver. This was
the first general epistemic logic program solver, and it is still available as a Microsoft Windows
executable. Although the original C++ source code for this version of the solver was lost, Kelly
has recently posted a Python version of Wviews (Kelly 2018) that we will refer to as Wviews2.
This new version contains “major modifications” according to its author.

User Experience: Wviews2 is the one to use for ES1994 semantics. We note that Wviews2 tries
one guess at a time, which can result in calling the underlying ASP solver 2k times, where k is
the number of epistemic negations, limiting its practical use to relatively small (w.r.t. the number
of epistemic negations) ELPs. Overcoming this limitation is a challenge for all solver developers.
Wviews2 exhausts the search space iteratively to ensure all world views are computed.

3.4 ESmodels

After spending the summer of 2011 at Texas Tech University, Zhizheng Zhang returned to South-
east University with the idea of implementing a solver for Gelfond’s new version of Epistemic
Specifications, ES2011. He started with a grounder, and by 2012 had implemented (with the help
of graduate students Rongcun Cui and Kaikai Zhao) ESParser (Cui et al. 2012). This was fol-
lowed by ESsolve in 2013, resulting in a grounder-solver system they called ESmodels (Zhang
et al. 2013a). ESsolve is loosely coupled with ASP solver claspD.

Although work on ESmodels continued for a short time (Zhang and Zhao 2014), the system is
available today only as a Microsoft Windows executable from Zhang’s homepage at Southeast
University. It is the only ES2011 solver known.

User Experience: ESmodels appears to work reasonably well with programs that are relatively
small w.r.t. the number of epistemic negations. With larger programs, we sometimes observed a
runtime error or the unexpected result of no world views for programs known to be consistent.

We note that the M modal operator is not directly supported; however, equivalent3 constructs
can be created by replacing each occurrence of M ` as follows:

1. Replace M ` with ¬K `′ where `′ is a fresh atom. (Remove any double negation before K.)
2. Add the following new rule: `′ ← not `.

Classical/strong negation is also not directly supported other than to denote a negated subjective
literal, but, as before, a workaround exists by replacing each occurrence of ¬` as follows:

1. Replace ¬` with `′ where `′ is a fresh atom.
2. Add the following constraint: ← `, `′.

3 Equivalence here is with respect to the world views of respective programs, modulo any fresh atoms introduced.
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3.5 ELPS

As graduate students at Texas Tech University, Evgenii Balai and Patrick Kahl worked together
on a version of Epistemic Specifications that uses a sorted signature. A program written in this
version is called an epistemic logic program with sorts (Balai and Kahl 2014). This effort was
strongly influenced by Balai’s work on SPARC (Balai et al. 2013), a version of the language
of ASP using a sorted signature. Balai implemented the ES2014 (with sorted signature) solver
ELPS using an algorithm formed by combining Kahl’s ES2014 algorithm with Balai’s SPARC
algorithm. Much of the Java code from an old version of SPARC was able to be reused, allowing
Balai to create a working solver in about three days worth of work—an impressive feat. ELPS is
loosely coupled with the ASP solver clingo.

Although ELPS is a stable, reliable ES2014 solver for small (in number of epistemic negations)
programs that makes only one call to the underlying ASP solver, its memory requirements can
grow exponentially with the number of epistemic negations (Kahl et al. 2016). It does, however,
provide a nice front end for other solvers, such as ELPsolve and EP-ASP, to be able to translate
an ELP with sorts into an ASP epistemic reduct framework. Java source code and a pre-built .jar
file are available.

User Experience: ELPS works very well for programs that are relatively small with respect
to the number of epistemic negations, but due to exponentially-growing memory needs as the
number of epistemic negations grow, it has limited application as a solver. Nonetheless, it is
one of the only solvers with a detailed user manual. We note that it outputs all world views of
its input program with no option for changing this. It does have the option “-o” for outputting
a file representing the epistemic reduct framework of the input program, along with rules for
generating all combinations of subjective literal truth values. This gives ELPS potential value as
a front end for other solvers.

3.6 GISolver

Zhizheng Zhang and graduate students Bin Wang and Shutao Zhang embarked on developing the
solver GISolver for an extension of ASP called GI-log (Zhang et al. 2015b). GISolver can be used
to find world views of ES2014 programs after minor syntactic translations. It is loosely coupled
with clingo as the underlying ASP solver. Like ESmodels, this solver is currently available only
as a Microsoft Windows executable from Zhang’s homepage at Southeast University. It appears
to have been a stepping stone in the development of PelpSolver discussed later.

User Experience: GISolver works well for relatively small (w.r.t. the number epistemic nega-
tions) ELPs provided they are appropriately translated to GI-log syntax by converting subjective
literals as shown below:

ES2014 syntax GI-log syntax

K p ⇒ K[1,1] p
not K p ⇒ K[0,1) p

M p ⇒ K(0,1] p
not M p ⇒ K[0,0] p

3.7 ELPsolve

ELPsolve was developed in 2016 by the authors. Two primary efficiency goals were pursued:
(1) develop an ELP solver that avoids the large memory requirements of ELPS; and (2) paral-



Advances in ELP solvers 7

lelize the solver to take advantage of multi-core processors. Other goals included support for
the updated semantics of Shen & Eiter (ES2016) and optimization for conformant planning. To
solve the memory issue, ELPsolve partitions guesses into fixed-sized groups, rather than comput-
ing all guesses with one ASP solver call. These groups are systematically generated in an order
that guarantees the maximality requirement of ES2016 and permits pruning of the search space
when multiple world views are desired. Groups of guesses are mutually exclusive so that paral-
lelization can occur with minimal synchronization. ELPsolve supports both ES2014 and ES2016
semantics. Binary executables for Windows, Mac, and Linux are available upon request.

User Experience: ELPsolve has several options, including the ability to specify the (maximum)
number of world views to output, the number of processors to be used, conformant planning
mode (with planning horizon), and a configuration file. The configuration file is used to spec-
ify less volatile configuration options such as group size, language semantics to use (ES2014 or
ES2016), and ASP solver path. ELPsolve itself is invoked from a script which first seamlessly
calls ELPS for translating the ELP (with sorts) input program into an epistemic reduct frame-
work, then invokes ASP grounder gringo to ground the program, and finally calls ELPsolve for
further processing. ELPsolve is loosely-coupled with clingo for backend ASP program solving.

3.8 EP-ASP

Tran Cao Son worked as an Office of Naval Research faculty researcher at Space and Naval
Warfare Systems Center Atlantic in the summer of 2016. His work with the authors on the devel-
opment of ELPsolve stimulated his interest and led to his own approach, resulting in a new solver:
EP-ASP. The core idea of this solver is to take the epistemic reduct framework (as in ELPS and
ELPsolve), but instead of solving for all possible guesses at once (like ELPS) or systematically in
groups of guesses (like ELPsolve), it uses the underlying ASP solver to compute a single answer
set. Due to the way the epistemic reduct framework is constructed, this answer set represents
a consistent guess (i.e., one that results in a consistent epistemic reduct). The framework is in-
stantiated for that guess, all answer sets are computed, and the answer sets are checked to see
if they represent a world view. A constraint is then added to eliminate this guess from further
consideration, and the process is repeated until all world views of the program are discovered.

For input to EP-ASP, an epistemic reduct framework representation of the ELP is created first
using ELPS. EP-ASP works completely within the clingo runtime environment, using embedded
Python to control iteration in a multi-shot ASP solving approach (Gebser et al. 2017). After
creating a proof-of-concept version for ES2014, Son enlisted the aid of his New Mexico State
University graduate student Tiep Le to implement support for ES2016, the use of brave and
cautious reasoning for pruning the search space, and optimizations for conformant planning.

The solver supports both ES2014 and ES2016 semantics and is among the fastest solvers for
the sample programs used in our tests.

User Experience: EP-ASP has several options, including the ability to specify the use of brave
and cautious consequences as a preliminary step to prune the search space, language semantics
to use (ES2014 or ES2016), and conformant planning mode.

3.9 PelpSolver

Continuing with the success of GISolver, Zhizheng Zhang and Shutao Zhang developed a solver
for probabilistic-epistemic logic programs (Zhang and Zhang 2017a) called PelpSolver. With
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appropriate syntactic translation, PelpSolver can be used to solve ES2016 programs. It is imple-
mented in Java and is loosely coupled with clingo as the underlying ASP solver.

The development of the language of probabilistic-epistemic logic programs was a culmination
of language extensions that were positively influenced by ELP solver development. During de-
velopment of ESmodels, implementation of the world view verification step involved counting
the number of occurrences, count(`), of the objective literal part, `, of each subjective literal
in the computed belief sets. For example, if checking subjective literals against a set of, say, 5
belief sets, to verify Kp, count(p) = 5 is required, to verify M q, count(q)≥ 1 is required, and
so forth. They observed that other numbers/number ranges could easily be checked, leading to
the realization that the ability to specify the fraction of belief sets required to contain a particular
literal might be useful for modeling certain problems. This led to the new language extensions.

User Experience: PelpSolver comes with a pre-built .jar file, but can also be built using a
Maven pom.xml file. One command-line option exists for optimization. The conversion from an
ELP program to a probabilistic-epistemic logic program is the same as that given for GISolver.

3.10 ELPsolve2

ELPsolve2 was developed in 2017 by the authors. Unlike ELPsolve, this version of the software
has not been officially released to the public, nor have there been any technical papers written
about it. For this reason we describe ELPsolve2 in a little more detail for this survey.

Two primary design goals guided the development of ELPsolve2: efficiency and support for
additional features. Specifically, ELPsolve2 improves on ELPsolve in five ways:
• replaces “loosely coupled” ASP solver interaction with “tightly coupled” interaction
• implements an “invalid guess” filter
• uses brave and cautious reasoning to reduce the number of epistemic negations
• improves the optimization used for conformant planning problems
• implements World View Constraints (WVCs)

Both ELPsolve and ELPsolve2 utilize the clingo ASP solver for solving the epistemic reduct
framework. With ELPsolve, calls to clingo are performed as external processes that require time
to instantiate. Furthermore, these processes communicate results less efficiently through the op-
erating system. Instead, ELPsolve2 utilizes clingo’s C programming language interface. Time to
invoke a clingo call and store the results is therefore reduced.

We call a guess that contains epistemic negations that cannot co-exist an “invalid guess.” ELP-
solve2 filters such guesses, thus avoiding unnecessary computation. The following pairs of epis-
temic negations cannot co-exist:
• K ` and not M `

• K ` and M `

• K ` and K `

where ` denotes the logical complement of `. For example, if ` = ¬p then ` = p.
Brave and cautious reasoning was first successfully used in EP-ASP to reduce the number of

epistemic negations under consideration, pruning the search space for certain ELPs. ELPSolve2
incorporates this optimization. We note that for some problems, brave and cautious reasoning
yields no reduction (e.g., conformant planning problem); however, for others a considerable re-
duction is achieved (e.g., scholarship eligibility problem).

ELPsolve2 improves the optimization for conformant planning problems over ELPsolve by
further reducing the search space based on the assumption that only one action is performed at
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each step. Although this assumption may seem too constraining, optimizations related to confor-
mant planning are highly specialized and can result in dramatic improvements in performance
when applied as intended.

Finally, ELPsolve2 allows for the extension known as world view constraints proposed by the
authors in (Kahl and Leclerc 2018). This has the potential for reduction of the search space over
encodings that do not use world view constraints. Thus, from a solver perspective, this can be
viewed as a general approach with the potential for performance improvement rather than an
optimization applicable only to very specific applications such as conformant planning.

User Experience: ELPsolve2 comes with all the options from ELPsolve, and adds options for
brave and cautious reasoning as well as different output formats.

3.11 EHEX

At the time of this writing, Anton “Tonico” Strasser is a graduate student at TU Wien working
under the advisement of Thomas Eiter and Christoph Redl. His ES2016 solver EHEX adds epis-
temic negations to HEX programs, which allows integration of external computation sources.
EHEX works with DLVHEX2 as the underlying ASP solver, but uses clingo as well to perform
optional brave and cautious reasoning. EHEX is written in Python and is loosely coupled with
the ASP solver.

User Experience: EHEX has a number of options and many example programs are available
on the developer’s GitHub page. Given an already existing installation of DLVHEX2 with the
NestedHexPlugin, EHEX builds and installs easily. However, we found it challenging to build
DLVHEX2 with the NestedHexPlugin from source. Even though it is a work-in-progress as of
this writing, EHEX performed quite well. We look forward to further developments.

3.12 selp

Another graduate student at TU Wien, Manuel Bichler, working under the advisement of Ste-
fan Woltran and Michael Morak, applied ASP rule decomposition (Bichler et al. 2016) to ELP
solving to develop a single-shot (w.r.t. ASP solver calls) epistemic logic program solver called
selp. The selp system is loosely coupled with clingo, and uses the lpopt tool (Bichler 2015) to
efficiently decompose “large” logic programming rules into smaller rules with the expectation
that such rules are more manageable/easier for clingo to handle.

User Experience: The selp system includes a number of Python scripts, including its own
tool for processing an input epistemic logic programs with sorts. It generates rules containing
a relatively large number of body literals. The intent is to optimize the rules for decomposition
using the lpopt tool. This approach appears to work quite well for certain programs (e.g., the
scholarship eligibility problem described in Section 2) based on our experiments. It also appears
to benefit from the use of multiple threads with the backend ASP solver clingo.

3.13 Solver Summary

Table 1 provides a general summary of all known ELP solvers. ELMO and sismodels are high-
lighted in red to indicate they no longer exist. Table 2 shows some of the key features of the ELP
solvers included in the performance experiments discussed in the next section.
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Table 1. Epistemic Logic Program Solvers

Table 2. ELP Solver Features

4 Experiments

Three epistemic logic programs of various sizes (w.r.t. the number of epistemic negations) were
used to test the capabilities and performance of different solvers. The eligNN programs are in-
stances of the scholarship eligibility example described in Section 2, where NN indicates the
number of applicants. The yaleN programs are instances of a variation of the Yale shooting prob-
lem (Hanks and McDermott 1987) encoded as describe in (Kahl et al. 2015), where N indicates
the plan horizon. The artN programs are instances of a scalable artificial problem we constructed
involving combinations of both K and M modal operators, where N is the scaling factor. Program
listings are not included due to space constraints but are available upon request.

The test machine has an Intel i7 820QM @ 1.73 GHz processor with 8 GB RAM. ESmodels
and GISolver were run using a 64-bit Windows 10 operating system. All other solvers were run
using a 64-bit Ubuntu 16.04 (Linux) operating system. ELPsolve and EP-ASP use ELPS to create
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an epistemic reduct framework file from the input ELP (with sorts) file. Table 3 shows the runtime
results (in seconds) for our tests. Times reported are for the entire solving experience, including
(as appropriate) time for creating the epistemic reduct framework file, time for grounding, and
time for displaying the results to the screen. Shell scripts were used as warranted to minimize
delay between processing steps. A dash (’-’) indicates that the solver was unable to solve the
ELP on our system within 10 minutes (600 seconds).

Table 3. Experimental Results (total elapsed time in seconds for best run)

The results indicate that the use of brave and cautious entailment by ELPsolve2, EP-ASP, and
EHEX have the potential to improve performance dramatically for input similar to the eligNN
programs. The approach used by selp also appears quite effective for programs of this type.
For the yaleN programs, results are skewed in favor of solvers with special optimizations for
conformant planning problem encodings. It is also apparent that solvers supporting ES2016 have
an advantage for the artN programs as solutions are found early, i.e., when all or most of the
epistemic negations are true. Although we included GISolver and PelpSolver in our tests, we note
that these solvers were designed for languages where Epistemic Specifications is but a subset.

5 Conclusions

Work on epistemic logic program solvers is clearly active. We have reviewed a number of solvers,
most of which were developed within the last five years. Significant improvements in both per-
formance and the ability to solve harder (w.r.t. the number of epistemic negations) programs are
evident. The development of efficient and easier to use solvers have allowed experimentation
with different problems, syntax, and semantics, and have in fact been useful to reveal and assess
different consequences of language variants.

Other ideas for improving performance include the use of world view constraints, which have
the potential to reduce the number of epistemic negations (Kahl and Leclerc 2018). For many
solvers the search space of epistemic negations can be partitioned into mutually exclusive (inde-
pendent) subsets providing an opportunity for parallelization.

The “invalid guess” filter mentioned in the discussion of ELPsolve2 applies to any ELP solver
(and may already be implemented in other solvers). Yet another idea is to construct a “hybrid”
solver which runs multiple different solvers in parallel (e.g., EP-ASP and EHEX), terminating
further computation once any solver completes with the required solution.
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Table 4. ELP Solver Contact and Download Information
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