
EasyChair Preprint
№ 4934

Quantum Generators: Pattern Analysis for 3D
Model Reconstruction from the Structured
Compute Units.

Poondru Prithvinath Reddy

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

January 26, 2021

Quantum Generators: Pattern Analysis for 3D

Model Reconstruction from the Structured

Compute Units.

 Poondru Prithvinath Reddy

ABSTRACT

 Quantum Generators is a means of achieving mass food production with short

production cycles, and when and where required by means of machines rather than

land based farming which has serious limitations. The process for agricultural practices

for plant growth in different stages is simulated in a machine with a capacity to produce

multiple seeds from one seed input using computational models of multiplication

(generating multiple copies of kernel in repetition). In this paper, we present different

methods for generating 3D pattern reconstruction from the structured Compute Units

resulted by the computational models of multiplication and also present a method

related to 3D reconstruction so that they can be linked to tissues of the kernel which

mimic the real cell structure that grows into full-fledged natural tissue. We use

simulation to show that we achieve 3D structure with respect to the size of the input

space and realize good pattern. The results suggest that it is possible to achieve

relevant cell structure for quantum generation.

INTRODUCTION

 A Quantum (plural quanta) is the minimum amount of any physical entity
(physical property) involved in an interaction. On the other hand, Generators don't
actually create anything instead, they generate quantity prescribed by physical
property through multiplication to produce high quality products on a mass scale. The
aim of Quantum Generators is to produce multiple seeds from one seed at high seed
rate to produce a particular class of food grains from specific class of seed on mass

scale by means of machine rather than land farming.

 The process for agricultural practices include preparation of soil, seed sowing,
watering, adding manure and fertilizers, irrigation and harvesting. However, if we
create same conditions as soil germination, special watering, fertilizers addition and
plant growth in different stages in a machine with a capacity to produce multiple seeds
from one seed input using computational models of multiplication(generating multiple

copies of kernel in repetition) then we will be closure to achieving mass food
production by means of quantum generators(machine generated) rather than
traditional land based farming which has very serious limitations such as large space
requirements, uncontrolled contaminants, etc. The development of Quantum
Generators requires specialized knowledge in many fields including Cell Biology,
Nanotechnology, 3D Cellprinting, Computing, Soil germination and initially they may be
big occupying significantly large space and subsequently small enough to be placed on
roof-tops.

 The Quantum Generators help world meet the food needs of a growing population
while simultaneously providing opportunities and revenue streams for farmers. This is
crucial in order to grow enough food for growing populations without needing to expand
farmland into wetlands, forests, or other important natural ecosystems. The Quantum
Generators use significantly less space compared to farmland and also results in
increased yield per square foot with short production cycles, reduced cost of cultivation
besides easing storage and transportation requirements.

 In addition, Quantum Generators Could Eliminate Agricultural Losses arising out of
Cyclones, Floods, Insects, Pests, Droughts, Poor Harvest, Soil Contamination, Land
Degradation, Wild Animals, Hailstorms, etc.

 Quantum generators could be used to produce most important food crop like rice,
wheat and maize on a mass scale and on-demand when and where required.

 Computers and Smartphones have become part of our lives and Quantum
Generators could also become very much part of our routine due to its potential
benefits in enhancing food production and generating food on-demand wherever
required by bringing critical advanced technologies into the farmland practices.

 3D Bioprinting

 3D Bioprinting is a form of additive manufacturing that uses cells and other
biocompatible materials known as bioinks, to print living structures layer-by-layer which
mimic the behavior of natural living systems. Three dimensional bioprinting is the
utilization of 3D printing–like techniques to combine cells, growth factors, and
biomaterials to fabricate biomedical parts that maximally imitate natural tissue
characteristics.

 Bioprinting (also known as 3D bioprinting) is combination of 3D printing with
biomaterials to replicate parts that imitate natural tissues, bones, and blood vessels in
the body. It is mainly used in connection with drug research and most recently as cell
scaffolds to help repair damaged ligaments and joints. In this paper, we are looking at
natural tissues related to food crops like rice, wheat or maize.

METHODOLOGY and THE ARCHITECTURE

A Quantum Generator device has one or more Compute Units. A work-group

executes on a single Compute unit. A Compute Unit is composed of one Processing

Element and Seed Object. A Compute Unit may also include filter Units that can be

accessed by its processing elements.

A Device is a collection of Compute Units. Quantum Generator device typically

corresponds to a collection of multiple Compute Units generated by the seed of a

number.

A Seed is a function declared in a program and executed on a quantum

generating device. A seed is identified by the Seed Qualifier applied to any function

defined in any program.

A Seed Object encapsulates a specific seed function declared in a program and

the argument values to be used when executing this Seed Function.

A Synchronization refers to mechanisms that define the order of execution and

the visibility of operations between two or more units of execution. The Operations are

that define order controls in a program. They play a special role in controlling how

operations of in one unit of execution (such as work-items) are made visible to another.

Synchronization essentially involves establishing a relation between operations in two

different units of execution that define an order control in a device.

Seed Objects

A seed is a function declared in a program. A seed is identified by the seed

qualifier applied to any function in a program. A Seed Object encapsulates the specific

seed function declared in a program and the argument values to be used when

executing this seed function.

Seed Objects are created for any seed functions in program that have the same

function definition across all Compute Units for which a program has been built

successfully in a device.

 Kernel Methods

 The aim of every classifier is to predict the classes correctly. For that, the data
should be separable. In a fairly simple case, we normally see that all points above the
cut-off line belong to the first class and the other points to the second class. However,
it is extremely rare to have a dataset that simple. In most case, the data are not
separable.

 In the case of plot of a dataset which is not linearly separable and If we draw a

straight line, most of the points will be not be classified in the correct class.

 One way to tackle this problem is to take the dataset and transform the data in
another feature map. It means, you will use a function to transform the data in another
plan, which should be linearable.

 The data from the Compute Units is in a two-dimension plan which is not
separable and we try to transform these data in a three-dimension, it means, you
create a figure with 3 axes.

 In our case, we will apply a polynomial mapping to bring our data to a 3D
dimension. The formula to transform the data is as follow.

 ∅(𝑥, 𝑦) = (𝑥2, √(2) 𝑥𝑦, 𝑦2)

 We define a function for the above formula to create the new feature maps and
the new mapping is with 3 dimensions with 3 axis, x, y and z respectively. We see an
improvement compared to cut-off line method, it is clear that the dataset is now
separable on changing the orientation of the plot.

 To manipulate a large dataset and we may have to create more than 2
dimensions, and we will face a big problem using the above method. In fact, you need
to transform all data points, which is clearly not sustainable and It will take lot of
computational time and memory

 The most common way to overcome this issue is to use a kernel.

 What is a Kernel?

 kernel refer to: a non-parametric way to estimate a probability density, the set of

vectors v for which a linear transformation T maps to the zero vector — i.e. T(v) = 0,

the set of elements in a group G that are mapped to the identity element by a

homomorphism between groups (group theory), the core of a computer operating

system (computer science), or something to do with the seeds of nuts or fruit.

 The idea is to use a higher-dimension feature space to make the data almost
linearly separable.

 There are plenty of higher dimensional spaces to make the data points
separable. For instance, we have seen that the polynomial mapping is a great start.
We have also demonstrated that with lots of data, these transformation is not efficient.
Instead, we can use a kernel function to modify the data without changing to a new
feature plan.

 It is highly important to understand how kernels are used in vector classification.
For practical reasons, it is important to understand importance of specifying a kernel

function, and there are not established, general rules to know what kernel will work
best for particular data.

 Kernel Definition

 A function that takes as its inputs in the original space and returns the dot
product of the vectors in the feature space is called a kernel function

 More formally, if we have data X, Z ∈ 𝑋 and a map ∅ ∶ 𝑋 → ℜ𝑁 then

 K(X, Z) = 〈∅(𝑿), ∅(𝑍)〉

 Is a kernel function.

 Our kernel function accepts inputs in the original lower dimensional space and
returns the dot product of the transformed vectors in the higher dimensional space.

 It can somewhat help to understand how the kernel function is equal to the dot
product of the transformed vectors by considering that each coordinate of the
transformed vector ϕ(x) is just some function of the coordinates in the corresponding
lower dimensional vector x.

 The magic of the kernel is to find a function that avoids all the trouble implied by
the high-dimensional computation. The result of a kernel is a scalar.

 The objective of kernel is to create a higher dimension by using a polynomial
mapping and the output is equal to the dot product of the new feature map. For this,
we have to Transform the vectors into a new dimension, Compute the dot product
common to all kernels and Transform the vectors into a new dimension. However,
there is a problem, we need to store in memory a new feature map to compute the dot
product. If you have a dataset with millions of records, it is computationally ineffective.

 Instead, we can use the polynomial kernel to compute the dot product without
transforming the vector. This function computes the dot product of vectors as if these
vectors have been transformed into the higher dimension. Said differently, a kernel
function computes the results of the dot product from another feature space.

 You can write the polynomial kernel function as the power of the dot product of
vectors. The output is equal to the other method with intended degree of the
polynomial kernel. This is the magic of the kernel.

 Type of Kernel Methods

 There are lots of different kernels available. The simplest is the linear kernel. This
function works pretty well for text classification. The other kernel is:

 Polynomial kernel
 Gaussian Kernel

 Polynomial kernel

 The polynomial kernel is a kernel function commonly used with support vector
machines (SVMs) and other kernelized models, that represents the similarity of vectors
in a feature space over polynomials of the original variables.

 Intuitively, the polynomial kernel looks not only at the given features of input
samples to determine their similarity, but also combinations of these. In the context of
regression analysis, such combinations are known as interaction features. The
(implicit) feature space of a polynomial kernel is equivalent to that of polynomial
regression.

 Definition

 For degree-d polynomials, the polynomial kernel is defined as

K(x, y) = (xT y + c)d

 where x and y are vectors in the input space, i.e. vectors of features computed
from test samples and c ≥ 0 is a free parameter trading off the influence of higher-order
versus lower-order terms in the polynomial. When c = 0, the kernel is called
homogeneous.

 As a kernel, K corresponds to an inner product in a feature space based on
some mapping φ:

K(x, y) = 〈∅(𝑥), ∅(𝑦)〉

 Let d = 2, so we get the special case of the quadratic kernel. After using the
multinomial theorem (twice—the outermost application is the binomial theorem) and
regrouping,

K(x, y) = (∑ xi yi + c 𝑛
𝑖=1)2

 = ∑ (𝑥𝑖
2)(𝑦𝑖

2)𝑛
𝑖=1 + ∑𝑖=2

𝑛 ∑𝑗=1
𝑖−1 (√2 𝑥𝑖𝑥𝑗) (√2 𝑦𝑖𝑦𝑗) + ∑𝒊=𝟏

𝒏 (√𝟐𝒄𝒙𝒊) (√2𝑐𝑦𝑖) + 𝑐2

 From the above it follows that the feature map is given by:

 ∅ F

 X ∅(𝑥)

 X ∅(0) ∅(𝑥) ∅(𝑥)

0 0
0 0 X ∅(0) ∅(0) ∅(𝑥)

 X X ∅(0)

 It can be seen from the mapping ∅ that On the left a set of samples in the input
space, on the right the same samples in the feature space where the polynomial kernel
K(x, y) (for some values of the parameters c and d) is the inner product. The
hyperplane learned in feature space by an SVM is an ellipse in the input space.

 In this paper, we have dealt with simulation of sequence of data generated by

the Compute Units to show that we achieve 3D mapping with respect to the input

space and not about synchronizing Compute Units to tissues of the kernel which mimic

the real cell structure that grows into full-fledged natural tissue.

 Unlike the simulation results which are based on few parameters, In natural or

real tissues which are 3D Bioprinted there are number of parameters to be considered

for pattern analysis.

 The QG System

 Our objective is to build a target system, we need to generate the cell for the
device by running synthesis and implementation on the design. The cell includes
custom logic for every Compute unit in the cell container. The generation of custom
compute units uses the High-Level synthesis tool, which is the computer unit generator
in the application compilation flow. Therefore, it is normal for this step to run for longer
period of time than the other steps in the system build flow.

 After all compute units have been generated, these units are connected to the
infrastructure elements provided by the target device in the solution. The infrastructure
elements in a device are all of the memory, control and output data planes which the
device is formulated to support an application. The environment combines the custom
compute units and the base device infrastructure to generate a cell binary which is
used to program the QG device during application execution.

The processing flow of application execution is given as below:-

 Input
 Seed

Seed Error

Input

Regenerated

Network

 Regenerated Seeds

 Fig. 1 Process Flow in a Quantum Generator.

The different steps in application are as below:-

1. 3D print a seed and copy its cell structure to memory.
2. Input seed with a seed of a number required.
3. Generate a seed kernel once.
4. Compare the kernel with 3d printed cell
5. If error in seed structure, generate the kernel again.
6. Repeat many times till the seed number is met.

3D

Bioprinting

Seed of

Number

SW-Emulation

HW-Emulation

Cell

Structure

Memory

TEST RESULTS

 The objective of the Polynomial Kernel is to classify the sequence of data

generated based on function parameters of Compute Units to evaluate a logistic

regression to have 3D benchmark model. Although, we have generated seed structure

with good 3D pattern but this is not mapped to original tissues of seed kernel which are

in 3D plane to test the deviation.

CONCLUSION

 Quantum Generators (QG) creates new seeds iteratively using the single input

seed and the process leads to a phenomenon of generating multiple copies of kernels

in repetition. We presented different methods of generating 3D pattern reconstruction

from the structured Compute Units and also presented a method for 3D reconstruction

which can be used to mimic the tissues of real kernel. The results suggest that it is

possible to achieve suitable cell structure for quantum generation.

REFERENCE

1. Poondru Prithvinath Reddy: “Quantum Generators: A Formulation of

Computational Models of Multiplication”, Google Scholar.

2. Poondru Prithvinath Reddy: “Quantum Generators: Foundations of the

Compute Units in Pattern Reconstruction”, Google Scholar.

3. “Polynomial Kernel – Wikipedia”, https://en.wikipedia.org/wiki/Polynomial_kernel

