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Abstract: This study proposes a data-driven methodology for modeling power and hydrogen generation of a sustainable en-

ergy converter. The wave and hydrogen production at different wave heights and wind speeds are predicted. Furthermore, 

this research emphasizes and encourages the possibility of extracting hydrogen from ocean waves. By using the extracted data 

from FLOW-3D software simulation and the experimental data from the special test in the ocean, the comparison analysis of 

two data-driven learning methods is conducted. The results show that the amount of hydrogen production is proportional to 

the amount of generated electrical power. The reliability of the proposed renewable energy converter is further discussed as a 

sustainable smart grid application.  
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1. Introduction 

Developing renewable energies technologies had reported to have a great progress during the past decade 

[1-2]. The most well-known ones are solar, wind, tidal, hydrogen, and geothermal [3]. Ocean wave energy is the 

second potential among all ocean renewable energy sources [4]. In recent years, inventors have become interested 

in wave converters. Since 1980, about 1000 patents have been registered on this topic, which is still increasing 

rapidly [5]. In 1799, Girard invented the first wave converter, like today's converters in France [6], known as one 

of the first converters. Starting in 2000, several patents for these converters appeared in the field of energy conver-

sion. Yoshio Masuda is called the founder of the development of wave converters. He invented a float connected 

to a special turbine to generate electricity [7]. The reason for the development of these converters from 1971 to 1981 

was the result of the oil crisis in 1973, and these crises were a prelude to the beginning of investment in this field 

[8]. Also, environmental scientists in developing countries have conducted several kinds of research and experi-

mental activities to optimize wave energy utilization systems. At the end of 1973, the oil crisis caused some stra-

tegic activities in the field of sustainability and increased interest in these converters to an advanced level [9]. In 

1974, Stephen Salter introduced these converters to renewable energy researchers; today, this incident is a turning 

point in this field [10]. 

Among the new wave energy converter types introduced, the most well-known one is Searaser. This model 

was invented by Alvin Smith [11]. When a wave is created on the surface of ocean water and passes, the wave's 

potential energy is converted into kinetic energy by the float in the form of linear motion. As the buoy moves 

down, the ocean water is compressed in a chamber, and after the energy conversion takes place, the water exits 

through the outlet valve. After passing one cycle, the float is moved up by the impact of the next wave, and the 

inlet valve is opened. The generator converts the mechanical energy resulting from this linear movement into 

electrical energy [12]. 

Although ocean waves are safe, reliable, and clean energy sources, they have unpredictable parameters due 

to their usage [13]. The uncertainty can threaten the reliability and stability of ocean energy systems, particularly 

in large-scale integration [14]. Hence, it is essential to forecast ocean wave energy to save construction costs and 

pilot projects during electrical power generation[14]. As known, wave energy is not only more abundant in nature 

than wind and solar energy but also easier to forecast [15]. Accurately predicting ocean waves' power with random 

data is challenging in this field [16]. Often, the renewable energy resources are uncertain and unpredictable. It can 

limit resource contribution to the hybrid energy production [17]. Therefore, it is essential to develop electrical 



 

energy storage technology to the extent that it is available when needed to meet demand. Storage of electric meth-

ods manages the amount of power when the need is more significant during peak consumption to meet customers' 

needs [18]. They can maintain functional microgrids by storage and balancing generation [19]. Storage devices can 

regulate control frequency and voltage settings to maintain a balance between storage power and the grid. Various 

methods are available to store excess energy and release it when high demand and production rates are low [20]. 

Some of the different forms of energy that can be stored are electrochemical, mechanical, and thermal [21]. 

Mousavi et al. [12] predicted the output power of a wave energy converter using a novel deep learning method 

which was significant for alleviating the investment risk for industries. Although ocean wave energy has high and 

valuable potential, the high cost of investing in it has made researchers use new investigation, including combin-

ing it with other renewable energy sources. Dehghan et al. [22]use a novel concept of a hybrid wind-wave energy 

converter, where the Searaser is considered for the WEC sub-system, hybrids with a novel vortex bladeless Turbin. 

Hydrogen is a significant energy source that has a vital role in the future for energy storage and generation. The 

production and storage of hydrogen from ocean waves will significantly contribute to the wave energy converter 

industry and make it reliable and economical. This study investigates the possibility of hydrogen production and 

output power from ocean waves.LSTM and MLP methods are applied for predicting outpower and hydrogen 

estimation." Best, 

Multiple methods are involved in Hydrogen production from different sources stored as a gas, liquid or solid 

[23]. It needs high-pressure tanks when hydrogen is stored as a gas. In contrast, liquid hydrogen needs cryogenic 

temperatures because the hydrogen boiling point at a pressure of one atmosphere is -252.8 degrees Celsius [24]. 

Also, hydrogen is stored inside solids or the surfaces of the solid [25]. The energy stored in hydrogen is used with 

a fuel cell. The ideal requirements will be quick access to the stored energy and the ability to provide it in various 

forms of energy. In this research, hydrogen is considered a storage medium. Generating energy from waves is a  

developing and relatively new technology. Consequently, generating cost of electricity from ocean waves is higher 

than mainstream solar and wind energy flows [26]. Water electrolysis can be used to produce hydrogen, and a 

working model for producing hydrogen from ocean waves is shown in Figure 1. 

        

Figure 1. The process of power and hydrogen production with Searaser. 

 

As presented in Figure 1, the wave energy converter transforms the wave motion to electrical power by gen-

erator. It schematically describes how Oxygen and Hydrogen gases are produced from the generated power of the 

WEC. So, the generated power of the WEC is divided into two main supply line. The first line is used for trans-

forming the generated power to electricity grid (network) and  the other line is for producing the Hydrogen. The 

former produces hydrogen with a special electrolyzer, and its high proportion is transferred to the network by the 

latter [27]. Researchers have been looking for methods to optimize time-consuming and expensive calculations for 

solving equations with complex boundary conditions and replacing them with methods with short, accurate cal-

culation time and the lowest cost. One of the methods that researchers and engineers have recently succeeded in 

is predicting the behavior of phenomena in nature using artificial intelligence[28]. One of its applications is pre-

dicting the output power of converters, the most important of which is predicting the output power of wave en-

ergy converters using effective variables and parameters [29]. Wu et al. studied the simulation of ocean waves and 

provided a predictive model using genetic algorithm methods, one of the fields of artificial intelligence. Their main 

goal was to study the parameters affecting the power. They studied these parameters in different wave heights, 

wave periods, and water depths and concluded that conversion optimization helps solve technical problems in 

this field [30]. Papini et al. studied the input variables of production capacity by wave energy converter systems. 



 

By designing an artificial neural network, they could make accurate predictions about the purpose of their study. 

Through the designed algorithm, they established a relationship between wave height and electricity production, 

and by analyzing the errors, they expressed a relationship between energy absorption efficiency and other param-

eters [31]. Forbush and colleagues in machine learning methods use the latest and most up-to-date methods to 

introduce new software to achieve the article's goal of predicting the output using data combination [32]. 

Cheng et al. used the long-short-term memory method to predict electricity production. A comparison be-

tween three different artificial intelligence methods concluded that the long-short-term memory method is more 

optimal in error values by 7% [33]. Lin et al. studied the power prediction of systems with long-short-term memory 

error and optimized results. They concluded that long-short-term memory algorithm output results are more ac-

curate than other methods [34]. Also, Nickel et al. used machine learning methods to predict the wave energy 

converter power. They supposed that high-frequency waves could affect modeling efficiency [35]. Also, Mousavi 

et al. [12] utilized the LSTM algorithm to predict the generated power of Searaser. He and his research team intro-

duced an equation for the generated power of wave energy converter by implementing an artificial intelligent 

algorithm on generated data with simulation software. In the former studies, the most important issue was to find 

the best artificial intelligent algorithm in a case to predict the most critical parameters in this system. In this paper, 

Searaser is simulated with the help of FLOW-3D software and using experimental data as an input. Then, these 

generated data from the output of the simulation were used in two deep learning algorithms. The comparison 

analysis was done, and the most accurate algorithm was introduced. As a novelty, one of the crucial aims of this 

paper is to analyze the possibility of hydrogen production from ocean waves, contributing to the industry's eco-

nomic conditions. 

 

2. Materials and Methods 

Computational fluid dynamics 

Computational fluid dynamics is a computational method for fast and accurate prediction of studied fluid 

properties, which can model different fluid states such as free surface, single-phase and multi-phase flow, as well 

as fluid-solid interactions.[36] Computational fluid dynamics is a method of numerical modeling of the governing 

equation, which is used to analyze fluid flow. The main equations of this method are Navier-Stokes equations. 

These equations are able to solve the desired fluid flow equations according to the defined assumptions. These 

equations are related to the studying of the fluid behavior in a wide range of states [37].  

 

WEC geometry 

The industry of generating electricity from the wave converter is progressing. The function of these converters 

is to send the ocean waves’ water to the special tank with a water pump and then return them to the turbine in 

order to generate electricity [38]. The performance of a specific type of Searaser has been evaluated in this paper. 

The geometry of the wave converter can be seen in Figure 2. part 1 is the buoy, which floats on the ocean water. 

The buoyant force on the buoy is directed upwards. For its motion in the opposite direction (downward), the force 

of gravity dominates the other forces across the wave's motion [39]. It makes buoy have a linear motion in a cham-

ber. 





 

after the wave passes through the floating wave converter, it moves downwards and when the valve opens and 

the water exits, the water goes out of the chamber. At this time, an energy conversion period takes place, and the 

generator is prepared for the next cycle. Figure 4 shows one of the gages and its valve [42]. The most important 

part of the energy conversion in the wave generator is the generator, which converts the floating mechanical en-

ergy into electrical energy. Using Faraday's Law of Electromagnetic Induction, the linear movement of the magnet 

connected to the float in the fixed coil of the chamber produces electric power [43]. The anchor is fixed to the ocean 

floor by an anchor system. The stability of the chamber is very important because by keeping the connected coil 

fixed, it causes the relative movement of the coil and the magnet, and this leads to maximum power generation 

[43]. 

 

Boundary conditions and network generation 

In the FLOW-3D software, the fluid and solid properties should be introduced in order to carry out fluid and 

structure interaction analysis. The solid is stainless steel and the fluid is the 25°C ocean water with a density of 

1023.6 kg/m3 [12]. Also, the boundary conditions are given in Figure 4. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. The boundary conditions of the control volume 

As shown in Figure 4, each facet of the control volume represents the special boundary condition of that part. 

Each facet is labeled with special signs. VW represents the fluid entering the control volume with a linear wave, S 

represents the symmetry condition, W is the sliding boundary condition, and O represents the one-way exit of the 

fluid from the control volume. The assumption of one-way output means that the fluid does not enter the control 

volume from this area, and in other words, we do not have a return flow. Also, gridding was done on three rec-

tangular cubes, the size of the grid is different in each of them. The size of the grids is determined based on the 

sensitivity of the areas on which the analysis is to be performed, in such a way that the outermost cube is the least 

sensitive in terms of calculation accuracy due to its distance from the wave converter and its less effectiveness. A 

larger grid is used in this area. On the other hand, the mesh size in the innermost rectangular cube is much smaller 

than the other two rectangular cubes due to the presence of fluid and structure. The advantage of the difference 

in the size of the network is that the calculation time and calculation costs are saved to a great extent. 

Moreover, the boundary conditions in three gridded rectangular cubes are the same, and as mentioned, the 

only difference is in the size of their grid. To put it more clearly, there is no difference in the inlet, outlet and wall 

boundary conditions. The height of the innermost rectangular cube is 8 meters, of which 6 meters is the ocean 

water fluid and 2 meters is the wind flow on the free surface of the ocean. The fluid enters to the control volume 

as a sine wave (Figure 5). In order to simplify the wave motion of the fluid entering the control volume, a sine 

wave was used and it is introduced in Equation 1 [12]. 





 

One of these variables is the speed of the wind blowing on the ocean surface, which leads to the creation of waves. 

As stated in the problem-solving method section, an experimental test was used for input data to the FLOW-3D 

simulation software. Figure 5 expresses the wind speed in the test samples and Figure 6 shows the wave height in 

the samples. 

 

Figure 5. The wind velocity during the period of the experimental test  

As can be seen in Figure 5, a time frame of the entire test time has been examined. During the test, the wind 

speed includes positive and negative values. Positive values represent the speed of wind blowing in the positive 

direction and the same direction as the coordinates, and the negative sign represents the wind blowing in the 

opposite direction of the coordinates. The maximum wind speed is about 3.7 m/s and its minimum is about -3 m/s. 

Figure 6 represents the wave height at any time as measured by the sensors. It should be noted that in figures 5 

and 6, pre-processed data is used. Indeed data extracted from sensors are raw data; therefore, by implementing 

data cleaning, data integration, data reduction, and data transformation, they convert to clean data for analyzing 

more. 

 

Figure 6. The wave height during the period of the experimental test 

 



 

As can be seen in the Figure 6, at different times the wave height values include positive and negative values. 

Wave height is measured in z-axis. For this purpose, positive data is when the wave height is increasing towards 

the positive side of the x-axis. Negative heights only belong to the wind blowing in the opposite direction of the 

intended axis on the surface of the oceans and does not mean a deep sinking of the wave in the ocean water. This 

special concept is defined according to this thesis's conditions and objectives that the wave's height has caused 

power generation in wave generators. Also, to find the effect of wind speed on the surface of the oceans and the 

generated waves, it is necessary to have a template as Figure 7. 

 

Figure 7. The relation between wave height and wind speed 

 

As can be inferred from the Figure 7, the values are displayed as point and scattered data, and in future 

studies, by having the wind speed on the ocean surface and interpolating between the points in certain conditions, 

it will be possible to test the amount of height He realized the wave. 

Results of data optimization with preprocessing 

The available data include wave height, wind speed, and the electricity generation capacity of the Searaser. 

The desired environmental conditions are available at the test site. The produced power in each series of experi-

ments was calculated by the numerical then the predicted power is estimated by two long-short-term memory 

algorithms and multilayer perceptron's. The comparison graphs of the estimated power are drawn by these two 

methods of artificial intelligence as well as the numerical simulations. As can be seen in the Figure 8, due to the 

existence of discontinuity and the lack of data sets, the data received from the sensors in the test site must be 

converted into continuous and so-called clean data under pre-processing algorithms. In this research, we recover 

the lost data with linear interpolation and replace the blank values with the produced ones. Figure 8 shows the 

comparison of the forecast produced power in terms of wave height in two cases, where the data has been pre-

processed and not. This part may be divided into subheadings. It concisely describes the experimental results, 

their interpretation, and the experimental conclusions. 



 

 

Figure 8. Two classes of forecasting procedure power with two algorithms 

As it is mentioned in the Figure 8, the prediction when pre-processing has been done on the data is more 

accurate than when the data includes outliers and missing data (raw data). It is a proof of the importance of data 

pre-processing before entering the algorithm. Data preprocessing in this paper includes replacing empty values 

with values obtained from interpolation and removing outliers. Also, box plot method is used to eliminate outlier 

data. Figure 9 represents a box plot for two variables of wind speed and wave height. 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

Figure 9. The box plot of raw data for presenting the outliers. 

In the figure 9, the highest wind speed values are between 2.67 and -2.56. Although, there are some data with 

very low frequency in the outside of this range, it is necessary to have a more accurate modeling than this by 

removing outliers. Also, for the wave height values, the range of data was between 1.03 and -1.05, which also 

includes outlier data that should be removed before entering the modeling. 

 

Comparative analysis of numerical solution and prediction of values by artificial intelligence algorithms 

Among the common methods for optimizing used in the interdisciplinary research of fluid mechanics engi-

neering and artificial intelligence is a comparative analysis between two approaches of numerical solution of prob-

lem equations by commercial software and artificial intelligence algorithms. The simulation results were used to 

train and test the algorithms. The comparative analysis performed between the two approaches is shown in Figure 

10. 

 



 

Figure 10. Two approaches of calculating the output power of Searaser in an experimental test period. 

As it is inferred from the Figure 10, the amount of produced power in each test sample, the multilayer per-

ceptron method has a higher accuracy than the long-short-term memory method. The average absolute error in 

prediction with the multilayer perceptron method is about 0.08 % and in the long-short-term memory method is 

about 1.53 %. So, we conclude that by using the multilayer perceptron method, the average error of predicting the 

output power of the converter can be reduced by 0.73 %. Now, to further examine, we compare the output with 

the input data resulting from simulation. Figure 11 presents the produced power of the converter in terms of the 

wave height in the test samples with two approaches. 

 

Figure 11. The comparison between two methods and their curve fitting 

 

As shown in the Figure 11, the simulation of the Searaser is compared with two methods of long-short-term 

memory and multilayers perceptron, and the best function has been passed through the obtained points. The best 

lines have the least amount of error from the corresponding points. As it can be seen correctly, the absolute error 

percentage in the multilayer perceptron method is 0.73% lower than in the long-short-term memory method. To 

have a numerical simulation, the simulations in terms of accuracy and speed take about 4 days and 1 hour in the 

best case, but the prediction of the results with artificial intelligence algorithms takes less time. By obtaining the 

mathematical equations from the curve fitting graphs, it is possible to provide a relationship that replaces the 

numerical solution of a similar case, which speeds up the analysis of these devices that are simulated at the original 

scale of its invention. Another positive point of this thesis is the 1:1 scale and the closeness of the simulation results 

to reality, which allows researchers and investors to easily achieve the desired results by having information about 

the installation location of these devices. In addition, the data is curve fitted and two mathematical relationships 

to attribute the power output by the Searaser and the height of the wave are presented. One of them is the rela-

tionship provided by Babajani, and the other is the relationship provided by artificial intelligence predictions. 

 

Evaluation of simulation and validation of results 

As with other research conducted around the world, in order to validate the results of numerical modeling 

in the form of simulation by commercial software, it is necessary to compare with other research and articles in 

similar fields. In order to evaluate the results of in this paper, Babajani 's article has been used. Figure 12 presents 

the generated power of the wave generator according to the wave height, which has been validated with Babajani 

's study. 









 

5. Conclusion 

In this thesis, it has been tried to use the results of an experimental test as an input for simulation to investigate 

a more realistic model of a specific type of wave generator (Searaser) and in addition to estimating the production 

power and important variables. The problem was investigated the amount of hydrogen produced. The problem 

of interaction of wave generators with ocean waves is a problem of structure and fluid interaction, which was 

investigated by solving the Navier-Stokes equations. The commercial software used in this thesis is FLOW-3D 

software, whose simulation steps are the same as other fluid simulation software. After gridding the fluid and the 

structure, the grid independence studies were carried out. Different reviews were presented on the size of the grid 

that if it is necessary to perform numerical solution calculations in the least amount of time and computational 

costs, the optimal mode of choosing the size of the whole grid is 5 million. This type of grid size, the floating 

displacement size in the axis perpendicular to the wave surface (z-coordinates) has only 9% error, which is more 

acceptable compared to 7 million grids with 7% error. The condition of the wave entering the control volume is 

that the height of the incoming wave is variable. This condition causes the calculation time by the software to 

increase to a great extent compared to when the amplitude of the wave is constant. After numerically solving the 

Navier-Stokes equations with the help of software and simulating the interaction of the structure and the fluid, as 

well as the necessary calculations to find the amount of hydrogen produced, the results were used as input to 

neural network algorithms. The algorithms used in this paper were the long-short-term memory algorithm and 

the multilayer perceptron algorithm, and the input data was divided into two parts, training and testing, to learn 

the algorithms. Then, by comparing the algorithms with each other, it was found that the performance accuracy 

of the multilayer perceptron algorithm is higher than the long-short-term memory algorithm. Then, by comparing 

the simulation results with the prediction values based on artificial intelligence, an accurate model was presented 

with the regression method. The results prove that the predictions were made with high accuracy. In addition to 

that, among the other advantages of presenting a model based on artificial intelligence, it can be pointed out that 

the calculations and numerical solution of the equations governing the problem have a high computational time 

and cost, but the training and predictions based on artificial intelligence are only to the extent of a few It was 

minutes. Paying attention to the ability of prediction methods based on artificial intelligence and by fitting the 

curves of the graphs, a relationship was presented between the wind speed and the output power of the wave 

generator. The obtained results and the comparison between the studied methods show that the long-short-term 

memory network can be obtained in order to predict the power in terms of height with more accuracy and speed 

than the numerical solution, and the graphs are in good agreement with the similar result. has a construction The 

comparisons show that the prediction method based on artificial intelligence is more accurate and the average 

value of the squared error of the parameters was 0.49. By examining the correlation matrix, it can be concluded 

that the forecasts have high accuracy in wind speed and productive power. This paper can be an accurate model 

for predicting the amount of power and hydrogen production in different regions, which will cause rapid progress 

in energy management and more investment in ocean renewable energy systems. This study has limitations that 

open the way for future studies. Consequently, this study can be improved by analyzing more parameters affect-

ing ocean waves' output power, such as temperature, climate changes, etc. Also, more accurate results can be 

achieved using state-of-the-art methods and developing and upgrading WEC systems. 
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