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Abstract
A dynamic heavy-duty Euro 6 diesel engine model for en-
ergy optimal control is developed. The modeling focus is
on accuracy in the entire engine operating range, with at-
tention to the region of highest efficiency and physically
plausible extrapolation. The effect of the air-to-fuel ratio
on combustion efficiency is studied, and it is demonstrated
how this influences the energy optimal transient control.
A convenient, physics-based, method for pressure sensor
bias estimation is also presented.
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1 Introduction
Economy, climate, and diesel engines. Ever since the
breakthrough of Rudolph Diesel’s engine it has been im-
possible to consider the first two without the third, and the
machine is now one of the two prime movers of global-
ization (Smil, 2017). As its position in the global econ-
omy has risen to the predominant one, so has its impact
on the climate. And while it might be possible to imag-
ine a future transportation system without diesel engines,
it is impossible to imagine a transition to that system with-
out large investments, so the continued development of the
diesel engine is perhaps more important than ever. By re-
ducing fuel consumption, improving emissions, enabling
renewable fuels, and increasing reliability, it is possible to
improve, individually and in combination, the economy,
and the climate. This work aims to help in that effort by
developing a diesel engine model for energy optimal con-
trol.

The model’s intended use is to study the effect of the
turbocharger selection on the energy optimal control of
the air- and fuel-path of a heavy-duty Euro 6 diesel engine.
While being the reason why this work is conducted, it is
not the only area of use. Models are only approximations
of reality, and for them to be useful to others it is neces-
sary to show what aspects of reality they reflect, and how
accurately they do it. Here, this is done in two parts. This
first part describes the development of the model, which
include determining the needed properties and settling on
the equations. The second part consists of parametrization
and validation and is found in (Ekberg et al., 2018).

The contributions include the development of a diesel
engine model for studying the turbocharger effect on the

energy optimal control, with a novel inclusion of the air-
to-fuel ratio effect on the engine efficiency, and is avail-
able as open-source (Leek et al.). Another important con-
tribution is a physics-based method for estimating pres-
sure sensor bias in experimental data.

The paper is outlined as follows. Section 2 introduces
the subject of modeling for energy optimal control, Sec-
tion 3 presents the data used for modeling and the method
for estimating pressure sensor bias, Section 4 describes
the model development, Section 5 demonstrates the en-
ergy optimal control of the model, and Section 6 presents
the conclusions.

2 Modeling for Energy Optimal Con-
trol

With the intention of using the model for energy optimal
control, it is necessary to investigate the implications of
this on the modeling work. To do that, a basic discussion
on optimal control problems, and their numerical solution,
is needed.

2.1 Optimal control

An optimal control problem (OCP) can be formulated as:

min
u

E(t f ,x(t f ))+
∫ t f

0
L(t,x,u) dt

s.t. ẋ = f (t,x,u), t ∈ [0, t f ],

x(0) ∈X0,

x(t) ∈X , t ∈ [0, t f ],

u(t) ∈U , t ∈ [0, t f ],

x(t f ) ∈X f

(1)

The problem consists of finding the optimal control, u∗,
and the state trajectory, x∗, that minimize the cost func-
tion and does not violate the constraints. The problem’s
defining characteristic is the differential constraint ẋ =
f (t,x,u). The objective function consists of two parts. An
integral cost

∫
L(t,x,u)dt, and a terminal cost E(t f ,x(t f )).

There are constraints on the initial value, x(0) ∈X0, path
constraints x(t)∈X and u(t)∈U , and constraints on the
final state x(t f ) ∈X f .



2.2 Numerical solution to optimal control
problems

There exist several approaches for solving optimal con-
trol problems numerically, and an overview can be found
in (Rao, 2009). This work focuses on direct methods.
They are the most popular methods in general (Diehl et al.,
2006), and have proved successful in the optimal con-
trol of diesel engines (Asprion et al., 2014; Sivertsson and
Eriksson, 2014; Mancini, 2014).

Direct methods are characterized by first discretizing
the OCP and turning it into a nonlinear program (NLP),
solving that numerically, and then reconstructing the OCP
solution from the NLP one. The process of casting the
OCP as a NLP is known as transcription. Transcription
methods consider some form of grid on which the solution
is parameterized. A common, and the most basic of which,
is a fixed, equidistant, grid

0 = t0 < t1 < · · ·< tN−1 < tN = t f (2a)
h = tn+1− tn, n = 0,1, . . . ,N−1 (2b)

where h is the fixed step length, and N the number of in-
tervals. The control signal is typically constant over each
segment (Diehl, 2011), and consistent with a zero-order
hold control system implementation. The state trajectory
differs between the individual direct methods, but the two
most popular, direct multiple shooting and direct collo-
cation (Diehl et al., 2006), integrate the dynamics sepa-
rately on each segment, forming a discontinuous trajec-
tory, which is made continuous by introducing defect con-
straints (Betts, 2010). Based on this, the number of NLP
variables resulting from using the direct multiple shoot-
ing method is calculated as Nnu +(N + 1)nx, where nx is
the number of states, and nu the number of control inputs
(Andersson, 2013). The corresponding metric for the di-
rect collocation method is Nnu+(N(ncp+1)+1)nx where
ncp is the number of collocation points. Considering how
the NLP variables scale with the number of states and con-
trols, it is preferable that the number of states and controls
is kept low, otherwise the NLP risks being too difficult or
too expensive to solve, which defeats the purpose.

Literature on optimal control of diesel engines (Asprion
et al., 2014) suggests a large NLP, with potentially tens of
thousands of variables. To solve that efficiently it is desir-
able to use a gradient based solver of Newton-type which
uses first and second derivatives. As nothing is known of
the objective or constraints at the time of modeling, con-
straints must be passed on to the model. The state trajec-
tory is therefore made, at least, two times differentiable.
This has the positive side-effect to aid simulations, as ini-
tial value problem solvers assume a sufficiently smooth
solution (Ascher and Petzold, 1998).

Based on the characteristics of an optimal solution (No-
cedal and Wright, 2006; Asprion et al., 2014), the solution
lies at the border of the allowable set and/or in the un-
constrained optimum. This has two implications on the

modeling work. The first, that the model needs physically
plausible extrapolation properties to capture the full set of
operating conditions. The second, that the model fit needs
to be good in the region of best efficiency, where optimum
is expected to be found.

2.3 Modeling implications
Optimization-oriented models need to be accurate in or-
der to capture a large set of operating conditions, small,
for efficient evaluation, provide plausible extrapolation, to
capture solutions at the border of the feasible set, and be
implementable using only standard mathematical opera-
tions, for algorithmic differentiation applicability. Mod-
els for energy optimal control also need high accuracy in
the region of best efficiency. To successfully meet these
demands, it is necessary to combine an approach based
on first principles and phenomenology. By formulating
the dominating equations from first principles the model
is restricted in size, and extrapolation is physically plau-
sible. The phenomenological part consists of, based on
available data, determining how the equation parameters
change with the operating conditions, and is fundamental
to good accuracy over a large operating range.

With the intended use of studying the turbocharger im-
pact on the energy optimal control, it is important with a
good model of the turbocharger as it gives rise to the dom-
inating dynamics on the air and fuel path, but also with a
good model of its implicit effects on the said path. Larger
turbines produce a lower backpressure, which decreases
pumping work and thereby increases efficiency (Eriksson
et al., 2002). Its larger size also means an increased in-
ertia. This hampers the engine’s transient response, and
therefore the air-to-fuel ratio is lower during transients.
Low air-to-fuel ratio lowers combustion efficiency (Hey-
wood, 1988; Eriksson and Nielsen, 2014), so in order to
study the turbocharger impact on the energy optimal con-
trol it is necessary to include this effect in the model.

3 Data
Five datasets are used to guide the modeling, and a list-
ing is found in Table 1. Dataset A consists of engine dy-
namometer experimental data collected in an engine test
cell. Dataset B is high-fidelity simulation data from a GT-
Power (Gamma Technologies, 2004) model of the engine.
Dataset C is a compressor map formed by running mea-
surements in a turbocharger gas stand. Dataset D is a tur-
bine map, also collected from gas stand measurements.
Dataset E is data on the throttle area as a function in throt-
tle angle.

The datasets fulfill different aspects of the modeling
work. In particular, the high-fidelity simulation data, B,
is used instead of cylinder pressure data, which is not
available. The simulation data contains information on
the torque components, which makes it possible to model
the cylinder in better detail than what is possible if only
dataset A is used. How the different datasets are fused
is found in the validation and parametrization part of this



Table 1. Datasets used to find model parameters.

Dataset Signals Samples
A. Engine dynamometer 24 235

experimental data.
B. GT Power high-fidelity 22 160

simulation data.
C. Compressor map - 4 73

Gas stand measurements.
D. Turbine map - 4 73

Gas stand measurements.
E. Throttle area - Measurements 1 11

of angle versus area.

work (Ekberg et al., 2018).

3.1 Pressure offset estimation
An important part in modeling is having access to reli-
able data. Unfortunately, measurements contain errors to
some degree. Here, dataset A contains bias in the pres-
sure sensors on the intake side. This is compensated for
by estimating it. The estimation is based on the observa-
tion that flow squared is proportional to the pressure drop
over a restriction. By denoting the upstream pressure and
temperature by pus and Tus respectively, the downstream
pressure by pds, the bias in that sensor by pbias, and the
flow by W , the relation is formulated as

(pus− (pds + pbias))
pus√
Tus

∝ W 2

Rearranging the equation, and introducing the proportion-
ality constant c, the following least squares problem is
solved to estimate the bias:[

pus/
√

Tus, W 2
][pbias

c

]
= (pus− pds)

pus√
Tus

(3)

4 Model
With the model’s intended use in mind, a mean value mod-
eling approach is taken. This considerably reduces the
model size, when compared to a 1D model, while still be-
ing able to capture the relevant quantitative properties of
the air and fuel path.

In this work, a model of the throttle is included. The
purpose of this is to extend the model’s area of use by
making it possible to connect it to an aftertreatment sys-
tem model. As aftertreatment systems are sensitive to tem-
perature, there is a need to control airflow through the
system to avoid unnecessary cooling. This means that
the model has an extra control volume before the throt-
tle, which means one extra pressure state (boost pressure).
Users that do not need this feature can remove it.

4.1 Dynamics
The model is governed by four scalar ODEs: boost pres-
sure dynamics, intake manifold pressure dynamics, ex-
haust manifold pressure dynamics, and the dominating
one, turbocharger rotational dynamics.

The modeling of the control volumes is based on differ-
entiation of the ideal gas law, an isothermal assumption,
which means no temperature change in the system, and
assumption of mass conservation. The modeling follows
(Eriksson and Nielsen, 2014).

Denote the volumes by V , pressures by p, temperatures
by T , and let dot notation be used to denote differentia-
tion with respect to time. Introduce the subscript b (boost)
for the volume before the throttle, im for the intake man-
ifold, and em for the exhaust manifold. Let Ra be the gas
constant of air, and Re the gas constant of exhaust gas.
Introduce the compressor flow as Wc, the throttle flow as
Wthr, the flow into the cylinders as Wcyl, the fuel flow as
Wf, the turbine flow as Wt, and the wastegate flow as Wwg
(see Figure 2 for an overview). The flows are defined later.
The filling and emptying dynamics of the control volumes
is then expressed as

Vb ṗb = Ra Tb(Wc−Wthr) (4a)
Vim ṗim = Ra Tim(Wthr−Wcyl) (4b)
Vem ṗem = Re Tem(Wcyl +Wf−Wt−Wwg) (4c)

The model builds on the isothermal assumption and
should be tested. Figure 1 shows the intake manifold tem-
perature and ambient temperature of dataset A. The data
shows a consistent 2 % temperature increase, relative to
ambient, which is considered small. This motivates two
modeling simplifications, isothermal control volumes, and
ideal charge air cooler. Should it be desirable, the intake
manifold temperature can be set to 2% above ambient.
Furthermore, literature (Wahlström and Eriksson, 2011)
suggest only minor differences in observed behavior when
using an adiabatic model of the control volumes with tem-
perature state, which further motivates the decision to not
include temperature dynamics.
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Figure 1. Ambient and intake manifold temperature from
dataset A.

Modeling of the turbocharger dynamics follows from
Newton’s second law of motion. To formulate the equa-
tion ω is used to denote angular velocity, J to denote
moment of inertia, and subscript tc is used for the tur-
bocharger. The effects of the turbine and compressor on
the dynamics is expressed in terms of their power. Pt ηm
is used to denote the turbine power and includes mechan-
ical efficiency, and Pc is the compressor power. To obtain
torque, power is divided by angular velocity, which means
that the model is only valid for positive velocities. The



turbocharger dynamics is formulated as:

Jtcω̇tc =
Pt ηm−Pc

ωtc
(5)

With the dynamics presented, it can be concluded that
the model has four states x:

x = [pb, pim, pem,ωtc]
T (6)

and to control these, there are three control inputs u. The
fuel injection per cycle and cylinder uf, the throttle effec-
tive area uthr, and the wastegate effective area uwg:

u = [uf,uthr,uwg]
T (7)

The engine speed, Nice, is an external input in the model
and a model overview is found in Figure 2.

ωtc
Nice

Mice

pem

pb

pim

Wt

Wwg Wcyl +Wf

Wcyl

Wc

Wthr

uwg

uthr

uf

Figure 2. Model overview. Shown are the four states: boost
pressure pb, intake manifold pressure pim, exhaust manifold
pressure pem, and turbocharger angular velocity ωtc, and the
three control inputs: Fuel injection per cycle and cylinder uf,
throttle effective area uthr, and wastegate effective area uwg. Also
shown are the flows, W , in the model.

4.2 Throttle
Modeling of the throttle follows (Eriksson and Nielsen,
2014), where an isentropic compressible restriction is
used. To describe the model, further notation is needed.
Athr,max is the throttle maximum area, CD,thr the flow co-
efficient, Ψthr flow parameter, and the flow is calculated
as

Wthr =
pb√
Ra Tb

CD,thr Athr,max uthr Ψthr (8)

The effective throttle area Athr,max uthr is linear in the
control input. This is not in accordance with dataset E.
Data suggest a cubic relation, but since the relation is in-
jective, the actual control input can be reconstructed from
the effective area. So, to avoid nonlinearity, effective area
is modeled as linear in the artificial control input uthr.

(Holmbom and Eriksson, 2018) compares different
compact models for the flow parameter Ψthr. Good perfor-
mance is obtained for the model (Shen and Ohata, 2011),
which is based on the conservation of mass, energy, and
momentum. By denoting the ratio of specific heats by γa,

and the pressure ratio by Πthr, the model can be expressed
as:

Ψthr =

√
γa +1

2γa
(1−Πthr)

(
Πthr +

γa−1
γa +1

)
(9a)

Πthr =

{
pim
pb

if pim
pb
≥ 1

γa+1
1

γa+1 otherwise
(9b)

The saturation of flow gives rise to the conditional ex-
pression. It does not have a continuous derivative. To
circumvent that, the logistic function is used to make
the derivative continuous, at the cost of nonlinearity and
parametrization effort:

Πthr =Π
choke + cswitch(Π−Π

choke) (10a)

cswitch =1/
(
1+ e−cΨ(Π−Πchoke)

)
(10b)

Π
choke =1/(γa +1) (10c)

Π =pim/pb (10d)

The model contains one tuning parameter, cΨ, which de-
termines the steepness of the switch.

4.3 Cylinder
The cylinder air mass flow is based on the modeling of the
volumetric efficiency and follows the approach in (Hey-
wood, 1988). By denoting the volumetric efficiency by
ηvol, the engine displacement by VD, and the engine speed
by Nice, the air mass flow is calculated as

Wcyl = ηvol
2VD pim

Ra TimNice
(11)

The question is how to model volumetric efficiency. A
common approach is to base the model on intake manifold
pressure and engine speed (Heywood, 1988). The primary
modeling dataset, A, does not show such a dependence,
see Figure 3, nor does it show a clear correlation with any
other variable in the dataset, why constant volumetric ef-
ficiency is used.
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Figure 3. Volumetric efficiency, in circles, relative to the max-
imum value. Plotted against engine speed and intake manifold
pressure.

The fuel mass flow is calculated as Wf = ncyl Nice uf /2
and the fuel-to-air equivalence ratio φ is calculated as



φ = AFs Wf/Wcyl, where AFs is the air-to-fuel stoichio-
metric ratio. The air-to-fuel equivalence ratio λ = 1/φ is
typically used by control engineers instead of φ . However,
in the model it is preferable to use φ as it is not singular
for zero fuel flow.

Cylinder out temperature modeling follows (Sivertsson
and Eriksson, 2014):

Te = ηsc Π
1−1/γa
cyl r1−γa

c

(
qin

cp,a
+Tim rγa−1

c

)
(12a)

qin =
Wf

Wf +Wcyl
qHV, Πcyl =

pem

pim
(12b)

Here ηsc is a model parameter, γa the ratio of specific heats
for air, rc is the compression ratio, and qHV the fuel lower
heating value. The cooling of the gas, before reaching the
exhaust manifold, is modeled from (Eriksson, 2002):

Tem = Tamb +(Te−Tamb)e
−

cem,h
(Wcyl+Wf)cp,e (13)

Model parameter is cem,h, and cp,e is the specific heat of
the exhaust gas at constant pressure.

4.4 Torque
A large part of the modeling effort is devoted to model-
ing of the engine work. The engine torque, Mice, is bro-
ken down into the components gross indicated torque Mig,
pumping torque Mpump, and friction torque Mfric:

Mice = Mig−Mpump−Mfric (14)

As is customary in engine modeling and evaluation, work
is normalized with engine displacement, VD, and ex-
pressed in terms of the mean effective pressure (MEP).
The relation between torque, M, and mean effective
pressure is 4πM = VDMEP. IMEPg is the gross indi-
cated mean effective pressure (gross indicate that pump-
ing losses are not included), PMEP is the pump mean ef-
fective pressure, and FMEP is the friction mean effective
pressure. To be able to separate the different effects, data
set B is used.

Indicated work
IMEPg is modeled as in (Eriksson and Nielsen, 2014)

IMEPg = ηig
qHV uf ncyl

VD
(15)

Achieving a good fit is a matter of modeling ηig.
A modeling objective is to include the effect of the fuel-

to-air ratio on the engine efficiency. The relation between
the fuel-to-air ratio, the ratio of specific heats, and engine
efficiency is described in (Heywood, 1988; Eriksson and
Nielsen, 2014). An important question is how to include
it in the model, and how that is done is an important con-
tribution in this work.

The efficiency modeling is started from the efficiency
of an ideal otto cycle, 1− 1/rγ−1

c , despite being a diesel

engine. The reason for using it, is that it is a single param-
eter model, if the compression ratio rc is considered given.
To find a relation between efficiency and fuel-to-air ratio,
the relation ηig,B−(1−1/rγ−1

c ) = 0, is solved for γ for ev-
ery datapoint in B, where ηig,B is the indicated efficiency
in the dataset. Figure 4 shows the solution, with γ drawn
in circles, and a second order polynomial model of γ in
φ is drawn in solid. The figure shows that the quadratic
model can capture the trend and is like the trends found in
literature. This motivates a model of the in-cylinder ratio
of specific heats γcyl according to

γcyl(φ) = cγ,0 + cγ,1φ + cγ,2φ
2 (16)
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Figure 4. Drawn using circles is the γ that fulfills the relation
ηig,B−(1−1/rγ−1

c ) = 0 for every datapoint in B. Drawn in solid
is a quadratic model of γ in φ .

The factor ηcal(Nice,uf), is introduced. This gives the
following structure for the indicated efficiency:

ηig(φ ,Nice,uf) =
(

1−1/r
γcyl(φ)−1
c

)
ηcal(Nice,uf) (17)

To model ηcal, the same procedure as for γ is used. The
equation ηig−ηig,B = 0 is solved for ηcal for every data
point in B, ηig,B. Figure 5 shows the data plotted in cir-
cles, with constant coloring for constant engine speed.
The data is plotted against fuel injection and engine speed.
The figure clearly suggests a dependence on both fuel
injection and engine speed. To model that, the model
ηcal = ccal,2(uf− ccal,1)

2 + ccal,0 is fitted separately for the
different engine speeds in the dataset, see solid lines in
Figure 5. Figure 6 shows, drawn in circles, the evolu-
tion of the estimated parameters ccal,0, ccal,1,ccal,2 plotted
against engine speed. In the same figure are different poly-
nomial models of the trends plotted, which are estimated
from the parameters using a least squares fit, and is used
as a basis for modeling how the parameters change with
engine speed.

The data and trends suggest the following modeling of
the load and speed factor ηcal,

ηcal(uf,Nice) = ccal,2(uf− ccal,1)
2 + ccal,0 (18a)

ccal,1 = ccal,10 + ccal,11Nice (18b)

ccal,2 = ccal,20 + ccal,21Nice + ccal,22(Nice)
2 (18c)
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Figure 5. Drawn in circles is the solution to ηig−ηig,B = 0 for
ηig, calculated for every data point in B, ηig,B. Drawn using solid
lines is a least squares estimate of the model ηcal = ccal,2(uf−
ccal,1)

2 + ccal,0 for each speed-line.
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Figure 6. Evolution of ccal,0, ccal,1,ccal,2, plotted against engine
speed. Drawn using solid lines is the evolution modeled as poly-
nomials in engine speed for different polynomial degree.

Pump work

The simplest model for the pump mean effective pressure
is, PMEP = pem− pim. Dataset B gives a bias of 60 kPa
for such a model for a least squares absolute error fit, also
a linear model gives a bias, why an affine model is selected
for the pumping work:

PMEP(pim, pem) = cPMEP,0 + cPMEP,1(pem− pim) (19)

with model parameters cPMEP,0 and cPMEP,1.

Friction work

A frequently used model for friction work is a second or-
der polynomial in engine speed (Heywood, 1988). The
available data in data set B does not show such a relation.
Instead, data suggest the friction mean effective pressure
can be modeled as a plane in engine speed, and fuel in-
jection. A plot is available in Figure 7, in which circles

1,000 1,200 1,400 1,600 1,800 2,000 100 200 300

1

1.5

Nice [rpm] uf [mg/cyc]

FM
E

P
[b

ar
]

Figure 7. Drawn in circles is FMEP in data set B. Surface plot
show the plane, FMEP = cf,0 + cf,1Nice + cf,2uf + cf,3uf, fitted
from data.

show the mean effective pressure plotted against fuel in-
jection and engine speed, and a surface plot shows a mod-
eled plane. The model is formulated as follows

FMEP(uf,Nice) = cf,0 + cf,1Nice + cf,2uf + cf,3ufNice (20)

in which cf,0, cf,1, cf,2, and cf,3 are model parameters.

4.5 Turbine
The turbine power is modeled based on (Eriksson, 2007),
which lumps turbine power and the mechanical efficiency
of the turbo shaft. By further introducing cp,e as the spe-
cific heat of the exhaust gas at constant pressure, and
the subscript ats to indicate the aftertreatment system, the
power is expressed as

Pt ηm =Wt cp,e Tem ηt

(
1−Π

1−1/γe
t

)
(21a)

Πt = pats/pem (21b)

1/ΠtNtc,corr

W
t,c

or
r

Figure 8. Drawn in circles is the corrected flow in the turbine
map, dataset D. The data is plotted against corrected turbo speed
Ntc,corr, and pressure ratio 1/Πt. Drawn in solid lines is the
model Wt,corr = k0(1−Π

k1
t )k2 fitted to the different speed lines.

To obtain good accuracy, the square root turbine flow
model (Eriksson and Nielsen, 2014) is used and ex-
tended with insights from the turbine map, dataset D. Fig-
ure 8 shows, drawn in circles, corrected flow Wt,corr =
Wt
√

Tem/pem, plotted against pressure ratio and corrected



turbo speed for dataset D, with constant coloring for con-
stant turbocharger speed. For constant speed, the mass-
flow model Wt,corr = k0(1−Π

k1
t )k2 is fitted to the data. To

settle upon flow equations, it is studied how the parame-
ters k0, k1, and k2 varies with turbocharger speed. A plot
is shown in Figure 9, where circles show the value of the
parameters for different speeds, and solid lines show dif-
ferent trend models. As is seen in the figure, k1, and k2,
can be modeled as either linear or quadratic with reason-
able results. The flow model is formulated as

Wt,corr = k0

(
1−Π

k1
t

)k2
(22a)

k0 = c00 + c02 N2
tc,corr (22b)

k1 = c10 + c11 Ntc,corr (22c)

k2 = c20 + c21 Ntc,corr + c22 N2
tc,corr (22d)

Ntc,corr =
ωtc√
Tem

(22e)

were ci, i = {00, 02, 10, 11, 20, 21, 22} are tuning pa-
rameters.
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Figure 9. Circles show the evolution of parameters k0, k1, and
k2 plotted against turbocharger speed. Solid lines show first and
second order polynomial models of the evolution.

The turbine efficiency is modeled based on the blade-
speed-ratio (BSR), as defined in (Watson and Janota,
1982)

BSR =
ωtc Dt/2√

2cp,e Tem
(
1−Π

1− 1
γe

t
) (23)

Figure 10 shows the turbine efficiency of data set D plot-
ted against blade-speed-ratio and corrected turbocharger
speed. The data suggest the following model structure

ηt = ηt,max− kη(BSR−BSRopt)
2 (24)

with parameters ηt,max, kη , and BSRopt speed dependent,
a fit to the different speed lines is shown in the same figure
using solid lines.

BSRNtc,corr

η
t

Figure 10. Circles show the turbine efficiency data from dataset
D, plotted against corrected turbocharger speed, and blade-
speed-ratio. Drawn in solid is a least fit of the model ηt =
ηt,max− kη(BSR−BSRopt)

2 for each speed line.

Figure 11 shows the evolution of ηt,max, kη , and BSRopt
with respect to speed. The data suggest that modeling of
BSRopt could be linear or quadratic in speed. The model
is formulated as

BSRopt = cBSR,0 + cBSR,1 Ntc,corr+ (25a)

cBSR,2 N2
tc,corr,II (25b)

ηt,max = cηt ,0 + cηt ,1 Ntc,corr + cηt ,2 N2
tc,corr (25c)

kη = cmax,0 + cmax,1 Ntc,corr (25d)

where cBSR,0, cBSR,1, cBSR,2, cηt ,0, cηt ,1, cηt ,2, cmax,0, and
cmax,1 are model parameters.
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Figure 11. Circles show the evolution of parameters kη , BSRopt,
and ηt,max plotted against turbocharger speed. Solid lines show
first and second order polynomial models of the evolution.



4.6 Wastegate
Modeling of the wastegate follows that of the throttle, and
the mass flow is modeled as

Wwg =
pem√
Re Tem

CD,wg Awg,max uwg Ψwg (26)

The flow head parameter Ψwg is modeled in the same way
as the throttle, with the difference that γa is replaced by γe,
and pressure ratio Πthr replace by Πt.

4.7 Compressor
The compressor modeling follows that of (Llamas and
Eriksson, 2017) and uses the accompanied open-source
parametrization tool LiU CPgui (Llamas and Eriksson,
2018). The model is a high-fidelity control-oriented com-
pressor model intended to capture a full set of operating
conditions. Parameterization data is dataset C. The devel-
opment of the model component goes beyond the scope of
this paper, but the compressor model paper describes the
model well, and together with the freely available param-
eters and parametrization tool, the process is well docu-
mented.

5 Energy optimal control
To test the effect of including the air-to-fuel ratio on the
energy optimal control, an OCP is presented and solved
for the two cases when the effect is included and excluded.
The problem is first solved for the presented model, and
then using a fixed γcyl model. γcyl is then set so that the two

solutions have the same average value for 1− 1/r
γcyl−1
c .

The problem consists of using the least amount of energy
to increase engine torque from the initial operating point,
X0, at 200 Nm, to a final operating point X f , at 2400
Nm, and over the duration of the transient output 1 MJ of
work. The engine speed is fixed at 1200 RPM, and the
end time t f is a free parameter. Fuel power is defined as
Pf = qHVWf, and energy consumption is its integral. En-
gine power is defined as Pice = Mice Niceπ/30 and engine
work as Eice =

∫
Pice. The engine model is represented

by the differential equation ẋ = f (x,u), and to avoid soot
formation, the air-to-fuel ratio is restricted: λ ≥ 1.3. The
problem is formulated as:

min
t f ,u

qHV

∫ t f

0
Wf dt

s.t. ẋ = f (x,u),
x(0) = X0, x(t f )≥X f ,

[0,0,0]T ≤ u(t)≤ [280,1,1]T,
λ (t)≥ 1.3,
Mice(t f )≥ 2400 Nm,

Eice(t f )≥ 1 MJ

(27)

As the end time is a free parameter, the first solution (in-
cluding the effect of the air-to-fuel ratio) results in the
end time 6.5 s, and the second in 4.3 s. Longer lines

(blue) thus represent the solution with the original dynam-
ics, and shorter lines (red) the solution with γcyl fixed.
The dashed line shows the smoke limiter value of 1.3.
The solutions are presented in Figure 12. For complete-
ness, the figure shows all states and controls except pc
and uthr as the throttle remains fully open in both cases.
Of particular interest is the engine efficiency, defined as
ηice(t) = Pice(t)/Pf(t), the indicated efficiency ηig, and the
air-to-fuel stoichiometric ratio λ . The fixed γcyl model
pushes against the smoke limiter which makes the tur-
bocharger spin up faster, thus reducing transient time and
increases work output. Notice that this does not impair ef-
ficiency when the effect of the air-to-fuel ratio is excluded
from the indicated efficiency model. Because of the higher
engine efficiency, the fixed γcyl model can complete the
transient faster, using less fuel. The original model on the
other hand is forced to maintain a higher air-to-fuel ratio to
maintain good efficiency. The air-to-fuel ratio is lowered
at the end, which meets the constraint of engine torque,
and at the same time reduces engine efficiency. The re-
sults show that the energy optimal control is significantly
influenced by the air-to-fuel ratio, both quantitatively and
qualitatively, which demonstrate the importance of includ-
ing this effect in the model.
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Figure 12. Solution to OCP (27). Longer lines (blue) show the
solution to the problem for the presented model. Shorter lines
(red) show the solution for a fixed γcyl model. The dashed line
shows the smoke limiter.

6 Conclusions
A diesel engine model for energy optimal control is devel-
oped and documented, and available as open-source (Leek
et al.). A method for estimating pressure sensor bias in
experimental data is also presented. The model’s intended
use is to investigate the effect of the turbocharger selec-
tion on the energy optimal control. The model has a small
number of states and controls to reduce the size of opti-
mization problems. The dominating equations are based



on first principles for physically plausible extrapolation.
The turbocharger model is detailed in order to accurately
capture its effect on the air and fuel path dynamics. The
engine efficiency model is dependent on the air-to-fuel ra-
tio in order to include the effect of turbocharger dynamics
on the combustion efficiency.

An optimal control problem is formulated and solved
for the two scenarios of including the fuel-to-air ratio ef-
fect on the engine efficiency, versus excluding it. The re-
sults show that the air-to-fuel ratio has a significant quanti-
tative and qualitative effect on the energy optimal transient
control, and is an important aspect of turbocharger selec-
tion. This indicates that the model is fit for its intended
use, but as the paper shows, the model’s areas of use goes
beyond that and to make it useful to others the develop-
ment of the model is presented in full.

Acknowledgment
The work was financed by the Swedish Agency for Inno-
vation Systems under the program LINK-SIC. The authors
would like to thank Scania, especially Erik Höckerdal,
Henrik Höglund and Björn Johansson for modeling dis-
cussions and data.

References
Joel Andersson. A general-purpose software framework for dy-

namic optimization. PhD thesis, PhD thesis, Arenberg Doc-
toral School, KU Leuven, Department of Electrical . . . , 2013.

Uri M Ascher and Linda R Petzold. Computer methods for or-
dinary differential equations and differential-algebraic equa-
tions, volume 61. Siam, 1998.

Jonas Asprion, Oscar Chinellato, and Lino Guzzella. Optimal
control of diesel engines: Numerical methods, applications,
and experimental validation. Mathematical Problems in En-
gineering, 2014, 2014.

John T Betts. Practical methods for optimal control and estima-
tion using nonlinear programming. SIAM, 2010.

M. Diehl, H. G. Bock, H. Diedam, and P. B. Wieber. Fast direct
multiple shooting algorithms for optimal robot control. Lec-
ture Notes in Control and Information Sciences, 340:65–93,
2006. ISSN 01708643. doi:10.1007/978-3-540-36119-0_4.

Moritz Diehl. Numerical optimal control. Technical report, KU
Leuven, 2011.

Kristoffer Ekberg, Viktor Leek, and Lars Eriksson. Model-
ing and validation of an open-source mean value heavy-duty
diesel engine model. Simul. Notes Eur., 28(4):197–204, 2018.

Lars Eriksson. Mean value models for exhaust system tempera-
tures. SAE Transactions, pages 753–767, 2002.

Lars Eriksson. Modeling and control of turbocharged SI and DI
engines. Oil & Gas Science and Technology-Revue de l’IFP,
62(4):523–538, 2007.

Lars Eriksson and Lars Nielsen. Modeling and control of en-
gines and drivelines. John Wiley & Sons, 2014.

Lars Eriksson, Simon Frei, Christopher Onder, and Lino
Guzzella. Control and optimization of turbocharged spark
ignited engines. IFAC Proceedings Volumes, 35(1):283–288,
2002.

Gamma Technologies. GT-Power User’s Manual. GT-Suite Ver-
sion 6.1, 2004.

John B Heywood. Internal combustion engine fundamentals.
McGraw-Hill Education, 1988.

Robin Holmbom and Lars Eriksson. Analysis and development
of compact models for mass flows through butterfly throttle
valves. Technical report, SAE Technical Paper, 2018.

Viktor Leek, Kristoffer Ekberg, and Lars Eriksson. LiU
Diesel II - An open-source mean value engine model. Avail-
able at. https://www.vehicular.isy.liu.se/
Software/LiUDiesel2/.

Xavier Llamas and Lars Eriksson. Control-oriented compressor
model with adiabatic efficiency extrapolation. SAE Interna-
tional Journal of Engines, 10(4), 2017.

Xavier Llamas and Lars Eriksson. LiU CPgui: A toolbox
for parameterizing compressor models. Technical report,
Linköping University, SE-581 33, Linköping, Sweden, 2018.

Giorgio Mancini. Automotive diesel engine transient operation:
modeling, optimization and control. PhD thesis, Università di
Bologna, 2014.

Jorge Nocedal and Stephen Wright. Numerical optimization.
Springer Science & Business Media, 2006.

Anil V Rao. A survey of numerical methods for optimal con-
trol. Advances in the Astronautical Sciences, 135(1):497–
528, 2009.

Tielong Shen and Akira Ohata. Modeling and control design
for automotive engines-with matlab engine simulator cd-rom.
ISBN 978e-4-339-04610-6, 2011.

Martin Sivertsson and Lars Eriksson. Modeling for optimal con-
trol: A validated diesel-electric powertrain model. In SIMS
2014-55th Scandinavian Conference on Simulation and Mod-
elling, pages 49–58. Linköping University Electronic Press,
2014.

Vaclav Smil. Diesel engine at 120 [numbers don’t lie]. IEEE
Spectrum, 54(2):24–24, 2017.

Johan Wahlström and Lars Eriksson. Modelling diesel engines
with a variable-geometry turbocharger and exhaust gas recir-
culation by optimization of model parameters for capturing
non-linear system dynamics. Proceedings of the Institution
of Mechanical Engineers, Part D: Journal of Automobile En-
gineering, 225(7):960–986, 2011.

Neil Watson and Marian Janota. Turbocharging the internal
combustion engine. Macmillan International Higher Educa-
tion, 1982.

https://doi.org/10.1007/978-3-540-36119-0_4
https://www.vehicular.isy.liu.se/Software/LiUDiesel2/
https://www.vehicular.isy.liu.se/Software/LiUDiesel2/

	Introduction
	Modeling for Energy Optimal Control
	Optimal control
	Numerical solution to optimal control problems
	Modeling implications

	Data
	Pressure offset estimation

	Model
	Dynamics
	Throttle
	Cylinder
	Torque
	Turbine
	Wastegate
	Compressor

	Energy optimal control
	Conclusions

