ﬁ EasyChair Preprint

Ne 3926

lazyCoP 0.1

Michael Rawson and Giles Reger

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

July 22, 2020

lazyCoP 0.1

Michael Rawson Giles Reger
July 21, 2020

Abstract

We describe lazyCoP, a fully-automatic theorem prover for first-order
logic with equality. The system implements a connection-tableau calculus
with a specific variant of ordered paramodulation inference rules, rather
than the usual preprocessing approaches. We explore practical aspects
and refinements of this calculus. The system also implements fully-parallel
proof search and support for the integration of learned search heuristics.

1 Background and Motivation

Systems such as leanCoP [10], nanoCoP [13], or SETHEO [4] which imple-
ment the model-elimination/connection calculus [5] have a number of com-
pelling advantages: goal-directed proof search, natural parallelism oppor-
tunities [18], adaptation to other logics [10, 12], potential re-use of Prolog
technology and resulting compact implementations [10], and increasingly-
succesful application of machine learning techniques for heuristic search [3].

The treatment of equality in such calculi is not as succesful, however:
the popular paramodulation approach [1, 8] (and associated refinements
such as superposition) is not complete for the connection calculus if ap-
plied naively [14]. Various other techniques are used in practice, typically
before proof search begins: leanCoP at present simply adds voluminous
and potentially-explosive equality axioms to the problem, but many tech-
niques claim to improve on this [9].

We approach this area from attempting to create a practical theo-
rem prover guided by a neural network heuristic. Such networks and
their hardware acceleration typically introduce significant latency to proof
search [7], but in principle this latency can be hidden by exploiting paral-
lelism at the proof search level [15]. When implementing this new system
it seemed appropriate to explore at least one alternative technique for
equality reasoning in connection calculi. Paskevich’s “lazy paramodula-
tion” system LPCT [14] appears promising in theory and was previously
unexplored in practice as far as the authors are aware.

2 Proof Calculus

LPCT achieves completeness by postponing unification steps until a later
stage: if P (t1,t2, ..., ts) must conventionally unify with P (s1, s2,..., $»n),

P() PO
C N\ AN
-P(3) L

o(t) = o(3) t1 # 51 t

3

N
va
3

Figure 1: Conventional “strict” and LPCT “lazy” extension steps.

LPCT instead generates new literals ¢; # s; to refute before proceeding.
In the case where sub-terms do unify, the generated literals may still be
unified with an equality reduction rule. However, this approach allows the
sub-terms to be further rewritten by paramodulation before unification,
preserving completeness. Figure 1 shows the result of an extension step
in both the conventional connection calculus and in LPCT.

2.1 Classical Refinements

Research on connection tableaux has produced a large number of powerful
refinements of the raw calculus [5]. Where possible we adapt these to the
LPCT calculus for practical implementation in lazyCoP:

Start clauses. Trivially, lazyCoP can still begin with the conjecture if
available. Otherwise, all negative clause are selected: t # t may be
refuted in isolation, but ¢ = ¢ cannot.

Tautology elimination. This refinement eliminates tableaux contain-
ing a clause which has become tautologous through unification. We
extend this to include reflexive tautologies ¢t = s with o(t) = o(s).

Path regularity. No literal can occur twice on the active path. This is
also enforced for equality literals up to symmetry: if ¢t = s is on the
active path, both t = s and s =t are forbidden.

Enforced folding-up. Hochklappen is implemented in lazyCoP.

Strong regularity. Extension steps using literals (including equalities)
that could be reduced via path/lemmata literals are eliminated.

2.2 Further Extensions

We also implement a few other techniques which seem to help in some
cases. If t # s is on the active path, ¢ may not be equal to s at any
point: otherwise, the literal could have been closed immediately. Further,
LPCT produces ordering constraints [> r on paramodulations: we add
the constraint that if I = r is paramodulating onto s[p] = ¢, s[p] > ¢. This
is a similar approach to the superposition calculus, but not quite identical.

One criticism of LPCT might be that proofs can become significantly
longer, especially in the non-equality case, as predicate unifications take
place incrementally in argument order. lazyCoP implements both con-
ventional “strict” and LPCT “lazy” versions of all rules. The resulting

duplication can be eliminated somewhat by restricting “lazy” rules to not
simulate “strict” rules. It is not clear what effect this has on proof search:
changes to calculi rarely bring about a monotonic improvement and the
duplication adds significant implementation complexity.

2.3 Completeness

LPCT is known to be complete without any refinements of the core calcu-
lus. However, the status of LPCT with the described refinements (and by
extension lazyCoP) is not known and we do not argue either way. How-
ever, empirically it appears that these refinements do not prevent finding
proofs and are very useful in practice.

3 Implementation

Research into practical implementations of similar systems make signifi-
cant effort to avoid recomputing results. Our experience was different: by
taking a simplistic approach to both algorithms and data structures, the
resulting system was simpler and faster. This may be due to implemen-
tation incompetence, but perhaps also due to changes in processor and
compiler technology. Modern processors are clocked higher with access to
more cores and memory than their predecessors, but also rely more heavily
on memory caching, branch prediction and instruction-level parallelism.

For example, the variable trail is frequently exhorted as a necessity for
efficient unification with backtracking [5], but this is a relatively complex
structure. Most of the time we simply avoid backtracking and instead
rebuild the tableau from scratch, but while making deductions from a
parent tableau one-step backtracking to the parent cannot be avoided
efficiently. Instead we make a copy of the necessary parent structures,
then destructively modify them to create a child. The parent can then
be restored with a few block memory-copy operations from the saved
structures.

To this end almost all data structures in the theorem prover are stored
as contiguous blocks of memory (“arenas”) which are resident for the
whole proof run. This approach nearly eliminates allocation overhead and
significantly improves cache locality. Worker threads have exclusive access
to their own blocks, reducing contention. The Rust [2] programming
language allows this level of control over data layout while providing high-
level features and prohibiting some classes of memory-/thread-safety bugs.

3.1 Representations

Representing the syntactic structure of terms, literals and clauses such
that all required operations are efficient is challenging. lazyCoP solves this
Prolog-style by storing a “term graph” of multiple terms sharing variables
in an array: variables are identified only by their position in the array, and
compound terms store a symbol and offsets to their arguments relative to
their position in the array, shown in Figure 2. Literals and subsequently
clauses index into this array.

c o f x P x x x e (Q =x

N N

Figure 2: A term graph for P(c,z, f(x)) after appending Q(y).

This representation is unwieldy, but allows for fast implementations.
Copying clauses up to variable renaming, a bottleneck for some systems,
is particularly efficient: appending a term graph to the end of an existing
term graph renames all variables so that they are disjoint.

3.2 Constraints

At the core of lazyCoP is a constraint-solving engine. There are three types
of binary constraint generated as rules are applied to tableaux, either to
express unifications or to implement refinements. FEquality constraints
require unifying two terms, ordering constraints require that one term
be larger than another under a reduction ordering >, and disequation
constraints require that two terms not become equal under substitution.

Disequation constraints are placed into solved form [5] before checking
under substitutions. The reduction ordering is the lexicographic path
ordering [8], implemented® with the optimised algorithm [6] used in E [17].

3.3 Search and Parallelism

Proof search in lazyCoP is not yet particularly advanced, although later
we hope to integrate learned heuristic guidance. For simplicity we use the
traditional A* heuristic search algorithm to explore tableau space and do
not attempt to re-order subgoals: the admissible heuristic is the number
of open branches.

However, search is fully parallel: lazyCoP spawns one worker thread
per core when starting to search. Each worker has copies of data that must
be mutated during search (i.e. tableau syntax, constraints), but shares
read-only data such as problem clauses. The only mutable piece of shared
state is the priority queue of unexpanded tableaux: this is protected with
a fast mutex. Queue operations are typically fast relative to other prover
mechanisms, so lazyCoP scales near-linearly with available CPU cores.

lwith thanks to Stephan Schulz for supplying materials and encouragement

3.4 Indexing

Due to the lazy nature of inferences in LPCT, only the top symbol of
terms is required to match. Furthermore only the problem clauses need
to be indexed, resulting in a relatively small, static set compared to other
term-indexing settings [19]. Therefore we take an approach usually known
as “top-symbol hashing” in the literature: a lookup table maps symbols
(and polarities in the predicate case) to lists of clause/literal positions
within the problem. This simple and cache-efficient method works well
on a variety of problem domains, achieving perfect filtering for lazy rules.

3.5 Clausification

Translation to clause-normal form is handled externally with the Vam-
pire [16] system. Some settings were tweaked for the benefit of lazyCoP:
Vampire is not permitted to delete the conjecture during pre-processing,
and the threshold for introducing names is reduced. However, the au-
thor of the similar leanCoP system reports [10] that a custom definitional
transformation can produce much better performance.

4 Future Work

Significant work can be done to improve the performance of the system.
For example, leanCoP implements a custom clausification routine, a strat-
egy schedule, and restricted backtracking [11], none of which lazyCoP yet
implements. Older systems such as SETHEO also have a wealth of liter-
ature to explore.

The system has been designed around the idea of heuristic assistance
from a coprocessor (i.e. a neural network forward-pass evaluated on a
GPU), but this is not implemented in lazyCoP 0.1. Such heuristic guidance
could significantly improve search on target problems once trained on
similar easier problems.

5 Acknowledgements

The first author is indebted to Geoff Sutcliffe and Martin Riener for test-
ing, and to Jens Otten for his cheerful correspondence.

6 Conclusion
lazyCoP in this initial version is already a plausible system for automated

reasoning tasks. Further work is required to exploit the potential of this
approach, not least its raison d’étre: machine-learned guidance.

References

1]

2]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

A. Degtyarev and A. Voronkov. What you always wanted to know
about rigid E-unification. Journal of Automated Reasoning, 20(1-
2):47-80, 1998.

R. Jung, J.-H. Jourdan, R. Krebbers, and D. Dreyer. Rustbelt: Se-
curing the foundations of the Rust programming language. Proceed-
ings of the ACM on Programming Languages, 2(POPL):1-34, 2017.

C. Kaliszyk, J. Urban, H. Michalewski, and M. Olsdk. Reinforcement
learning of theorem proving. In Advances in Neural Information Pro-
cessing Systems, pages 8822—-8833, 2018.

R. Letz, J. Schumann, S. Bayerl, and W. Bibel. SETHEO: A
high-performance theorem prover. Journal of Automated Reasoning,
8(2):183-212, 1992.

R. Letz and G. Stenz. Model elimination and connection tableau
procedures. In Handbook of Automated Reasoning, volume 2. MIT
Press, 2001.

B. Lochner. Things to know when implementing LPO. International
Journal on Artificial Intelligence Tools, 15(01):53-79, 2006.

S. Loos, G. Irving, C. Szegedy, and C. Kaliszyk. Deep network guided
proof search. arXiv preprint arXiv:1701.06972, 2017.

R. Neuwenhuis and A. Rubio. Paramodulation-based theorem prov-
ing. In Handbook of Automated Reasoning, volume 1. MIT Press,
2001.

B. E. Oliver and J. Otten. Equality preprocessing in connection
calculi. In Practical Aspects of Automated Reasoning, 2020.

J. Otten. leanCoP 2.0 and ileanCoP 1.2: High performance lean
theorem proving in classical and intuitionistic logic (system descrip-
tions). In International Joint Conference on Automated Reasoning,
pages 283-291. Springer, 2008.

J. Otten. Restricting backtracking in connection calculi. Al Com-
munications, 23(2-3):159-182, 2010.

J. Otten. MleanCoP: A connection prover for first-order modal logic.
In International Joint Conference on Automated Reasoning, pages
269-276. Springer, 2014.

J. Otten. nanoCoP: A non-clausal connection prover. In International
Joint Conference on Automated Reasoning, pages 302—312. Springer,
2016.

A. Paskevich. Connection tableaux with lazy paramodulation. Jour-
nal of Automated Reasoning, 40(2-3):179-194, 2008.

M. Rawson and G. Reger. A neurally-guided, parallel theorem prover.
In International Symposium on Frontiers of Combining Systems,
pages 40-56. Springer, 2019.

A. Riazanov and A. Voronkov. The design and implementation of
vampire. Al communications, 15(2, 3):91-110, 2002.

[17] S. Schulz. E — a brainiac theorem prover. AI Communications, 15(2,
3):111-126, 2002.

[18] J. Schumann, A. Wolf, and C. Suttner. Parallel theorem provers
based on SETHEO. In Automated Deduction—A Basis for Applica-
tions, pages 261-290. Springer, 1998.

[19] R. Sekar, I. Ramakrishnan, and A. Voronkov. Term indexing. In
Handbook of Automated Reasoning, volume 2. MIT Press, 2001.

